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TWISTING FUNCTORS ON O

HENNING HAAHR ANDERSEN AND CATHARINA STROPPEL

Abstract. This paper studies twisting functors on the main block of the
Bernstein-Gelfand-Gelfand category O and describes what happens to (dual)
Verma modules. We consider properties of the right adjoint functors and show
that they induce an auto-equivalence of derived categories. This allows us
to give a very precise description of twisted simple objects. We explain how
these results give a reformulation of the Kazhdan-Lusztig conjectures in terms
of twisting functors.

Introduction

In the following we study the structure of certain modules for a semisimple
complex Lie algebra arising from twisting functors and explain connections to mul-
tiplicity formulas for composition factors.

We fix a semisimple complex Lie algebra g and choose a Borel and a Cartan
subalgebra inside g. We consider the corresponding BGG-category O of g-modules
with certain finiteness conditions ([BGG76]). For any element w of the correspond-
ing Weyl group we define, following [Ark], an endofunctor Tw of O which is given
by tensoring with a certain g-bimodule Sw (a semi-infinite analog of the universal
enveloping algebra of g). Such functors can be defined in a very general setup. In
[Soe98], for example, they were used to get character formulas for tilting modules
for Kac-Moody algebras. Moreover, they also exist in the quantized situation (see
[And03]) and our results should carry over to that case. But in this paper we
restrict ourselves to describing their properties in the ordinary category O.

In [AL02] it is shown what happens to a Verma module under these twisting
functors. Following [FF90], the resulting modules are called twisted Verma mod-
ules since their characters are again characters of Verma modules. They turn out
to be exactly the principal series representations which play a crucial role in repre-
sentation theory ([Jos94], [Irv93]). They can also be realized as local cohomology
groups of line bundles on the corresponding flag variety (see [AL02]) and are ex-
actly the Wakimoto modules, i.e., modules with certain vanishing properties for the
semi-infinite cohomology (see [Vor99] and [FF90] for the affine case).

Although, there are several different constructions of twisted Verma modules,
their “intrinsic” structure (like socle and radical filtrations) is in general unclear.
For dual Verma modules, however, the situation is easier, since twisting functors
stabilize the set of dual Verma modules (Theorem 2.3).

As a first general result, we deduce (Corollary 4.2) that each twisting functor in-
duces an auto-equivalence on the bounded derived category (as stated by Arkhipov
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in [Ark]). This result is a very strong tool for computing homomorphism spaces
and extensions between (twisted) objects. In particular, we can use it to show that
any indecomposable module with Verma flag stays indecomposable under twisting.
For instance, all twisted Verma modules are indecomposable, and so are the twists
of indecomposable projective objects. Since the functors satisfy braid relations we
can consider them as a functorial braid group action via auto-equivalences (in the
sense of [KS02]).

If s is a simple reflection, the composite TsTs is far from being the identity.
However, the alternating sum Σ(−1)iLiTs defines an involution on the Grothendieck
group of O. Using the right adjoint functor of Ts we get a description of all simple
objects annihilated by Ts (Theorem 5.1). Moreover, the trivial simple module L
has the following kind of “Borel-Weil-Bott” vanishing property (Corollary 6.2)

LiTwL ∼=
{
L if i = l(w),
0 if i 6= l(w).

The interesting case, however, are the nonzero twisted simple modules. Theorem 6.3
gives a very explicit description of such twisted simple objects. These modules are
important for understanding the whole category; they cover all the categorical
information of O: We get as the main application of the paper a reformulation of
the Kazhdan-Lusztig conjecture ([KL79]) in terms of twisted simple objects. At
first glance, this statement might not show the significance and impact which it
really has, namely:

Claim. For all x ∈ W not maximal, there exists a simple reflection s such that
L(x.0) is a submodule of TsL(sx.0).

A proof of this claim would imply a proof of the Kazhdan-Lusztig conjecture.

1. Notation and preliminaries

Let g be a finite dimensional complex semisimple Lie algebra with a chosen Borel
and a fixed Cartan subalgebra. Let g = n− ⊕ b = n− ⊕ h⊕ n be the corresponding
Cartan decomposition. We denote by U(L) the universal enveloping algebra for any
complex Lie algebra L. Let M be a U(g)-module. For λ ∈ h∗ we denote by Mλ =
{m ∈ M | h.m = λ(h)m, ∀h ∈ h} the λ-weight space of M . If M =

⊕
λ∈h∗Mλ,

then M is called h-diagonalizable.
Let R+ ⊂ R denote the subset of positive roots inside the set of all roots. If

we consider g as a U(g)-module via the adjoint action we get by definition n− =⊕
α∈R+

g−α and n =
⊕

α∈R+ gα. We fix a Chevalley basis {xα, | α ∈ R}∪{hi | 1 ≤
i ≤ rank g} of g. Let σ : g→ g be the corresponding Chevalley anti-automorphism.
The positive roots define a partial ordering on h∗ by letting λ ≥ µ if and only if
λ − µ ∈ NR+. Let W be the Weyl group corresponding to R with a set of simple
reflections S generating W and length function l. We denote the shortest element
in W by e and the longest by wo. Let ρ ∈ h∗ be the half-sum of positive roots.
The dot-action of W on h∗ is given by w · λ = w(λ + ρ) − ρ, where the action on
the right-hand side is the usual action of the Weyl group on h∗. For λ ∈ h∗, we
denote by Wλ = {w ∈ W | w · λ = λ} the stabilizer of λ under the dot-action. If
Wλ = {e}, then λ is called regular. A weight λ ∈ h∗ is called integral if 〈λ, α̌〉 ∈ Z
for any simple root α. Let h∗dom = {λ ∈ h∗ | 〈λ + ρ, α̌〉 ≥ 0 for any simple root α}
be the set of dominant weights.
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We consider the category O from [BGG76], i.e., the full subcategory of the
category of U(g)-modules, where the objects are precisely the modules which are

(1) finitely generated,
(2) h-diagonalizable, and
(3) U(n)-locally finite, i.e., dimC U(n)m <∞ for all m ∈M .

For λ ∈ h∗ we denote by Cλ the corresponding one-dimensional h-module considered
as a b-module with trivial n-action. Let ∆(λ) = U(g) ⊗U(b) Cλ denote the Verma
module with highest weight λ; it is an object in O, its unique simple quotient is
denoted by L(λ). The modules L(λ), where λ ∈ h∗, are pairwise non-isomorphic
and constitute a full set of isomorphism classes of simple modules in O. We denote
by P (λ) and I(λ) the projective cover and injective hull respectively of L(λ).

Let M be a U(g)-module which is h-diagonalizable. We denote by d(M) the
largest submodule of M∗ = HomC(M,C) which is h-diagonalizable, i.e., d(M) =⊕

λ∈h∗(Mλ)∗. The module d(M) becomes an object in O with g-action given
by x.f(m) = f(σ(x)m) for any x ∈ g, m ∈ M and f ∈ d(M). Moreover, d
defines a duality on O fixing simple modules and preserving characters. We let
∇(λ) = d ∆(λ) denote the dual Verma module with submodule L(λ). (For details
see [BGG76], [Jan79], [Jan83])

In the following tensor products and dimensions are all meant to be (as vector
spaces) over the complex numbers if not otherwise stated.

2. Translation and twisting functors

The action of the center Z of U(g) gives a block decomposition

O =
⊕

χ∈MaxZ
Oχ,(2.1)

where the blocks are indexed by maximal ideals of the center of Z and where Oχ
contains all modules annihilated by some power of χ ∈MaxZ. The Harish-Chandra
isomorphism ([Dix96, 7.4.6] shifted by ρ) defines a natural isomorphism ξ between
the set of maximal ideals of Z and the orbits of h∗ under the dot-action of W ,
which are in bijection to the set of dominant weights. Under these bijections the
decomposition (2.1) coincides with

O =
⊕

λ∈h∗dom

Oλ,

where objects in Oλ have only composition factors of the form L(w ·λ) with w ∈W .
Let λ, µ be dominant such that λ − µ is integral. The translation functor θµλ :

Oλ → Oµ is defined on objects M ∈ Oλ by θµλ(M) = prµ(M ⊗ E(µ − λ)), where
E(µ− λ) denotes the finite dimensional g-module with extremal weight µ− λ and
prµ is the projection onto the block Oµ. By definition, these functors are exact and
θµλ is left and right adjoint to θλµ.

Let s be a simple reflection. Let λ be integral and regular and choose µ such
that λ − µ is integral and Wµ = {e, s}. We denote by θs the translation through
the s-wall ; i.e., θs = θλµθ

µ
λ : Oλ → Oλ. Up to a natural isomorphism this functor is

independent of the choice of µ. (For details see [Jan79], [Jan83], [BG80].)
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Twisting functors Tw. For each w ∈ W we define a twisting functor Tw : O → O
as follows: Let nw = n− ∩w−1(n+) and let Nw = U(nw) be its universal enveloping
algebra. We consider g as a Z-graded Lie algebra such that g1 =

⊕
gα, where the

sum runs over all simple roots α. This induces uniquely a grading on Nw. Let
N~w =

⊕
i∈ZHomC

(
(Nw)i,C

)
be its graded dual, i.e., (N~w )i = ((Nw)−i)∗. With

U = U(g), the corresponding semi-infinite U-bimodule Sw is then defined as

Sw = U ⊗Nw N~w .

That this is a U-bimodule is not obvious (for a proof see [And03] and [Ark, 2.1.10],
or the special case [Soe98, Theorem 1.3]); moreover, Sw ∼= N~w ⊗Nw U as right U-
module. For a simple reflection s corresponding to α let U(s) be the Ore localization
of U at the set {1, xi−α | i ∈ N}. It contains naturally U as a subalgebra. There is
a U-bimodule isomorphism ([Ark], compare [AL02, Theorem 6.1])

U(s)/U→̃Ss.(2.2)

The twisting functor Tw corresponding to w ∈ W on the category of g-modules is
given on objects by

M 7−→ φw(Sw ⊗U M),

and on morphisms by

f 7−→ 1⊗ f,

where φw means that the action of g is twisted by an automorphism of g corre-
sponding to w. Up to isomorphism the functor is independent of this particular
choice.

The main properties of twisting functors are given by the following

Lemma 2.1. Let w ∈ W .

(1) Tw is right exact.
(2) Tws ∼= TwTs if ws > w and s is a simple reflection.
(3) Tw preserves O and even each individual block Oλ for any λ ∈ h∗dom.

In fact, [Tw∆(λ)] = [∆(w · λ)] in the Grothendieck group of O.
(4) Tw commutes with tensoring with finite dimensional g-modules E, i.e., there

is an isomorphism of functors Tw(• ⊗ E) ∼= (• ⊗ E)Tw.
(5) Tw commutes with translation functors.

Proof. The first statement is clear by definition. For (2) and (3) see [AL02]. State-
ment (5) is then clear from (3) and (4). We prove (4) in a more general context in
Theorem 3.2. (It is stated without a complete proof in [AL02]). �

Because of the second statement of the previous lemma we restrict ourselves to
study the functor Ts for any simple reflection s. Moreover, we mainly consider its
restriction to a regular integral block, say O0. Therefore, we also write ∆(x), L(x),
∇(x), etc. instead of ∆(x · 0), L(x · 0), ∇(x · 0) respectively.

In [AL02] is described what happens to Verma modules when applying Tw. In
the easiest case, where x ∈ W and s is a simple reflection such that sx > x, it is
(see [AL02, Lemma 6.2])

Ts∆(x) ∼= ∆(sx).(2.3)
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As seen in [AL02], twisted Verma modules (e.g., their socle and radical filtrations)
are not well understood in general. However, it is known ([AL02, 6.3]) that for
sx > x they fit into a four step exact sequence of the form

0→ ∆(sx) −→ ∆(x) −→ Ts∆(sx) −→ Ts∆(x)→ 0.(2.4)

First properties of Ts and LTs. Recall that category O has enough projec-
tives. Hence we may consider the left derived functors LiTw of Tw. It is clear
from Lemma 2.1 that LiTw preserves Oλ for any i ≥ 0 and λ ∈ h∗dom. Likewise,
Lemma 2.1 (4) and (5) generalize to all LiTw. If we look at the functor LTs for a
simple reflection s, the situation becomes quite easy:

Theorem 2.2. We have LiTs = 0 for any i > 1 and any simple reflection s. If
λ ∈ h∗, then LiTw∆(λ) = 0 for i > 0 and w ∈W .

Proof. Since Ss ∼= N~s ⊗Ns U , the functor Ts is exact on Ns-free modules. Hence it
is exact on Verma modules and on modules with a Verma flag. Since Ns = C[x−α]
is a principal ideal domain for any simple reflection s, the functor Ts is even exact
on submodules of projective modules. Let M ∈ O and let P→→M be its projective
cover with kernel K. By definition of LTs we get LiTsM = Li−1TsK for i− 1 > 0.
Since K is a submodule of a projective object in O, the latter vanishes and the first
part of the theorem follows.

Let w ∈ W . Since Sw ∼= N~w ⊗Nw U , the functor Tw is exact on Nw-free modules,
in particular on modules with Verma flag. Therefore, TwP•→→Tw∆(λ) is exact
for any projective resolution P•→→∆(λ). The second statement of the theorem
follows. �

For dual Verma modules the situation is very nice:

Theorem 2.3. Let x ∈ W and s be a simple reflection. There are isomorphisms
of g-modules

Ts∇(x) ∼=
{
∇(x) if x < sx,

∇(sx) if x > sx;

and for i > 0,

LiTs∇(x) ∼=
{
Kx,sx if x < sx and i = 1,
0 otherwise,

where Kx,sx denotes the kernel of the (unique up to a scalar) nontrivial (surjective)
map ∇(x)→ ∇(sx) in the case x < sx.

Proof. Let us start to prove both parts by (descending) induction on the length
of x. If x = wo, then ∇(wo) is self-dual, hence L1Ts∇(wo) = 0 by Theorem 2.2,
and Ts∇(wo) = M s(swo) ∼= Mwo(swo) ∼= ∇(swo) by [AL02, Lemma 6.2] (using the
notations defined there).

Now let x 6= wo and choose a simple reflection t ∈ W such that xt > x. Trans-
lation through the wall gives a short exact sequence of the form

0→ ∇(xt)
f−→ θt∇(xt) −→ ∇(x)→ 0,(2.5)
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where f is the adjunction morphism and therefore we get, using Theorem 2.2 and
Lemma 2.1 (5), a long exact sequence of the form

0→ L1Ts∇(xt) −→ θtL1Ts∇(xt) −→ L1Ts∇(x)

−→ Ts∇(xt)
Tsf−→ θtTs∇(xt) −→ Ts∇(x)→ 0.(2.6)

Note, that Tsf is always the adjunction morphism, since we have naturally (for any
M ∈ O0, and θon = θλ0 , where Wλ = {e, t})

HomO(M, θtM) = HomO(θonM, θonM)
f 7→Tsf−→ HomO(TsθonM,TsθonM)

= HomO(θonTsM, θonTsM) = HomO(TsM, θtTsM).

Under this chain the adjunction map goes to the adjunction map.
Consider first the case sxt < xt. By induction hypotheses, (2.6) is of the form

0→ L1Ts∇(x) −→ ∇(sxt)
Tsf−→ θt∇(sxt) −→ Ts∇(x)→ 0.

If sxt > sx (i.e., sx < x), then Tsf is injective with cokernel ∇(sx), hence
L1Ts∇(x) = 0 and Ts∇(x) ∼= ∇(sx).

If sxt < sx, then Tsf has to be the composite of the surjection ∇(sxt)→→∇(sx)
between two ‘neighboring’ dual Verma modules and the adjunction morphism∇(sx)
↪→ θt∇(sxt); hence L1Ts∇(x) ∼= Ksxt,sx and Ts∇(x) ∼= θt∇(sxt)/∇(sx) ∼= ∇(sxt).
Our assumptions force sxt = x by the Exchange Condition of W (see [Hum90]).
Hence we have proved the theorem in the case sxt < xt.

Consider now the case sxt > xt. We have l(sx) ≥ l(sxt) − 1 = l(xt) = l(x) + 1,
i.e., sx > x. On the other hand, Ts∇(xt) ∼= ∇(xt) by induction hypotheses, hence
the adjunction morphism Tsf is injective with cokernel ∇(x); i.e., Ts∇(x) ∼= ∇(x)
and the first terms of (2.6) provide by induction hypotheses a short exact sequence
of the form

0→ Kxt,sxt
a−→ θtKxt,sxt −→ L1Ts∇(x)→ 0,(2.7)

where a is the restriction of the adjunction morphism. Consider the commutative
diagram with exact rows and surjection p:

∇(xt)

p

����

adj
// θt∇(xt)

θtp
����

// // ∇(x)

��

∇(sxt)
adj

// θt∇(sxt) // // ∇(sx)

By definition of Kxt,sxt the kernel-cokernel sequence is of the form

0→ Kxt,sxt
a−→ θtKxt,sxt −→ Kx,sx → 0.

By comparing it with (2.7), it follows that L1Ts∇(x) ∼= Kx,sx. Now, we proved
all the statements concerning LiTs for i ≤ 1. The vanishing of LiTs for i > 1 is
Theorem 2.2. �

3. Tensoring with finite dimensional modules

To prove that the twisting functors behave well with respect to tensoring with
finite dimensional modules we need a comultiplication on the ‘completion’ of the
localization of U .
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Recall that U is a Hopf algebra with comultiplication ∆(u) = 1 ⊗ u + u ⊗ 1,
antipode S(u) = −u and counit c(u) = 0 for elements u ∈ g. Note that ∆(un) =∑n
k=0

(
n
k

)
un−k ⊗ uk, for u ∈ U .

We can consider U(s) (and hence U(s) ⊗ U(s)) as a left C[(x−α)−1]-module. We
denote by U(s)⊗̂U(s) its extension to a module over the ring of formal power series
C[[(x−α)−1]]. There is an obvious extension of the algebra structure of U(s) ⊗ U(s)

to U(s)⊗̂U(s). The following result defines a comultiplication map from U(s) into the
completion U(s)⊗̂U(s) of U(s) ⊗ U(s):

Lemma 3.1. Let s = sα be a simple reflection. The following map defines an
algebra homomorphism

∆̃ : U(s) −→ U(s) ⊗̂ U(s)

y−nu 7→
(∑
k≥0

(−1)k
(
k + n− 1

k

)
y−n−k ⊗ yk

)
∆(u),

for y = x−α and any u ∈ U .

Proof. Direct calculations show that the map is well-defined and defines an algebra
homomorphism. �

Let E denote the category of finite dimensional g-modules.

Theorem 3.2. Fix w ∈W . There is a family {tE}E∈E of isomorphisms of functors
tE : Tw ◦ (• ⊗ E) −→ (• ⊗ E) ◦ Tw such that the following diagrams commute:
1) For any E, F ∈ E:

Tw(M ⊗ E ⊗ F )
tF (M⊗E)

//

tE⊗F (M)
**UUUUUUUUUUUUUUUUU

Tw(M ⊗ E)⊗ F

tE(M)⊗id

��

Tw(M)⊗ E ⊗ F

2) For any E ∈ E:

Tw(M ⊗ E ⊗ E∗)
tE⊗E∗ (M)

//
OO

Tw(id⊗ ev)

Tw(M)⊗ E ⊗ E∗
OO

id⊗ ev

Tw(M ⊗ C)
tC(M)

// Tw(M)⊗ C,

where ev : C→ E ⊗ E∗ is given by 1 7→
∑d

i=1 ei ⊗ e∗i for a fixed basis (ei)1≤i≤d
of E with dual basis (e∗i )1≤i≤d.

Proof. By Lemma 2.1 it is enough to consider the case where w = s is a simple
reflection. Let M ∈ O0 and let E be any finite dimensional g-module. Let s be the
simple reflection corresponding to α. Set y = x−α. We consider the following map:

U(s) ⊗U (M ⊗ E) −→ (U(s) ⊗U M)⊗ E

y−n ⊗ (m⊗ e) 7−→
∑
k≥0

(−1)k
(
n+ k − 1

k

)
y−n−k ⊗m⊗ yke.

By Lemma 3.1 this map is well defined and a U-morphism. It is even an isomor-
phism. To see this, one has to choose r, a ∈ N such that ya annihilates E and
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(r−1)a ≥ n−1. Then ar−n−k > ar−n−a ≥ −1 for any k < a. We can define a
map in the opposite direction by (y−n⊗m)⊗e 7→ y−ar⊗

∑
k≥0

(
ar
k

)
yar−n−km⊗yke.

Direct calculations show that this map does not depend on the actual choice of a
and r and that it defines an inverse.

We check the commutativity of the first diagram: For m ∈M , e ∈ E and f ∈ F ,
the diagonal map is given by

y−n ⊗m⊗ e⊗ f 7→
∑
k≥0

(−1)k
(
n+ k − 1

k

)
y−n−k ⊗m⊗ yk(e⊗ f)

=
∑
k≥0

∑
j≥0

(−1)k
(
n+ k − 1

k

)(
k

j

)
y−n−k ⊗m⊗ yk−je⊗ yjf.(3.1)

On the other hand, the composite of the horizontal and vertical map is given by

y−n ⊗m⊗ e⊗ f 7→
∑
j≥0

(−1)j
(
n+ j − 1

j

)
y−n−j ⊗ (m⊗ e)⊗ yjf

7→
∑
s≥0

∑
j≥0

(−1)j
(
n+ j − 1

j

)
(−1)s

(
n+ j + s− 1

s

)
y−n−j−s ⊗m⊗ yse⊗ yjf

=
∑
k≥0

∑
j≥0

(−1)k
(
n+ j − 1

j

)(
n+ k − 1
k − j

)
y−n−k ⊗m⊗ yk−je⊗ yjf,

(by taking k = j + s). Since
(
n+j−1

j

)(
n+k−1
k−j

)
=
(
n+k−1

k

)(
k
j

)
the diagonal map and

the composition are the same and the diagram commutes.
For the second diagram we use formula (3.1) for F = E∗. We start with an

element y−n⊗ (m⊗ 1) ∈ Ts(M ⊗C). By definition of the vertical map this element
is mapped to

∑d
i=1 y

−n⊗m⊗ei⊗e∗i . We apply the upper horizontal map to it. Since
ev is a morphism of g-modules, the resulting summands given by formula (3.1) are
all trivial except for k = 0. Hence the composition maps y−n⊗(m⊗1) to

∑d
i=1 y

−n⊗
m ⊗ ei ⊗ e∗i which is obviously the same as what happens via

(
id⊗ ev

)
◦ tC(M).

Therefore, the second diagram commutes. �

4. The adjoint functor G

In the following we want to describe the right adjoint functors of twisting func-
tors. Note that since Tw is not left exact, there exists no left adjoint functor
of Tw. The right U-module structure on Sw defines a left U-module structure
on HomU (Sw, φ−1

w (M)) for any g-module M . Let Gw(M) denote the maximal h-
diagonalizable submodule of HomU(Sw, φ−1

w (M)). Then M 7→ Gw(M) defines a
left exact endofunctor of O which is right adjoint to Tw. It is straightforward
to check that for f ∈ HomO(TwM,N) we can define f̂ ∈ HomO(M,GwN) by
f̂(m)(s) = f(s ⊗ m), where m ∈ M , s ∈ Sw. Then f 7→ f̂ defines the desired
adjunction. (The inverse map is given by g 7→ ǧ, where ǧ(s ⊗ m) = f(m)(s).)
Lemma 2.1 immediately implies that Gws ∼= GsGw for any w ∈ W , s ∈ S such that
ws > w.

A surprisingly strong link between Tw and Gw is provided by the following

Theorem 4.1. For any w ∈W , there is an isomorphism of functors

Gw ∼= dTw−1 d .
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Proof. Let us assume for a moment that the theorem is true for all simple reflections.
Let w = s1 · . . . · sr be a reduced expression. By Lemma 2.1, we have Tw ∼=
Ts1 · . . . · Tsr , hence its right adjoint is isomorphic to

GsrGsr−1 · . . . ·Gs1 ∼= (dTsr d)(d Tsr−1 d) · . . . · (dTs1 d)
∼= dTw−1 d .

Now let s be a simple reflection. By extending φs to U we get an anti-automorphism
τ = φs ◦ σ of U with inverse τ−1 = σ ◦ φ−1

s . We consider the following map:

Ψs : HomU
(
U , φ−1

s (M)
)
−→ d

(
φs(U ⊗U d(M))

)
f 7−→ f̂ ; f̂(u⊗m∗) = m∗(f(τ(u))),

for u ∈ U and m∗ ∈ M∗. For x ∈ g, u ∈ U and m∗ ∈ M∗ we get f̂(u ⊗ xm∗) =
xm∗(f(τ(u))) = m∗(σ(x)f(τ(u))) = m∗(f(τ(x)τ(u))) = m∗(f(τ(ux))) = f̂(ux ⊗
m∗). Hence, f̂ is well defined. Direct calculations also show that Ψs is a U-
morphism. The inverse of Ψs is given by g 7→ ǧ, where m∗(ǧ(u)) = g(τ−1(u)⊗m∗).
Altogether, Ψs is an isomorphism of vector spaces.

Since τ stabilizes the multiplicative set defining U(s) (see (2.2)), Ψs defines a
natural isomorphism

HomU
(
U(s), φ

−1
s (M)

)
−→ d

(
φs(U(s) ⊗U d(M))

)
.

Hence the theorem follows from the isomorphism (2.2). �

For w ∈ W we denote by RGw the right derived functor of Gw. We get a remark
in [Ark] as

Corollary 4.2. Let w ∈ W . The left derived functor LTw of Tw defines an auto-
equivalence of the bounded derived category Db(O0).

Proof. First let w = s be a simple reflection. By Theorem 2.2 and (2.3) we have
LTs∆(e) ∼= ∆(s) and RGs(∆(s)) ∼= dLTs∇(s) ∼= ∆(e) by Theorem 4.1 and Theo-
rem 2.3. Hence RGsLTsP ∼= P for any projective module P ∈ O0 ⊂ Db(O0). Any
finite complex of modules in O0 is quasi-isomorphic to a finite complex of projective
modules, hence RGsLTs ∼= id.

The previous theorem, Theorem 2.2 and formula (2.3) giveRGs∇(e) ∼= ∇(s) and
LTs(∇(s)) ∼= ∇(e) by the previous theorem and Theorem 2.3. Hence LTsRGsI ∼= I
for any injective module I ∈ O0 ⊂ Db(O0). Any finite complex of modules in O0

is quasi-isomorphic to a finite complex of injective modules, hence LTsRGs ∼= id.
Therefore, LTs defines an auto-equivalence of Db(O0). By Lemma 2.1 we have
LTws ∼= LTwLTs for any w ∈ W and s ∈ S, such that ws > w. Therefore, the
statement follows for any w ∈ W . �

5. Some natural transformations

For any x ∈ W and s ∈ S we call L(x) s-finite if x < sx, otherwise s-free. A
module M ∈ O0 is called s-finite (s-free respectively) if all its composition factors
are s-finite (s-free respectively). The following lemma characterizes s-finite simple
modules using Ts:

Proposition 5.1. Let x ∈W . Then TsL(x) 6= 0 if and only if x > sx.
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Proof. If x < sx, we consider the inclusion i : ∆(sx) ↪→ ∆(x). Let Q be its cokernel,
hence there is an exact sequence

Ts∆(sx) Tsi−→ Ts∆(x) −→ TsQ→ 0.

The sequence (2.4) shows the existence of a surjection in HomO(Ts∆(sx), Ts∆(x)).
Now the latter is (via Ts) isomorphic to HomO(∆(sx),∆(x)) = C. That is Tsi 6= 0
and therefore surjective, i.e., TsQ = 0. Hence TsL(x) = 0, as L(x) is a quotient of
Q.

If x > sx, then

0 6= HomO(∆(x), L(x)) = HomO(Ts∆(sx), L(x)) = HomO(∆(sx), GsL(x)),

hence GsL(x) ∼= dTsL(x) 6= 0. �
Corollary 5.2. The head of TsM is s-free for any M ∈ O0 and s ∈ S.

Proof. The right adjoint functor Gs of Ts annihilates all s-finite simple modules by
the previous proposition and Theorem 4.1. �

As for Verma modules we can describe at least some of the twisted projective
modules:

Proposition 5.3. Let x ∈ W , s ∈ S such that sx > x; then TsP (sx) ∼= P (sx).
Dually, GsI(sx) ∼= I(sx).

Proof. By formula (2.3) Ts∆(e) ∼= ∆(s) and therefore TsP (s) ∼= Tsθs∆(e) ∼=
θsTs∆(e) ∼= P (s) since Ts commutes with θs. Now let x = s1 · . . . · sr be a
reduced expression and θ = θs1 · . . . · θsr . We get

TsθP (s) ∼= θTsP (s) ∼= θP (s)→→P (sx),

where the last map is a surjection. Hence P (sx) is a direct summand of TsθP (s).
Let θP (s) ∼=

⊕
y>sy P (y)ny for some ny ∈ N. (The condition on y comes from the

fact that θP (s) ∼= TsθP (s) has an s-free head by Corollary 5.2.) Hence P (sx) is a
direct summand of TsP (y) for some y ∈ W such that sy < y, i.e., P (sx) ∼= TsP (y),
because of the indecomposability of TsP (y) (by Corollary 4.2 we have EndO(TsP ) ∼=
EndO(P ) for all projective modules P ∈ O). This implies, with the formulas (2.4)
and (2.3), the existence of a chain of surjections P (sx)→→Ts∆(y)→→Ts∆(sy) ∼= ∆(y).
Hence, sx = y and the proposition follows. �
Proposition 5.4. Let s be a simple reflection. Assume, there is a nontrivial
homomorphism cans : Ts −→ id of endofunctors on O0 such that cans(∆(e)) 6= 0.
Then, for any M ∈ O0, the cokernel of cans(M) is the largest s-finite quotient of
M .

Proof. For x ∈ W fix an inclusion ix : ∆(x) ↪→ ∆(e).
We assume cans(∆(e)) 6= 0. By formula (2.3) we get that the image must be

the submodule ∆(s). If x ∈ W such that sx > x, then cans(∆(e)) ◦ Tsix has
image isomorphic to ∆(sx), hence the image of cans(∆(x)) must be the submod-
ule isomorphic to ∆(sx) inside ∆(x), i.e., the map is injective. If x > sx, then
for j ∈ HomO(∆(x),∆(sx)) the map Tsj is surjective (see proof of Lemma 5.1).
Hence im(j ◦ cans(∆(x)) = im(cans(∆(sx)) ◦ Tsj) ∼= Ts∆(sx) ∼= ∆(x). This forces
cans(∆(sx)) to be surjective. That is, p ◦ cans(∆(x)) = cans(L(x)) ◦ Tsp is surjec-
tive, where p denotes a surjection from ∆(x) onto its head. Hence, cans(L(x)) is
surjective.
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Let M be s-finite. By induction on the length of M , Lemma 5.1 gives TsM = 0,
hence the statement of the proposition is true for M . Now let M ∈ O0 be arbitrary
with maximal s-finite quotient Q. Let K be defined by the following commutative
diagram with exact rows

0 // KOO

cans(K)

i // MOO

cans(M)

q
// // Q //

OO

cans(Q)

0

TsK
Tsi // TsM

Tsq // // TsQ // 0.

Since TsQ = 0 by assumption, we get im cans(M) ⊆ i(K). For the reverse inclusion
it is enough to show that cans(K) is surjective. By the maximality condition on
Q, the head H of K is s-free. Let p be a surjection from K onto H . Since
cans(H) ◦ Tsp = p ◦ cans(K) and (as we already proved) cans(H) is surjective,
cans(K) has to be surjective. Hence im cans(M) = i(K) and the proposition is
proved. �

Remarks 5.5. Dualizing the properties of Ts described in Theorem 3.2 gives prop-
erties of completion functors as explained in [Jos83]. It is not clear whether these
conditions in fact characterize completion functors. Assuming this, we would get
that Gs is a completion functor, hence there is by definition a natural transforma-
tion from the identity functor to Gs and therefore also a homomorphism of functors
as described in the previous proposition. The morphisms TMα and δTMα from [Jos83,
2.6] would then be exactly the adjunction morphisms of Proposition 5.6. On the
other hand, O. Khomenko and V. Mazorchuk announced [KM] a different proof of
the existence of a natural transformation as assumed in Proposition 5.4.

Adjunction and s-finiteness. The following two results would be an easy corol-
lary of Proposition 5.4. We prove them without assuming the existence of a canon-
ical morphism of functors (as assumed in Proposition 5.4):

Proposition 5.6. Let s be a simple reflection. The morphism adj : TsGs 7→ id
given by adjunction is injective on any object M ∈ O0. Moreover, the cokernel of
adj(M) is the largest s-finite quotient of M . Dual statements hold for the adjunction
morphism id→ GsTs.

Proof. Since TsGs∇(e) ∼= ∇(e) and both functors commute with translations,
TsGs(I) ∼= I via the adjunction morphism for all injective objects I ∈ O0. For

M ∈ O0 let M
i
↪→ I → J be an injective copresentation. We get an exact sequence

0→ GsM
Gsi−→ GsI −→ Q→ 0,(5.1)

where Q ⊆ Gs(J). Now, L1Ts(Gs∇(e)) = L1Ts∇(s) = 0 by Theorem 2.3, hence
L1Ts(GsJ) = 0 which forces L1TsQ = 0 by Theorem 2.2. Applying Ts to (5.1) gives
therefore an exact sequence 0 = L1TsQ → TsGsM

TsGsi−→ TsGs(I), hence TsGsi is
injective. By definition of the adjunction morphism i ◦ adj(M) = adj(I) ◦ TsGsi;
hence a composite of injective maps, which implies the injectivity of adj(M).
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Now let I = I(sx) be an indecomposable injective object of O0 with s-free socle.
By Proposition 5.3, GsI ∼= I. We calculate:

dim HomO(TsGsM, I) = dim HomO(GsM,GsI) = dim HomO(GsM, I)
= dim HomO(Ts dM, I) = dim HomO(dM,GsI)
= dim HomO(dM, I) = dim HomO(M, I).

Hence the cokernel of the adjunction morphism for M is s-finite. Since the head of
TsGsM is s-free (Corollary 5.2), the cokernel is in fact the largest s-finite quotient
of M . �
Remarks 5.7. Combining this proposition with Proposition 5.4 we see that, if the
morphism cans : Ts → id exists, then it factors through adj : TsGs → id and for
each M ∈ O0 the resulting homomorphism TsM → TsGsM is surjective.

Corollary 5.8. Let M ∈ O0 and s be a simple reflection. Then TsM = 0 if and
only if M is s-finite.

Proof. If M is s-finite, then TsM = 0 by Lemma 5.1 and induction on the length of
M . Assume 0 = TsM = dGs dM , hence Gs dM = 0 and therefore TsGs dM = 0.
By the previous proposition, dM is s-finite and therefore so is M . �
Corollary 5.9. Let M ∈ O0 and s be a simple reflection.

(1) L1TsM and R1GsM are s-finite.
(2) L1Ts(GsM) = 0 = R1Gs(TsM).
(3) We have short exact sequences

0→ TsGsM −→M −→ L1Ts(R1GsM)→ 0,

and

0→R1Gs(L1TsM) −→M −→ GsTsM → 0.

Proof. We shall prove the first half of each statement. The second halves follow
then by duality using Theorem 4.1.

(1) Note first that L1Ts∇(e) = Ke,s by Theorem 2.3; and that TsKe,s = 0,
because L1Ts∇(s) = 0 and Ts∇(e) ∼= ∇(e) ∼= Ts∇(s). Hence Ke,s is s-finite
by Corollary 5.8 and therefore so is Ke,s ⊗ E for any finite dimensional g-
module E. On the other hand, M is isomorphic to a submodule of ∇(e)⊗E
for such an E and hence L1TsM is a submodule of L1Ts(∇(e) ⊗ E) ∼=
Ke,s ⊗ E. As a submodule of an s-finite module, L1TsM is s-finite.

(2) Take E as above with an injection M ↪→ ∇(e) ⊗ E. The left exactness of
Gs gives an injection Gs(M) ↪→ Gs(∇(e)⊗E) ∼= (Gs∇(e))⊗E ∼= ∇(s)⊗E
by Theorem 3.2, formula (2.3) and Theorem 4.1. Hence L1Ts(GsM) is
isomorphic to a submodule of L1Ts(∇(s) ⊗ E) ∼= L1Ts(∇(s)) ⊗ E = 0 (by
Theorem 2.3).

(3) Let Q be the maximal s-finite quotient of M . Then Proposition 5.6 gives
us a short exact sequence of the form

0→ TsGsM −→M −→ Q→ 0.

Via previous statements (1) and (2) this shows that R1GsM ∼= R1GsQ.
That means, we are done if we prove the following
Claim: For any s-finite module Q ∈ O0 we have Q ∼= L1Ts(R1GsQ).
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To see this, we choose an embedding Q ↪→ ∇(e) ⊗ F for some finite di-
mensional g-module F . Let Q′ be its cokernel, hence we have a short exact
sequence

0→ Q −→ ∇(e)⊗ F −→ Q′ → 0.

Applying Gs and using Corollary 5.8, Theorem 4.1, and Theorem 2.3 give
an exact sequence

0→ Gs(∇(e) ⊗ F ) −→ GsQ
′ −→ R1GsQ→ 0.

By applying Ts and adding the adjunction morphism adj from Proposi-
tion 5.6, we get the following diagram:

0 // L1Ts(R1Gs(Q)) //

g

��

TsGs(∇(e)⊗ F ) //

adj

��

TsGsQ
′ //

adj

��

0

0 // Q // ∇(e)⊗ F // Q′ // 0

The first row is exact (by (2), (1) and Corollary 5.8). This induces an
injective homomorphism g as indicated such that the diagram commutes.
The middle map is an isomorphism by Proposition 5.6, hence g is also an
isomorphism. The claim follows and therefore we are done.

�

6. Twisting simple modules

The following theorem describes L1Ts on simple modules. A description of TsL,
when L is s-free is given by Theorem 6.3.

Theorem 6.1.

L1TsL(x) ∼=
{
L(x) if x < sx,

0 if x > sx.

Proof. By Theorem 2.2, LiTsL(x) = 0 for i > 1, hence L1TsL(x) is a submodule
of L1Ts∇(x) (using that L(x) is a submodule of ∇(x)). The latter vanishes if
x > xs by Theorem 2.3. Now let x < sx. Corollary 4.2 and Theorem 5.1 imply
that EndO(L1TsL(x)) ∼= EndO(L(x)), hence L1TsL(x) 6= 0. By Corollary 5.9
L1TsL(x) is s-finite. Being a submodule of L1Ts∇(x) = Kx,sx (Theorem 2.3) it
has simple socle L(x). Let L(z) be s-finite and assume HomO(L1TsL(y), L(z)) 6= 0.
Then 0 6= HomO(L1TsL(y),L1TsL(z)) = HomO(L(y), L(z)), by Corollary 4.2 and
Lemma 5.1. Hence we proved, that L1TsL(x) has simple socle and simple head
L(x). On the other hand, L(x) occurs at most once as a composition factor of
TsL(x) and TsL(x) 6= 0. This proves the remaining part. �

The following consequence of Theorem 6.1 bares some resemblance to the Borel-
Weil-Bott Theorem for cohomology of line bundles on flag varieties (cf. [Jan87,
Corollary 5.5])

Corollary 6.2. Let w ∈W , then

LiTwL(e) ∼=
{
L(e) if i = l(w),
0 if i 6= l(w).
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Proof. Note that L(e) is s-finite for all s ∈ S. Hence the corollary is an immediate
consequence of Theorem 6.1 and the fact that Tsw ∼= TwTs if sw > w. (Observe
that since Ts∆(e) ∼= ∆(s · 0), we have that Ts transforms projective modules into
Tw acyclic objects; i.e., we have the Grothendieck spectral sequence (see [McC85,
Theorem 10.7]) for the composition TwTs.) �

Theorem 6.3. Let L ∈ O0 be a simple s-free module. Then:

(1) TsL has simple head L.
(2) TsL is an indecomposable extension of L by some s-finite submodule U .
(3) dim HomO(L′, TsL) = dim Ext1

O(L′, L) for any simple object L′ ∈ O.
(4) soc(U) ∼= hd(U).

Proof. Let P be an indecomposable projective module with s-free head. By Corol-
lary 5.3, we have TsP ∼= P , hence dim HomO(P, TsL) = dim HomO(TsP, TsL) =
dim HomO(P,L) by Corollary 4.2, Theorem 2.2 and Theorem 6.1. Hence, L is the
only s-free composition factor occurring in TsL and its multiplicity is one. Since
Ts, hence Gs, annihilates all s-finite objects, the head of TsL has to be s-free, so it
is isomorphic to L. Altogether, TsL is an indecomposable extension of L by some
s-finite U .

Let L′ be an s-finite simple module in O0. Using again Corollary 4.2 and Theo-
rem 6.1 we get

dim HomO(L′, TsL) = dim HomO(L1TsL
′, TsL)

= dim HomDb(O0)(LTsL′,LTsL[1])

= dim HomDb(O0)(L
′, L[1])

= dim Ext1
O(L′, L).

(Here, [·] denotes the ‘translation functor’ on Db(O)).
To prove (4) we consider the exact sequence

0→ U −→ TsL −→ L→ 0.(6.1)

For any s-finite simple object L′ this gives an exact sequence

0 = HomO(TsL,L′) −→ HomO(U,L′) −→ Ext1
O(L,L′) −→ Ext1

O(TsL,L′)→ · · ·

On the other hand, ExtiO(TsL,L′) ∼= Exti−1
O (L,R1GsL

′) ∼= Exti−1
O (L,L′) for any

i > 0 by Corollary 4.2, Theorem 4.1 and Theorem 6.1. In particular, the last term in
the sequence above vanishes and implies HomO(U,L′) ∼= Ext1

O(L,L′). Comparing
this with (3) proves statement (4). �

7. The Kazhdan-Lusztig conjecture

In this section we demonstrate how our results on twisting functors reduce the
Kazhdan-Lusztig conjecture [KL79] on the characters of irreducible modules in O
to a rather innocent looking statement; see Claim 7.1 below. The arguments for
this reduction are borrowed from [Vog79], [And86] and [CPS93] with the necessary
modifications and simplifications called for by our approach. Of course, it is well
known that the Kazhdan-Lusztig conjecture holds; see [BB93] and [BK81].
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An implication of the Kazhdan-Lusztig conjecture. By Theorem 6.3 it is
clear that the existence of a nontrivial extension between simple modules with
adjacent highest weights (a well-known consequence of the Kazhdan-Lusztig con-
jecture) gives the following

Claim 7.1. For all x ∈ W with x < w0 there exists s ∈ S such that L(x) is a
submodule of TsL(sx).

We denote the kernel of a surjective homomorphism TsL(sx)→→L(sx) by Us(sx)
(see Theorem 6.3). It is clear from weight considerations that x · 0 is the unique
highest weight in Us(sx) and that it has multiplicity 1. Since the socle of Us(sx) is
isomorphic to its head by Theorem 6.3, we see that the above statement is equivalent
to the following

Claim 7.2. For all x ∈ W with x < w0 there exists s ∈ S such that L(x) is a
summand of Us(sx).

The following lemma describes assumptions under which the equivalent Claims 7.1
and 7.2 hold

Lemma 7.3. Claim 7.1 (or Claim 7.2) is true if for any x ∈ W there exists s ∈ S
such that sx > x and one of the following (equivalent) statements hold:

(1) hd rad ∆(x) is not s-finite.
(2) HomO(Ts rad ∆(x), TsL(sx)) 6= 0.

Proof. Let x ∈ W and s ∈ S such that sx > x. Since HomO(Ts rad ∆(x), TsL(sx))
∼= HomO(rad ∆(x), L(sx)) the second property implies the first. Consider the short
exact sequence ∆(sx) ↪→ ∆(x)→→Q with s-finite quotient Q. In particular, we get
a short exact sequence of the form ∆(sx) ↪→ rad ∆(x)→→Q′, with s-finite quotient
Q′. Hence, L(sx) has to occur (as the only s-free candidate) as the composition
factor in the head of rad ∆(x). Since HomO(∆(x), L(sx)) = 0 = Ext1

O(∆(x), L(sx))
by weight considerations, we get HomO(rad ∆(x), L(sx)) ∼= Ext1

O(L(x), L(sx)). By
assumption this does not vanish and gives with Theorem 6.3 Claim 7.1. �
Consequences under the assumption of Claim 7.1. The rest of this section
is devoted to proving that Claim 7.1 (or Claim 7.2) implies the Kazhdan-Lusztig
conjecture.
The first consequence of the statement in Claim 7.1 is the following even-odd van-
ishing result.

Proposition 7.4. Assume Claim 7.1. If ExtiO(∆(y), L(x)) 6= 0 for some i ∈ N
and x, y ∈W , then i ≡ l(y)− l(x)(mod 2).

Proof. We shall proceed by descending induction on x ∈ W . If x = w0, then
L(x) = ∇(w0) and we have ExtiO(∆(y),∇(w0)) = 0 unless i = 0 and y = w0.

So assume now that x < w0 and pick s as in Claim 7.1. Then sx > x because
otherwise TsL(sx) = 0 by Theorem 6.1. Hence by induction the proposition holds
for sx.

First case: sy < y: The short exact sequence

0→ Us(sx)→ TsL(sx)→ L(sx)→ 0

gives rise to the long exact sequence

· · ·→Exti−1
O
(
∆(y), L(sx)

)
→ExtiO

(
∆(y), Us(sx)

)
→ExtiO

(
∆(y), TsL(sx)

)
→· · · .
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The assumption sy < y gives ∆(y) ∼= Ts∆(sy) by formula (2.3) and hence we
get ExtiO(∆(y), TsL(sx)) ∼= ExtiO(Ts∆(sy), TsL(sx)) ∼= ExtiO(∆(sy), L(sx)). Our
induction hypothesis therefore shows that ExtiO(∆(y), Us(sx)) = 0 if i 6≡ l(y) −
l(x)(mod 2). By Claim 7.2 this means that also ExtiO(∆(y), L(x)) = 0 for such i.

Second case: sy > y: Note that since sx > x, we have GsL(x) = 0 and
R1GsL(x) ∼= L(x) by Theorem 4.1, Lemma 5.1 and Theorem 6.1. Therefore,
ExtiO(∆(y), L(x)) ∼= ExtiO(∆(y),R1GsL(x)) ∼= Exti+1

O (Ts∆(y), L(x)) (the last
equality by Theorem 6.1). Now the assumption sy > y implies Ts∆(y) ∼= ∆(sy)
(formula (2.3)) and hence ExtiO(∆(y), L(x)) ∼= Exti+1

O (∆(sy), L(x)) = 0 for i 6≡
l(y)− l(x)(mod 2) by the first case treated above. �

Corollary 7.5. Assume Claim 7.1. If Ext1
O(L(y), L(x)) 6= 0 for some x, y ∈ W ,

then l(y)− l(x) is odd.

Proof. We may assume x ≤ y, since the roles of x and y can be interchanged by
dualizing. The short exact sequence

0→ rad ∆(y)→ ∆(y)→ L(y)→ 0

gives that Ext1
O(L(y), L(x)) ⊆ Ext1

O(∆(y), L(x)), because HomO(rad ∆(y), L(x)) =
0 when x ≤ y. Now the statement follows from Proposition 7.4. �

Proposition 7.6. Assume Claim 7.1. In the notation of Claim 7.2 we have for all
y ∈ W , y 6= x,

HomO(∆(y), Us(sx)) ∼=
{

Ext1
O(∆(y), L(sx)) if sy > y, l(y) ≡ l(x)(mod 2),

0, otherwise.

Proof. Since Us(sx) is s-finite by Theorem 6.3, the homomorphism space in question
is trivial, if L(y) is s-free. So, let us assume sy > y. Then we have ∆(sy) ⊂ ∆(y). As
L(sy) is not s-finite we have HomO(∆(sy), Us(sx)) = 0, i.e., HomO(∆(y), Us(sx)) ∼=
HomO

(
∆(y)/∆(sy), Us(sx)

)
. On the other hand, the four term sequence (2.4) gives

the exact sequence

0→ ∆(y)/∆(sy)→ Ts∆(sy)→ ∆(sy)→ 0.

We therefore have a resulting exact sequence

HomO
(
Ts∆(sy), TsL(sx)

)
→ HomO

(
∆(y)/∆(sy), TsL(sx)

)
→ Ext1

O
(
∆(sy), TsL(sx)

)
→ Ext1

O
(
Ts∆(sy), TsL(sx)

)
.

Here the first term is zero because we can erase the two Ts (Corollary 4.2 using
Theorem 2.2 and Theorem 6.1) and we assumed y 6= x. Also in the last term we
can erase the Ts’s and since ∆(sy) ∼= Ts∆(y) by formula (2.3), we may similarly
identify the third term with Ext1

O(∆(y), L(sx)). The proposition now follows by
combining with Proposition 7.4. �

We shall need the following slight variation of a result due to Cline, Parshall and
Scott.

Proposition 7.7 (cf. [CPS93, Theorem 4.1]). Assume Ext1
O(∆(y), L(x)) = 0 for

all x, y ∈ W with l(y) ≡ l(x)(mod 2). Let U ∈ O0 with socU ∼= hd(U) and with
the property HomO(∆(y), U) = 0 = HomO(U,∇(y)) for all y ∈ W with l(y) odd
(respectively even). Then U is completely reducible.
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Proof. Choose y ∈ W such that y · 0 is a maximal weight in U . We shall show
that all occurrences of the composition factor L(y) in U are in the head of U . The
fact that the socle of U is isomorphic to its head then forces L(y) to split off as a
summand of U . By repeating this process we get the desired decomposition of U
into a direct sum of simple modules.

So assume that L(y) occurs in the radical rad(U) of U . Since y · 0 is a maximal
weight of rad(U), we have a nonzero homomorphism ∆(y) → rad(U). We let Y
denote the image of this homomorphism and consider the map Y → L(y) ⊂ ∇(y).
The maximality of y · 0 as a weight of U means that this extends to a homomorphism
U → ∇(y), because Ext1

O(U/Y,∇(y)) = 0. The image Q of this homomorphism
then contains L(y) properly. So we may choose z ∈ W such that z · 0 is a maximal
weight of Q/L(y). Then we have

0 6= HomO(∆(z), Q/L(y)) ⊂ HomO(∆(z),∇(y)/L(y))
∼= Ext1

O(∆(z), L(y)).

The last isomorphism comes from the fact that ExtiO(∆(z),∇(y)) = 0 for all i
when z 6= y. By our assumption this implies that l(z)− l(y) is odd. On the other
hand, both HomO(∆(y), U) and HomO(U,∇(z)), are nonzero (the latter because
the composite U → Q → Q/L(y)→ ∇(z) is nonzero). Therefore l(y) and l(z) are
both odd (respectively even) and we have a contradiction. �

The following result follows easily from what we have proved already:

Theorem 7.8. Assume Claim 7.1. In the notation of Claim 7.2 we have that
Us(sx) is completely reducible.

Proof. Since Us(sx) is s-finite (Theorem 6.3), HomO(Us(sx),∇(y)) = 0 if y > sy.
The short exact sequence Us(sx) ↪→ TsL(sx)→→L(sx) gives rise to an exact sequence

HomO(L(sx),∇(y))→ HomO(TsL(sx),∇(y))→ HomO(Us(sx),∇(y))

→ Ext1
O(L(sx),∇(y)).

Now let HomO(Us(sx),∇(y)) 6= 0, hence y < sy hence HomO(TsL(sx),∇(y)) ∼=
HomO(L(sx),∇(sy)); i.e., x = y or 0 6= Ext1

O(L(sx),∇(y)) = Ext1
O(∆(y), L(sx)).

Proposition 7.4 implies l(x) ≡ l(y) mod 2. Together with Proposition 7.6 we get
HomO(∆(y), Us(sx)) = 0 = HomO(Us(sx),∇(y)) if l(x) 6≡ l(y) mod 2. Hence,
Proposition 7.4 and Theorem 6.3 show that we may apply the previous Proposi-
tion 7.7. to U = Us(sx). �

The conclusion in the previous theorem is equivalent to Vogan’s conjecture; see
[Vog79] and [And86]. It implies the Kazhdan-Lusztig conjecture ([KL79, Conjecture
1.5]), namely that the following identity holds in the Grothendieck group of O0 for
all x, y ∈W :

[L(x)] =
∑
y∈W

(−1)l(x)−l(y) Pywo,xwo(1) [∆(y)].(7.1)

Here, Px,y ∈ Z[q] denotes the Kazhdan-Lusztig polynomial corresponding to x and
y as defined in [KL79]. To see that (7.1) follows from Theorem 7.8 we observe first
that for all M ∈ O0 we have the following equality:

[M ] =
∑
y∈W

(∑
i∈N

(−1)i dim ExtiO(∆(y),M)
)

[∆(y)].(7.2)
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In fact, this is clear for M = ∇(x) with x ∈ W arbitrary, because we have
dim ExtiO(∆(y),∇(x)) = 1 if i = 0 and x = y, and dim ExtiO(∆(y),∇(x)) = 0
otherwise. The formula follows then for arbitrary M by additivity. To prove for-
mula (7.1) it is therefore enough to prove the following

Proposition 7.9. Assume Claim 7.1. Then we have for all x, y ∈W ,

Pywo,xwo =
∑
y∈W

(−1)i dim Extl(y)−l(x)−2i
O

(
∆(y), L(x)

)
qi.

Proof. The proof of this proposition is the same as that for Proposition 2.12 in
[And86]. It goes by descending induction on the length of x and relies on the
fact that if sx > x for some s ∈ S, then Us(sx) is semisimple (Theorem 7.8).
Propositions 7.4 and 7.6 are used also. �

Altogether, we proved that Claim 7.1 (or Claim 7.2) is analogous to the validity
of the Kazhdan-Lusztig conjecture.

(“Analogous” in the sense that for all wo 6= x ∈ W we have the non-vanishing
of Ext1

O(L(x), L(sx)) for some simple reflection s such that sx > x instead of
Ext1
O(L(x), L(xt)) 6= 0 for some simple reflection t with xt > x. However, using

the equivalence between O0 and a certain category of Harish-Chandra bimodules
from [BG80] we get Ext1

O(L(x), L(sx)) = Ext1
O(L(x−1), L(x−1s)); in the bimodule

picture it is just given by interchanging the left and right U-module structure; cf.
[Jan83, 7.28].)

A proof of Claim 7.1 or Claim 7.2 or a proof of any of the statements in Lemma 7.3
would therefore give a proof of the Kazhdan-Lusztig conjecture.
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