Foundations of Representation Theory —Exercise sheet 5—

Exercise 1. True or false? Please explain your answer briefly. Let k be a field.

- (i) If a k-algebra A is isomorphic to A^{op} as a k-algebra, then A is commutative.
- (ii) Let A and B be k-algebras and let $_AM$, $_BN_A$, $_BP$ be (bi-)modules. Then $\operatorname{Hom}_B(N \otimes_A M, P)$ is isomorphic to $\operatorname{Hom}_A(M, \operatorname{Hom}_B(N, P))$.
- (iii) If a functor $F : \mathscr{C} \to \underline{\text{Set}}$ is representable then a representing object for F is unique up to isomorphism.
- (iv) The functor $F: k-\underline{Alg} \to \underline{Set}$ defined by $F(A) = \{*\}$ is representable.
- (v) The category of representations of a quiver Q over k has products.
- (vi) The category of fields has a final object.

Exercise 2. More examples for monomorphisms and epimorphisms:

- (i) Show that in the category <u>Top</u> of topological spaces and continuous maps a morphism $f: X \to Y$ is a monomorphism if and only if it is injective and show that it is an epimorphism if and only if it is surjective.
- (ii) Let <u>Haus</u> be the category of Hausdorff spaces and continuous maps. Let $f : X \to Y$ be a continuous map of Hausdorff spaces. Show that if f(X) is dense in Y then f is an epimorphism.
- (iii) Let <u>Conn</u>_{*} be the category of connected topological spaces with a base point. Prove that the map $f : (\mathbb{R}, 0) \to (S^1, 1)$ defined by $f(x) = e^{2\pi i x}$ is a monomorphism.

Exercise 3. Let \mathscr{A} be a pre-additive category.

- (i) Show that for an object Z of \mathscr{A} the following are equivalent:
 - (a) Z is an initial object of \mathscr{A} ,
 - (b) Z is a final object of \mathscr{A} ,
 - (c) id_Z is the neutral element of the abelian group $\mathscr{A}(Z, Z)$,
 - (d) $\mathscr{A}(Z,Z)$ consists of one element.
- (ii) Suppose that \mathscr{A} possesses a zero object 0. Let X and Y be objects of \mathscr{A} and $f \in \mathscr{A}(X,Y)$. Prove that f factors over 0 if and only if f is the neutral element of the abelian group $\mathscr{A}(X,Y)$.

Exercise 4. Let <u>Field</u> be the category whose objects are fields and whose morphisms $f : K \to L$ are ring homomorphisms (between fields). Analyze if the product of the fields K and L in <u>Field</u> exists in the following two cases:

- (i) $K = \mathbb{Q}(i)$ and $L = \mathbb{Q}(\sqrt{2})$.
- (ii) $K = L = \mathbb{Q}(i).$