Foundations of Representation Theory —Exercise sheet 7—

Exercise 1. Let X be a topological space, let F be a sheaf on X of abelian groups and let F' be a sub-presheaf of F, that means $F'(U) \subseteq F(U)$ is an abelian subgroup and $\rho_{V,U}(F'(V)) \subseteq F'(U)$ for every two open subsets $U \subseteq V$. Show that the sheafification of F' is given by

 $(sF')(U) = \{s \in F(U) \mid \exists \text{ open cover } U = \bigcup U_i \text{ such that } s|_{U_i} \in F'(U_i)\}.$

Exercise 2. Let F be a presheaf of abelian groups on a topological space X. Let U be an open subset and $\{U_i\}_{i\in I}$ be an open cover of U. Find homomorphisms $F(U) \to \prod_{i\in I} F(U_i)$ and $\prod_{i\in I} F(U_i) \to \prod_{(j,k)\in I\times I} F(U_j\cap U_k)$ in such a way that F is a sheaf if and only if

$$0 \to F(U) \to \prod_{i \in I} F(U_i) \to \prod_{(j,k) \in I \times I} F(U_j \cap U_k)$$

is exact for every open subset U and every open cover $\{U_i\}_{i \in I}$ of U.

Exercise 3 (5-lemma). Let \mathscr{A} be an abelian category. Let

be a diagram in \mathscr{A} with exact rows.

- (i) If f_2 and f_4 are epi and f_5 mono then f_3 is epi.
- (ii) If f_2 and f_4 are mono and f_1 epi then f_3 is mono.
- (iii) If f_2 and f_4 are isomorphisms, f_1 epi and f_5 mono, then f_3 is an isomorphism.

Exercise 4 (9-lemma). Let

be a commutative diagram in an abelian category \mathscr{A} with exact columns and such that the composition $Y' \to Y \to Y''$ is zero. Show that if two of the rows are exact then so is the remaining row.