Exam Foundations of Representation Theory

Remarks:

- The duration of the exam is 120 minutes.
- There are 50 points in total.
- Please use a separate sheet of paper for the solution of each exercise. Please write your name on every sheet of paper.
- Please have your ID card and your student ID ready.
- Aides like books, lecture notes, notes from the tutorials or electronic devices are prohibited. Please turn off your cell phone **before** the exam starts.

Please turn.

Exercise 1 (10 points). True or false? Please explain your answers briefly.

- (i) Let k be a field. If Q is a quiver for which kQ is commutative then $s(\alpha) = t(\alpha)$ for every $\alpha \in Q_1$.
- (ii) The category Set of sets is abelian.
- (iii) Let \mathscr{A} be an abelian category. The functor $H^0: \underline{\mathrm{Ch}}^{\geq 0}(\mathscr{A}) \to \mathscr{A}$ is left exact.
- (iv) The group of units \mathbb{C}^{\times} of the complex numbers is an injective abelian group.
- (v) For the category $\underline{\mathbf{Ab}}^{\mathbf{f} \cdot \mathbf{g} \cdot}$ of finitely generated abelian groups there exists a ring A and an equivalence of categories between A-Mod and $\mathbf{Ab}^{\mathbf{f} \cdot \mathbf{g} \cdot}$.

Exercise 2 (8 points). Let

$$(*) \qquad (**) \qquad 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$(\#) \quad X' \xrightarrow{a'} X \xrightarrow{a} X'' \longrightarrow 0$$

$$\downarrow^{f'} \qquad \downarrow^{f} \qquad \downarrow^{f''}$$

$$(\#\#) \quad Y' \xrightarrow{b'} Y \xrightarrow{b} Y'' \longrightarrow 0$$

$$\downarrow^{g} \qquad \downarrow^{g''}$$

$$Z \xrightarrow{c} Z''$$

be a commutative diagram in an abelian category \mathscr{A} . Suppose that the rows (#) and (##) and the column (*) are exact sequences. Assume further that f' is an epimorphism and c is a monomorphism. Show, using the diagram chasing rules given in the lecture, that the column (**) is also exact.

Exercise 3 (8 points). Let k be a field and let $A = k[X]/(X^2)$. Let M = k[X]/(X) = k regarded as an A-module. Compute $(R^i \operatorname{Hom}_A(_, M))(M)$ for all $i \ge 0$.

Exercise 4 (8 points). Let Λ be a commutative ring and let A, B, and C be Λ -algebras. Let M_A be a projective right A-module and let ${}_AN_B$ be an A-B-bimodule which is projective as a right B-module. Show that $M \otimes_A N$ is also a projective right B-module.

Exercise 5 (8 points). Let n > 0 be a natural number.

- (i) Determine an injective resolution of $\mathbb{Z}/n\mathbb{Z}$ in the category of abelian groups.
- (ii) For a natural number m > 0 compute $(R^1 \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z},))(\mathbb{Z}/n\mathbb{Z})$.

Exercise 6 (8 points). (i) Let $\mathscr C$ be a category. When is a functor $F:\mathscr C\to \underline{\operatorname{Set}}$ called representable?

(ii) Let $\mathscr{C} = \underline{\text{CommRing}}$ be the category of commutative rings. Let $n \geq 1$ be a natural number. Consider the functor $F : \mathscr{C} \to \text{Set}$ defined by

$$F(A) := \{ a \in A \mid a^n = 0 \}$$

for $A \in \mathscr{C}$ and $F(f): F(A) \to F(B)$, $a \mapsto f(a)$ for $f \in \mathscr{C}(A, B)$. Show that F is representable.