H. Franzen Universität Bonn

Foundations of Representation Theory —Exercise sheet 10—

Let \mathscr{A} be an abelian category.

Exercise 1. True or false? Please explain your answers briefly.

- (i) The functor $H_0: \underline{Ch}_*(\mathscr{A}) \to \mathscr{A}$ is left exact.
- (ii) The cone of the identical morphism on a complex C_* is acyclic.
- (iii) The category of vector spaces (over a field k) has enough projectives.
- (iv) \mathbb{Z} is an injective object in the category of finitely generated abelian groups.
- (v) \mathbb{Q} is an injective object in the category of finitely generated abelian groups.
- (vi) $\mathbb{Z}/2\mathbb{Z}$ is a projective object in the category of abelian groups.

Exercise 2. Let P', P'' be objects of \mathscr{A} and let $P = P' \oplus P''$. Show that P is projective if and only if P' and P'' are both projective.

Is the analogous statement for injective objects also true?

Exercise 3. Let $I_0 : \mathscr{A} \to \underline{Ch}_{\geq 0}(\mathscr{A})$ and $I^0 : \mathscr{A} \to \underline{Ch}^{\geq 0}(\mathscr{A})$ be the functors which assign to an object X the chain/cochain complex $I_0(X)$ resp. $I^0(X)$ which is concentrated in degree 0 and for which $I_0(X)_0 = X$ and $I^0(X)^0 = X$.

- (i) Show that I_0 has a left adjoint.
- (ii) Show that I^0 has a right adjoint.

Exercise 4. Let k be a commutative ring and let A be a k-algebra. Consider the category A-Mod of left A-modules.

- (i) Show that $_AA$ is a projective object of A-Mod.
- (ii) Show that for a left A-module P the following assertions are equivalent:
 - (a) P is a projective object of A-Mod.
 - (b) P is a direct summand of a free A-module.

Due on Friday, 21.12.2018, before the lecture.