Foundations of Representation Theory —Exercise sheet 9—

Let \mathscr{A} be an abelian category.

Exercise 1. Let C_* , D_* be chain complexes over \mathscr{A} and let $f : C_* \to D_*$ be a morphism of chain complexes which is null homotopic. Show, using the rules of diagram chase of Thm. 3.42, that $H_n(f) : H_n(C_*) \to H_n(D_*)$ is the zero morphism for every $n \in \mathbb{Z}$.

Exercise 2. In an arbitrary category \mathscr{C} a morphism $f: X \to Y$ is called a section if there exists $r: Y \to X$ such that $rf = \operatorname{id}_X$. We call f a retraction if there exists $s: Y \to X$ such that $fs = \operatorname{id}_Y$. Observe that sections are monomorphisms and retractions are epimorphisms.

Let $0 \to X' \xrightarrow{f} X \xrightarrow{g} X'' \to 0$ be a short exact sequence in the abelian category \mathscr{A} . Show that the following are equivalent:

- (i) g is a retraction.
- (ii) f is a section.
- (iii) There exist $r: X \to X'$ and $s: X'' \to X$ such that (X, (r, g), (f, s)) is a biproduct of X', X''.

A short exact sequence fulfilling these equivalent conditions is called split.

Exercise 3. Let $f : C_* \to D_*$ be a morphism of chain complexes over \mathscr{A} . Show that f is null homotopic if and only if there exists a morphism $\overline{f} : \operatorname{cone}(\operatorname{id}_{C_*}) \to D_*$ such that the following diagram is commutative:

Exercise 4. We want to show that the homotopy category of an abelian category is, in general, not abelian. Concretely we will show that there are morphisms in $\underline{K}_*(\underline{Ab})$ which do not have a kernel. Let $f: C_* \to D_*$ be a morphism of chain complexes over an abelian category \mathscr{A} .

- (i) Let $h : \operatorname{cone}(f)[1] \to C_*$ be the morphism of complexes given by $h_n = (-\operatorname{id}_{C_n}, 0) : C_n \oplus D_{n+1} \to C_n$. Show that fh is null homotopic.
- (ii) Show that if f is a monomorphism in $\underline{\mathbf{K}}_*(\mathscr{A})$ then h is null homotopic.
- (iii) Show that if h is null homotopic then f is a section in $\underline{\mathbf{K}}_*(\mathscr{A})$.
- (iv) Let $\mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ be the homomorphism of abelian groups which sends [1] to [1]. Let D_* and E_* be the complexes concentrated in degree 0 with $D_0 = \mathbb{Z}/4\mathbb{Z}$ and $E_0 = \mathbb{Z}/2\mathbb{Z}$. Denote the corresponding morphism of complexes also with $g: D_* \to E_*$. Show that g does not have a kernel in $\underline{K}_*(\underline{Ab})$. (Hint: $\mathbb{Z}/4\mathbb{Z}$ does not have any proper direct summands.)