Exam Foundations of Representation Theory —Solutions—

Exercise 1 (10 points). True or false? Please explain your answers briefly.

- (i) Let k be a field. If Q is a quiver for which kQ is commutative then $s(\alpha) = t(\alpha)$ for every $\alpha \in Q_1$.
- (ii) The category <u>Set</u> of sets is abelian.
- (iii) Let \mathscr{A} be an abelian category. The functor $H^0: \underline{\operatorname{Ch}}^{\geq 0}(\mathscr{A}) \to \mathscr{A}$ is left exact.
- (iv) The group of units \mathbb{C}^{\times} of the complex numbers is an injective abelian group.
- (v) For the category $\underline{Ab}^{f.g.}$ of finitely generated abelian groups there exists a ring A and an equivalence of categories between A-Mod and $Ab^{f.g.}$.

Solution. (i) True. If there were an arrow $\alpha: i \to j$ with $i \neq j$ then $\varepsilon_j \alpha = \alpha$ while $\alpha \varepsilon_j = 0$.

- (ii) No. It doesn't have a zero object as ∅ is initial and {*} is terminal.
- (iii) True by the long exact sequence in cohomology. If $0 \to C^* \to D^* \to E^* \to 0$ is a short exact sequence in $\underline{\operatorname{Ch}}^{\geq 0}(\mathscr{A})$ then we obtain the exact sequence $0 \to H^0(C^*) \to H^0(D^*) \to H^0(E^*) \to H^1(C^*) \to \dots$ (note that $H^{-1}(E^*) = 0$ as $E^{-1} = 0$).
- (iv) True. The group \mathbb{C}^{\times} is divisible: for an integer $a \in \mathbb{Z} \setminus \{0\}$ and $x \in \mathbb{C}^{\times}$ there exists $y \in \mathbb{C}^{\times}$ such that $y^a = x$. For a > 0 choose y as a root of the polynomial $t^a x$ and for a < 0 as the inverse of a root of the polynomial $t^{-a} x$.
- (v) No. Such a ring cannot exist. For if there were such an equivalence, this equivalence would preserve injectives. The category A-Mod has enough injectives (Cor. 6.27) while the category of finitely generated abelian groups has not (Ex. 6.31).

Exercise 2 (8 points). Let

$$(*) \qquad (**) \\ 0 \qquad 0 \\ \downarrow \qquad \downarrow \qquad \downarrow$$

$$(\#) \quad X' \xrightarrow{a'} X \xrightarrow{a} X'' \longrightarrow 0$$

$$\downarrow^{f'} \qquad \downarrow^{f} \qquad \downarrow^{f''} \\ (\#\#) \quad Y' \xrightarrow{b'} Y \xrightarrow{b} Y'' \longrightarrow 0$$

$$\downarrow^{g} \qquad \downarrow^{g''} \\ Z \xrightarrow{c} Z''$$

be a commutative diagram in an abelian category \mathscr{A} . Suppose that the rows (#) and (##) and the column (*) are exact sequences. Assume further that f' is an epimorphism and c is a monomorphism. Show, using the diagram chasing rules given in the lecture, that the column (**) is also exact.

Solution. • Show that f'' is mono: Let $x'' \in X''$ such that f''(x'') = 0. There exists $x \in X$ such that $a(x) \equiv x''$. Then 0 = f''a(x) = bf(x). Hence there exists $y' \in Y'$ with $b'(y') \equiv f(x)$. As f' is epi, there exists $x' \in X'$ such that $f'(x') \equiv y'$ and thus $f(x) \equiv b'f'(x') = f(a'(x'))$. As f is mono, we see that $x \equiv a'(x')$. Therefore $x'' \equiv a(x) \equiv aa'(x') = 0$.

- Show that g''f''=0: As a is epi, it suffices to show that g''f''a=0. But g''f''a=cgf=0.
- Show that $\ker g'' \subseteq \operatorname{im} f''$: Let $y'' \in Y''$ such that g''(y'') = 0. As b is epi, we find $y \in Y$ such that $b(y) \equiv y''$. Thus 0 = g''b(y) = cg(y). As c is mono, we deduce that g(y) = 0. This implies by exactness that there exists $x \in X$ such that $f(x) \equiv y$. Then $y'' \equiv bf(x) = f''(a(x))$.

Exercise 3 (8 points). Let k be a field and let $A = k[X]/(X^2)$. Let M = k[X]/(X) = k regarded as an A-module. Compute $(R^i \operatorname{Hom}_A(_, M))(M)$ for all $i \ge 0$.

Solution. Abbreviate $\varepsilon = X + (X^2)$. Then $M = A/(\varepsilon)$. Let $\pi : A \to M$ be the quotient map. Let $f: A \to A$ be defined by $f(a) = \varepsilon a$. Then the sequence

$$\dots \xrightarrow{f} A \xrightarrow{f} A \xrightarrow{f} A \xrightarrow{\pi} M \to 0$$

is exact as $\operatorname{im}(f) = (\varepsilon) = \ker(f) = \ker(\pi)$. So we get a projective resolution of M by (P_*, π) where $P_i = A$ and $f: P_{i+1} \to P_i$ (all $i \ge 0$) and $P_i = 0$ (all i < 0). Applying $\operatorname{Hom}_A(\underline{\ }, M)$ to the resolution yields

$$0 \longrightarrow \operatorname{Hom}_{A}(A, M) \xrightarrow{f^{*}} \operatorname{Hom}_{A}(A, M) \xrightarrow{f^{*}} \operatorname{Hom}_{A}(A, M) \xrightarrow{f^{*}} \dots$$

$$\downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong$$

$$0 \longrightarrow M \longrightarrow M \longrightarrow M \longrightarrow \dots$$

and under the identification $\operatorname{Hom}_A(A,M) \xrightarrow{\cong} M$ given by $h \mapsto h(1)$ the map f^* corresponds to the multiplication with ε . But as ε acts as 0 on M the maps on the bottom row are the zero maps. Hence

$$(R^{i}\operatorname{Hom}_{A}(\ ,M))(M) = H^{i}(\operatorname{Hom}_{A}(P_{*},M)) = {}_{k}M = k.$$

Exercise 4 (8 points). Let Λ be a commutative ring and let A, B, and C be Λ -algebras. Let M_A be a projective right A-module and let ${}_AN_B$ be an A-B-bimodule which is projective as a right B-module. Show that $M \otimes_A N$ is also a projective right B-module.

Solution. The functor $_ \otimes_A N : \underline{\text{Mod-}}A \to \underline{\text{Mod-}}B$ possesses a right adjoint which is given by $\text{Hom}_B(N,_) : \underline{\text{Mod-}}B \to \underline{\text{Mod-}}A$. As N is projective as a right B-module the functor $\text{Hom}_B(N,_)$ is exact. Thm. 6.25(iii) implies that $_ \otimes_A N$ sends projectives to projectives.

Note that the algebra C is completely irrelevant for the exercise. I forgot to delete it. My apologies.

Exercise 5 (8 points). Let n > 0 be a natural number.

- (i) Determine an injective resolution of $\mathbb{Z}/n\mathbb{Z}$ in the category of abelian groups.
- (ii) For a natural number m > 0 compute $(R^1 \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z}, \underline{\hspace{0.5cm}}))(\mathbb{Z}/n\mathbb{Z})$.
- **Solution.** (i) We have an exact sequence $0 \to \mathbb{Z}/n\mathbb{Z} \xrightarrow{i^0} \mathbb{Q}/\mathbb{Z} \xrightarrow{d^0} \mathbb{Q}/\mathbb{Z} \to 0$ which arises as follows. The unique morphism $\mathbb{Z} \to \mathbb{Q}/\mathbb{Z}$ which sends 1 to $\frac{1}{n} + \mathbb{Z}$ has kernel $n\mathbb{Z}$ and image $(\frac{1}{n}\mathbb{Z})/\mathbb{Z}$. The map $d^0: \mathbb{Q}/\mathbb{Z} \to \mathbb{Q}/\mathbb{Z}$ given by $d^0(x + \mathbb{Z}) = nx + \mathbb{Z}$ is well-defined, it is surjective as \mathbb{Q}/\mathbb{Z} is divisible and its kernel is $(\frac{1}{n}\mathbb{Z})/\mathbb{Z}$.
 - (ii) We use the above injective resolution. Applying $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z},\underline{\ })$ to the resolution yields an identification of $(R^1 \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z},\underline{\ }))(\mathbb{Z}/n\mathbb{Z})$ with

$$\operatorname{coker} \left(\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Q}/\mathbb{Z}) \xrightarrow{d_{*}^{0}} \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Q}/Z) \right)$$

We compute $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Q}/\mathbb{Z})$. The surjection $\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ induces an injection

$$\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Q}/\mathbb{Z}) \hookrightarrow \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Q}/\mathbb{Z}) \cong \mathbb{Q}/\mathbb{Z}$$

which is given by $f \mapsto f(1)$. The image equals $\{x + \mathbb{Z} \in \mathbb{Q}/\mathbb{Z} \mid mx + \mathbb{Z} = 0 + \mathbb{Z}\} = (\frac{1}{m}\mathbb{Z})/\mathbb{Z}$ which is isomorphic to $\mathbb{Z}/m\mathbb{Z}$ as shown in (i). The map d^0_* corresponds under these identifications to the map $\mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ given by $x + m\mathbb{Z} \mapsto nx + m\mathbb{Z}$. Its image is $\gcd(m, n)\mathbb{Z}/m\mathbb{Z}$ and therefore

$$(R^1 \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z},\underline{\hspace{0.1cm}}))(\mathbb{Z}/n\mathbb{Z}) \cong \mathbb{Z}/\gcd(m,n)\mathbb{Z}.$$

- **Exercise 6 (8 points).** (i) Let $\mathscr C$ be a category. When is a functor $F:\mathscr C\to \underline{\operatorname{Set}}$ called representable?
 - (ii) Let $\mathscr{C} = \underline{\text{CommRing}}$ be the category of commutative rings. Let $n \geq 1$ be a natural number. Consider the functor $F : \mathscr{C} \to \underline{\text{Set}}$ defined by

$$F(A) := \{ a \in A \mid a^n = 0 \}$$

for $A \in \mathscr{C}$ and $F(f): F(A) \to F(B), \ a \mapsto f(a)$ for $f \in \mathscr{C}(A,B)$. Show that F is representable.

- **Solution.** (i) A functor $F : \mathscr{C} \to \underline{\operatorname{Set}}$ is representable if there exists an object $X \in \mathscr{C}$ and a natural isomorphism $\eta : \mathscr{C}(X,\underline{\ }) \to F$.
 - (ii) The functor F is represented by the ring $\mathbb{Z}[X]/(X^n)$. Indeed for every ring A, the map

$$\eta_A: \mathscr{C}(\mathbb{Z}[X]/(X^n), A) \to F(A), g \mapsto g(X)$$

is well-defined as $X^n = 0$ and is a bijection. This is because for every $a \in A$ with $a^n = 0$ the unique ring homomorphism $\mathbb{Z}[X] \to A$ which sends $X \mapsto a$ factors through $\mathbb{Z}[X]/(X^n)$. For every ring homomorphism $f: A \to B$ the diagram

$$\begin{array}{ccc} h & & \mathscr{C}(\mathbb{Z}[X]/(X^n),A) \xrightarrow{\eta_A} F(A) \\ \downarrow & & \downarrow & \downarrow^{F(f)} \\ fh & & \mathscr{C}(\mathbb{Z}[X]/(X^n),B) \xrightarrow{\eta_B} F(B) \end{array}$$

commutes, as $F(f)(\eta_A(h)) = f(h(X)) = \eta_B(fh)$. Hence we see that η is a natural transformation, hence a natural isomorphism.