Foundations of Representation Theory —Exercise sheet 1—

Let k be a field.

Exercise 1. Convince yourself that the set $A^{\times} = \{a \in A \mid \exists b \in A : ab = ba = 1\}$ of units of a k-algebra A is a group under multiplication. A homomorphism $f : A \to B$ of k-algebras induces a homomorphism of groups $f^{\times} : A^{\times} \to B^{\times}$.

- (i) Let G be a group. The image of the map G → k[G], g → g is contained in the group of units of k[G] and yields a homomorphism φ : G → k[G][×] of groups. Show that for every k-algebra A and every homomorphism ψ : G → A[×] of groups, there exists a unique homomorphism f : k[G] → A of k-algebras such that f[×] ∘ φ = ψ.
- (ii) Determine the group algebras $k[\mathbb{Z}^n]$ and $k[\mathbb{Z}/2\mathbb{Z}]$.

Exercise 2. Let Q be the quiver

$$1 \xrightarrow{\alpha_1} 2 \xrightarrow{\alpha_2} \dots \xrightarrow{\alpha_{n-1}} n.$$

Show that the path algebra kQ is isomorphic to the k-algebra L_n of lower triangular $n \times n$ -matrices.

Exercise 3. Let A be a k-algebra.

- (i) Let M be a left A-module. Show that the map $\varphi_M : A \to \operatorname{End}_k(M)$ defined by $\varphi_M(a) : M \to M, x \mapsto ax$ is a homomorphism of k-algebras.
- (ii) Let V be a k-vector space and let $\varphi : A \to \operatorname{End}_k(V)$ be a homomorphism of k-algebras. Show that V becomes a left A-module via $A \times V \to V$, $(a, x) \mapsto ax := (\varphi(a))(x)$. Denote this module by V_{φ} .
- (iii) Let V and W be two k-vector spaces and let $\varphi : A \to \operatorname{End}_k(V)$ and $\psi : A \to \operatorname{End}_k(W)$ be homomorphisms of k-algebras. Let $f : V \to W$ be a k-linear map. Prove that f is a homomorphism of A-modules if and only if $\psi(a) \circ f = f \circ \varphi(a)$ for every $a \in A$.

Exercise 4. Consider the algebra $A = M_{n \times n}(k)$ of $n \times n$ -matrices over k.

- (i) Show that A has no non-zero proper two-sided ideals.
- (ii) Let $M \neq 0$ be a left A-module. Prove that $\dim_k M \geq n$.

Due on Friday, 19.10.2018, before the lecture.

General information:

- The homepage of the lecture is www.math.uni-bonn.de/ag/stroppel/Franzen_GZD_1819.htmpl.
- The tutorials start in the second week.
- The exercise sheet will be published every Friday on the homepage and are due on the following Friday.
- You may submit your solutions in groups of two.