Foundations of Representation Theory —Exercise sheet 12—

Exercise 1. Let k be a commutative ring, let A be a k-algebra, and let M be a left A-module. Consider the left exact functors $F = \operatorname{Hom}_A(M, _) : A \operatorname{-Mod} \to k \operatorname{-Mod}$ and $G = {\mathbb{Z}} \operatorname{Hom}_A(M, _) : A \operatorname{-Mod} \to \operatorname{Ab}$; i.e. F(N) is the k-module $\operatorname{Hom}_A(M, N)$ and G(N) is its underlying abelian group. Show that

 $_{\mathbb{Z}}(R^n \operatorname{Hom}_A(M, _))(N) \cong (R^n_{\mathbb{Z}} \operatorname{Hom}_A(M, _))(N).$

Exercise 2. Consider the category <u>Ab</u> of abelian groups.

- (i) Show that every abelian group M has a projective resolution P_{*} with at most two non-zero terms P₀ and P₁.
 (Hint: You may use without a proof the fact that every subgroup of a free abelian group is free. See Satz 4.2 in last term's "Algebra 1" course for a proof in the finitely generated case and Hungerford's book on Algebra, Ch. IV, Thm. 6.1 for the general case.)
- (ii) Compute $(R^i \operatorname{Hom}_{\mathbb{Z}}(\underline{\mathbb{Z}}/m\mathbb{Z}))(\mathbb{Z}/n\mathbb{Z})$ for every $m, n \in \mathbb{Z}$ and every $i \geq 0$.
- (iii) Compute $(L_i(_\otimes_{\mathbb{Z}} \mathbb{Z}/m\mathbb{Z}))(\mathbb{Z}/n\mathbb{Z})$ for every $m, n \in \mathbb{Z}$ and every $i \ge 0$.

Exercise 3. Consider the ring $A = \mathbb{Z}[t]/(t^n - 1)$ (i.e. the group ring of the cyclic group of order n). Consider \mathbb{Z} as an A-module via tx = x for all $x \in \mathbb{Z}$ (that means we consider the natural representation).

(i) Let P_* be defined by

$$\dots \xrightarrow{q} A \xrightarrow{1-t} A \xrightarrow{q} A \xrightarrow{1-t} A \to 0$$

where $q = 1 + t + \ldots + t^{n-1}$ and where the right-most non-zero entry is in degree 0. Show that P_* is a complex which consists of projectives.

- (ii) Show that P_* is exact at every P_i except for P_0 .
- (iii) Let $p_0 : P_0 = A \to \mathbb{Z}$ be the evaluation at 1, i.e. $p_0(t) = 1$. Show that (P_*, p_0) is a projective resolution of \mathbb{Z} .
- (iv) Compute $(L_i(_\otimes_A \mathbb{Z}))(\mathbb{Z})$ for every $i \ge 0$.

Exercise 4. Let k be a field. Let Q be the Kronecker quiver $1 \rightrightarrows 2$ and let M be the representation

$$k \xrightarrow[w]{v} k^2$$

given by two vectors $v, w \in k^2$.

- (i) Determine explicitly an exact sequence of representations of Q of the form $0 \to P(2)^2 \to P(1) \oplus P(2)^2 \to M \to 0$.
- (ii) Compute dim $((R^1 \operatorname{Hom}(\underline{\ }, M))(M))$.