Foundations of Representation Theory —Exercise sheet 3—

Let k be a field.

Exercise 1. Let k-mod be the category of finite-dimensional k-vector spaces. Show that it is equivalent to a category whose class of objects is $\mathbb{Z}_{\geq 0}$.

Exercise 2. Let G be a group. Show that the category $\underline{\operatorname{Rep}}_k(G)$ of representations of G over k is equivalent to the category of left k[G]-modules.

Exercise 3. Let G be a group. Define the category \underline{G} as the category with a single object *, with $\underline{G}(*,*) = G$ and whose composition is defined by $g \circ h = gh$.

- (i) Show that the functor category $\underline{\operatorname{Fun}}(\underline{G}, \underline{\operatorname{Set}})$ is equivalent to the category \underline{G} - $\underline{\operatorname{Set}}$ whose objects are sets with a left \underline{G} -action and whose morphisms are \underline{G} -equivariant maps.
- (ii) Under the above equivalence, which G-set corresponds to the functor $h^* = \underline{G}(*, _)$?
- (iii) What does the statement of Yoneda's lemma say when applied to the functor $F = h^*$?

Exercise 4. Let \mathscr{A}, \mathscr{B} and \mathscr{C} be three categories. Let $S : \mathscr{A} \to \mathscr{C}$ and $T : \mathscr{B} \to \mathscr{C}$ be two functors. Define the so-called comma category \mathscr{K} as follows:

- Objects of \mathscr{K} are triples (A, B, h) where $A \in \mathscr{A}, B \in \mathscr{B}$ and $h \in \mathscr{C}(SA, TB)$.
- For two such triples (A, B, h) and (A', B', h') a morphism $(A, B, h) \to (A', B', h')$ is a pair (f, g) consisting of $f \in \mathscr{A}(A, A')$ and $g \in \mathscr{B}(B, B')$ such that $h' \circ Sf = Tg \circ h$.
- Define the composition of morphisms $(f,g): (A,B,h) \to (A',B',h')$ and $(f',g'): (A',B',h') \to (A'',B'',h'')$ by $(f',g') \circ (f,g) := (f' \circ f,g' \circ g)$.

The comma category \mathscr{K} is often denoted (S,T). Convince yourself that it is indeed a category. Describe the comma category in the following cases:

- (i) $\mathscr{A} = 1$ (the category which has just one object * and just one morphism), $\mathscr{B} = \mathscr{C}$, and $T = \mathrm{Id}_{\mathscr{C}}$.
- (ii) $\mathscr{A} = \mathscr{B} = \mathscr{C}$ and $S = T = \mathrm{Id}_{\mathscr{C}}$.
- (iii) $\mathscr{A} = 1, \, \mathscr{B} = k \cdot \underline{\text{Alg}}, \, \mathscr{C} = \underline{\text{Grp}}, \, \text{and} \, T = \underline{}^{\times}.$

Due on Friday, 02.11.2018, before the lecture.