Foundations of Representation Theory —Exercise sheet 4—

Let k be a field.

Exercise 1. Let $G : \mathscr{D} \to \mathscr{C}$ be a functor. Show that G possesses a left adjoint if and only if the functor $\mathscr{C}(X, G_{-}) : \mathscr{D} \to \underline{\text{Set}}$ is representable for every object X of \mathscr{C} .

Exercise 2. Show that the following two forgetful functors—both called V—possess both a left and a right adjoint.

- (i) Let A be a k-algebra and let $V : A \operatorname{-} \operatorname{Mod} \to k \operatorname{-} \operatorname{Mod}$.
- (ii) Let $V : \underline{\text{Top}} \to \underline{\text{Set}}$.

These are examples functors which are not equivalences of categories but which have both a left and a right adjoint.

Exercise 3. Give the unit and the counit of the following adjunctions; more precisely for the functors $F: \mathscr{C} \to \mathscr{D}$ and $G: \mathscr{D} \to \mathscr{C}$ find natural transformations $\eta: \mathrm{Id}_{\mathscr{C}} \to G \circ F$ and $\varepsilon: F \circ G \to \mathrm{Id}_{\mathscr{D}}$ which fulfill the triangular relations.

- (i) Let $\mathscr{C} = k \operatorname{\underline{Mod}}, \ \mathscr{D} = A \operatorname{\underline{Mod}}, F(V) = A \otimes_k V$, and G be the forgetful functor.
- (ii) Let A and B be k-algebras and $_AN_B$ be a bimodule. Let $\mathscr{C} = \underline{\mathrm{Mod}}A$, $\mathscr{D} = \underline{\mathrm{Mod}}B$, let $F(M_A) = M \otimes_A N$ and $G(P_B) = \mathrm{Hom}_B(N, P)$.
- (iii) Let \mathscr{C} be the category whose objects are pairs (A, S) consisting of a commutative ring A and a multiplicative subset $S \subseteq A$ and whose morphisms $f: (A, S) \to (B, T)$ are ring homomorphisms $f: A \to B$ such that $f(S) \subseteq T$. Let $\mathscr{D} = \underline{\text{CommRing}}$. Let $F(A, S) = S^{-1}A$ and $G(B) = (B, B^{\times})$.

Exercise 4. Check if the following functors F : k-<u>CommAlg</u> \rightarrow <u>Set</u> are representable and, if so, give a representing object.

- (i) $F(A) = A^n$ (here *n* is a natural number).
- (ii) $F(A) = \{(a_1, \ldots, a_n) \in A^n \mid (a_1, \ldots, a_n) = (1)\}$ (note the ambiguity the notation (a_1, \ldots, a_n) : on the one hand it denotes an *n*-tuple of elements of A and on the other hand it denotes the ideal in A which is generated by a_1, \ldots, a_n).
- (iii) $F(A) = \operatorname{GL}_n(A)$.

Due on Friday, 09.11.2018, before the lecture.