
An Introduction to Naproche, Along a

Formalization of Euclid’s Proof of the

Infinitude of Primes

Peter Koepke
University of Bonn

February 20, 2021

1 About This Document

1.1 Running Naproche in Isabelle

This pdf-document can be read as an introduction to the Naproche natural
proof assistant. It contains a proof of the infinitude of primes, typeset on a
light-grey background, and explains various features of the ForTheL input
language to Naproche with examples from that proof.

Simulataneously, the LATEX source Introduction.ftl.tex of this doc-
ument is a ForTheL text which proof-checks successfully in the Naproche
prover. The source text can be loaded into the Isabelle Proof Interactive
Development Environment (Isabelle-PIDE), in which the text can be edited
and continuously checked for correctness. Isabelle 2021 contains Naproche
as a component which is activated when files with the extension .ftl.tex are
edited.

Note that the checking process consists of proving a large number of
explicit and implicit first-order properties of the ForTheL text by the auto-
matic theorem prover E. The power of E and of the overall Naproche system
strongly depends on hardware performance. It may be necessary to supply
more proof details to get a text checked. On an older laptop with an Intel
Pentium N3710 processor Naproche takes around 75 seconds to check this
text.

1.2 The ForTheL Language and LATEX

Since only content in

1

\begin{forthel} ... \end{forthel}

environments is passed to Naproche one can write arbitrary material out-
side those environments (like these explanatory comments). To experiment
with Naproche one can edit the forthel environments. For this it may be
convenient to deactivate most of these environments by replacing the outer
\begin and \end by begin and end.

By default, Naproche continuously checks the active buffer for correct-
ness as a ForTheL text (parsing) and for logical correctness (proof checking).
Checking results are displayed in the jedit Output window. Further feedback
is given by coloured highlighting of the buffer and by ballons when hovering
over sentences with the mouse pointer.

ForTheL files with a proper LATEXpreamble and a begin document / end
document structuring can be immediately compiled by TEX/LATEXonce the
forthel environment is defined. This has, e.g. been defined in the style file
naproche which we are using for this document. This package also provides
the gray background for ForTheL.

1.3 An Example

We demonstrate this principle with a small technical section mainly con-
cerned with notation. The [...] commands in this section give some
parser commands to Naproche which we shall discuss later.

The source code of the following section is:

\section{Notation}

\begin{forthel}

%\begin{lemma} Contradiction. \end{lemma}

[printprover on]

[synonym number/-s]

[synonym divide/-s]

[synonym set/-s] [synonym element/-s]

[synonym belong/-s] [synonym subset/-s]

\end{forthel}

Here, \section{Notation} is an ordinary LATEXsection command. The

2

rest of the snippet is in a begin{forthel} ... end{forthel} environment
which is marked in the LATEXoutput by a gray background:

2 Notation

[printprover on][dump on]
[synonym number/-s] [synonym divide/-s] [synonym set/-s] [synonym
element/-s] [synonym belong/-s] [synonym subset/-s]

3 General Remarks

The Naproche system (Natural Proof Checking) is a proof assistant that
accepts input texts in a controlled natural language for mathematics, and
checks them for logical correctness. Naproche accepts two dialects of the
ForTheL language (Formula Theory Language): a classic one close to the
language of the original SAD system, indicated by the .ftl file ending, and
a LaTeX-oriented version with .ftl.tex file ending. In this note we use the
latter version, which directly allows mathematical typesetting with LATEX.

Text processing by Naproche translates accepted texts in a natural math-
ematical language into a formal logic format which is then handed over to
further processing in the formal logic. In the present Naproche system,
the logic format is classical first-order predicate logic and the processing is
mainly by repeated sledgehammer-like proving using the eprover automatic
theorem prover (ATP). Other logic formats like Lean or possibly Isabelle’s
Isar language are under consideration.

3.1 Natural Language Processing

The ForTheL input text is thus interpreted in the target logic and also pro-
poses proof methods to be used by the reasoner and the ATP. ForTheL
leverages a number of natural language mechanisms to capture formal con-
tent in a compact, user-friendly and natural way. This corresponds to usual
natural language features, where the phrase “white horse that belongs to
Mary” with its adjective, noun and relative sentence corresponds to a first-
order statement like

horse(x) ∧ white(x) ∧ property − of(x,Mary)

with a (hidden) variable x, predicates horse(), white(), and property−of(,),
and a constant Mary. Naproche extracts this formal context whilst reading

3

the input sentence by sentence. Previous sentences provide the context of
already introduced language components, in which the new sentence is to
be interpreted.

3.2 Axiomatic Approach

The Naproche system comes with a minimal set of in-built mathematical
notions. Usually on has to explicitly extend the first-order language through
Signature and Definition commands and through Axioms. Then Lemmas
and Theorems can be postulated and proved with familiar proof structures.
In the following this procedure is explained along a standard proof of the
infinitude of prime numbers:

� set up a language and axioms for natural number arithmetic;

� define divisibility and prime natural numbers;

� introduce some set theory so that one can define finite sets, sequences
and products.

Finally, a checked natural language proof of Euclid’s theorem can be carried
out in this axiomatic setup.

4 Natural Numbers - Introducing the Language of
Arithmetic

A first-order language is determined by its (symbols for) relations, functions,
and constants. We want to introduce the functions + and ∗ of addition and
multiplication (of natural numbers) and the constants 0 and 1. Since we
shall later consider other domains as well, like sets and functions, we cap-
ture those domains by relations. The type “natural number” of ordinary
mathematical discourse will be modeled by an internal unary relation sym-
bol aNaturalNumber, and the arithmetic functions and quantifiers will be
restricted to the extension of the unary relation symbol. So the (weak)
type system of ordinary mathematical language is modeled by a system of
first-order predicates. These types do not follow a strict “type theory” with
specific mathematical laws but they are still powerful enough to organize
the universe of mathematics.

Here is ForTheL code for introducing the type, or rather notion, of nat-
ural numbers, the constants 0 and 1 and the operations of + and ∗.

4

In order to be able to form classes and sets of natural numbers we agree
that natural numbers are small objects.

Let x is small stand for x is setsized.

Signature 1. A natural number is a small object.

Let i, k, l,m, n, p, q, r denote natural numbers.

Lemma 2. i is small.

Signature 3. 0 is a natural number.

Let x is nonzero stand for x 6= 0.

Signature 4. 1 is a nonzero natural number.

Signature 5. m+ n is a natural number.

Signature 6. m ∗ n is a natural number.

4.1 First-Order Translation

The first-order translation of sentences in the ForTheL code can be found
in the output window of jedit or hovering the mouse over the sentence:

1. forall v0 ((HeadTerm :: aNaturalNumber(v0)) implies

(truth and isSetsized(v0)))

2. forall v0 ((HeadTerm :: v0 = 0) implies aNaturalNumber(v0))

3. forall v0 ((HeadTerm :: v0 = 1) implies

(aNaturalNumber(v0) and not v0 = 0))

4. (aNaturalNumber(m) and aNaturalNumber(n))

5. forall v0 ((HeadTerm :: v0 = m+n) implies aNaturalNumber(v0))

6. (aNaturalNumber(m) and aNaturalNumber(n))

7. forall v0 ((HeadTerm :: v0 = m*n) implies aNaturalNumber(v0))

In these formulas we see the newly introduced first-order symbols:
aNaturalNumber(v0), 0, 1, +, *.
The first-order translations follow a certain idiom which is favourable for

the overall processing. Formula 1 is exhibits the new symbol marked by the
tag HeadTerm. Similarly formula 2 emphasizes the symbol 0 which would
not have been the case in the equivalent aNaturalNumber(0). Note that 5
and 7 both have the premises

(aNaturalNumber(m) and aNaturalNumber(n))

for the two arguments of the operations. These premises have to be proved
before the operations can reasonably be applied within proofs.

5

4.2 Some ForTheL Commands and Keywords

Let us now go through the natural language phrases used to reach this
translation. New first-order symbols are spawned by Signature commands.
The new notion comes before the keyword “is” after which the new notion
is classified as a new type (“is a notion”) or as a member of of an existing
type (“is a natural number”).

The phrase before “is” is read as a new language pattern that the parser
learns. A pattern has some word tokens, like “natural”, “number”, or some
symbolic tokens, like “0”, “1”, “+”, “∗”. In between those tokens a pattern
may have holes for the insertion of terms, which in the Signature command
are indicated by previously introduced variables, like “m” or “n”. These
were introduced in the parser command “Let i, k, l,m, n, p, q, r denote nat-
ural numbers.” Thereafter, m and n are variables which are “pretyped” to
be natural numbers. With that,

Signature 7. m+ n is a natural number.

has the “double translation”

(aNaturalNumber(m) and aNaturalNumber(n))

forall v0 ((HeadTerm :: v0 = m+n) implies aNaturalNumber(v0))

where the first (or more) formulas are premises and the last contains the
newly introduced symbol.

We can also qualify the typing on the right-hand side of the “is” keyword
by first-order formulae. In our example, we have introduced a pattern for
a first-order formula by the parser command “Let x is nonzero stand for
x 6= 0.” This formula is then applied as an adjective in the next Signature
command

Signature 8. 1 is a nonzero natural number.

Note that some natural language processing is also taking place: “nonzero”
is introduced within the phrase “x is nonzero” in an adjective position. So
in the Signature command, “nonzero” can be used as an adjective which
modifies “natural number”. The first-order effect of this is a conjunction

3. forall v0 ((HeadTerm :: v0 = 1) implies

(aNaturalNumber(v0) and not v0 = 0))

The equality “=” and inequality “6=” are predefined phrases with corre-
sponding first-order symbols.

6

4.3 “Grammar”

Note that we have also used the “linguistic” commands of the notation
section: the command [synonym number/numbers] identifies the tokens
“number” and “numbers”, providing the plural form. The command can
be abbreviated to [synonym number/-s]. This is a simple linguistic “hack”
which allows grammatically correct forms. But it also allows wrong ones,
and it is up to the user to make the right choices.

5 Natural Numbers - Postulating Axioms

We now have to introduce axioms for our abstract first-order structure. Ax-
iom are ForTheL statements written in axiom environments. For arithmetic
we use self-explanatory symbolic formulas. There are many ways of axiom-
atizing the natural numbers in order to be able to prove our final goal: the
infinitude of primes. Here we axiomatize the natural numbers as a sort of
commutative “half-ring” with 1.

Axiom 9. m+ n = n+m.

Axiom 10. (m+ n) + l = m+ (n+ l).

Axiom 11. m+ 0 = m = 0 +m.

Axiom 12. m ∗ n = n ∗m.

Axiom 13. (m ∗ n) ∗ l = m ∗ (n ∗ l).
Axiom 14. m ∗ 1 = m = 1 ∗m.

Axiom 15. m ∗ 0 = 0 = 0 ∗m.

Axiom 16. m∗(n+l) = (m∗n)+(m∗l) and (n+l)∗m = (n∗m)+(l∗m).

Axiom 17. If l +m = l + n or m+ l = n+ l then m = n.

Axiom 18. Assume that l is nonzero. If l ∗m = l ∗ n or m ∗ l = n ∗ l
then m = n.

Axiom 19. If m+ n = 0 then m = 0 and n = 0.

Axioms - like Signatures - are toplevel sections which consist of n + 1
statements. The first n are assumption statements (“Assume ...”, “Let ...”)
under which the final statement is postulated. Note that previous pretypings
of variables also act like assumptions.

7

6 The Natural Order - Defining
Relations and Functions

Definitions extend the first-order language by defined symbols as in the
following examples concerning the ordering of the natural numbers. A defi-
nition corresponds to a Signature command in which a symbol is introduced
plus an Axiom containing the defining property.

Definition 20. m ≤ n iff there exists a natural number l such that
m+ l = n.

Let m < n stand for m ≤ n and m 6= n.

Definition 21. Assume that n ≤ m. m − n is a natural number l
such that n+ l = m.

The first definition defines the binary relation ≤ by an “iff” equivalence.
This is followed by a purely syntactic definition of <. m < n is simply an
abbreviation for another formula. The abbreviation is already expanded,
possibly recursively, by the parser. The third definition defines the binary
difference function −.

6.1 Axiomatic Content in Definitions

Definitions of functions and constants usually contain implicit postulates
corresponding to the existence and uniquess-properties of function values
and constants. In case of the function definition the condition for l should
be satisfiable by a unique natural number. This is however not checked
by Naproche, so that the well-definedness of the function is the user’s re-
sponsibility. If the function definition were non-unique we would have a
contradictory system of assumptions. Consider, e.g., the wrong definition

Definition 22. Assume that n ≤ m. m − n is a natural number l such
that n = m.

The first-order translation would be

(aNaturalNumber(m) and aNaturalNumber(n))

n\leq m

forall v0 ((HeadTerm :: v0 = m-n)

iff (aNaturalNumber(v0) and n = m))

Every number fits the defining equivalence provided that m = n. But
then 0 = 0− 0 = 1, contradiction.

For relation definitions, these problems do not arise.

8

7 Lemmas and Theorems

After setting up the axiomatics we proceed to claim and prove properties.
Claims together with the accumulated axioms will be given to the back-
ground ATP (= eprover). Many basic propositions can be proved by the
ATP without further intervention. The following three lemmas show that
≤ is a partial order:

Lemma 23. m ≤ m.

Lemma 24. If m ≤ n ≤ m then m = n.

Lemma 25. If m ≤ n ≤ l then m ≤ l.

7.1 Eprover in the Background

These lemmas were checked correct by Naproche without explicit proofs.
We can look at the task given to the ATP by putting a [dump on] com-
mand in the beginning of the ForTheL parts of the document and looking
for the dump of the provertask in the output window. The task is written
in the first-order logic language TPTP which is a standard input language
for ATPs. Observe that all previous Signature, Axiom and Definition envi-
ronments can be found as premises of the conjecture m ≤ m.

[Translation] (line 409 of ...

aNaturalNumber(m)

[Translation] (line 409 of ...

m\leq m

[Reasoner] (line 409 of ...

goal: m \leq m .

[Main] (line 409 of ...

fof(m_,hypothesis,$true).

fof(m_,hypothesis,aNaturalNumber(sz0)).

fof(m_,hypothesis,(aNaturalNumber(sz1) & (~ (sz1 = sz0)))).

fof(m_,hypothesis,(! [W0] : (! [W1] : ((aNaturalNumber(W0) & aNaturalNumber(W1))

=> aNaturalNumber(sdtpldt(W0,W1)))))).

fof(m_,hypothesis,(! [W0] : (! [W1] : ((aNaturalNumber(W0) & aNaturalNumber(W1))

=> aNaturalNumber(sdtasdt(W0,W1)))))).

fof(m_,hypothesis,(! [W0] : (! [W1] : ((aNaturalNumber(W0) & aNaturalNumber(W1))

=> (sdtpldt(W0,W1) = sdtpldt(W1,W0)))))).

fof(m_,hypothesis,(! [W0] : (! [W1] : (! [W2] : (((aNaturalNumber(W0) &

aNaturalNumber(W1)) & aNaturalNumber(W2))

=> (sdtpldt(sdtpldt(W1,W2),W0) = sdtpldt(W1,sdtpldt(W2,W0)))))))).

fof(m_,hypothesis,(! [W0] : (aNaturalNumber(W0)

=> ((sdtpldt(W0,sz0) = W0) & (W0 = sdtpldt(sz0,W0)))))).

fof(m_,hypothesis,(! [W0] : (! [W1] : ((aNaturalNumber(W0) & aNaturalNumber(W1))

=> (sdtasdt(W0,W1) = sdtasdt(W1,W0)))))).

fof(m_,hypothesis,(! [W0] : (! [W1] : (! [W2] : (((aNaturalNumber(W0) &

aNaturalNumber(W1)) & aNaturalNumber(W2))

=> (sdtasdt(sdtasdt(W1,W2),W0) = sdtasdt(W1,sdtasdt(W2,W0)))))))).

fof(m_,hypothesis,(! [W0] : (aNaturalNumber(W0)

=> ((sdtasdt(W0,sz1) = W0) & (W0 = sdtasdt(sz1,W0)))))).

9

fof(m_,hypothesis,(! [W0] : (aNaturalNumber(W0)

=> ((sdtasdt(W0,sz0) = sz0) & (sz0 = sdtasdt(sz0,W0)))))).

fof(m_,hypothesis,(! [W0] : (! [W1] : (! [W2] : (((aNaturalNumber(W0)

& aNaturalNumber(W1)) & aNaturalNumber(W2))

=> ((sdtasdt(W1,sdtpldt(W2,W0)) = sdtpldt(sdtasdt(W1,W2),sdtasdt(W1,W0)))

& (sdtasdt(sdtpldt(W2,W0),W1) = sdtpldt(sdtasdt(W2,W1),sdtasdt(W0,W1))))))))).

fof(m_,hypothesis,(! [W0] : (! [W1] : (! [W2] : (((aNaturalNumber(W0)

& aNaturalNumber(W1)) & aNaturalNumber(W2))

=> (((sdtpldt(W0,W1) = sdtpldt(W0,W2))

| (sdtpldt(W1,W0) = sdtpldt(W2,W0))) => (W1 = W2))))))).

fof(m_,hypothesis,(! [W0] : (aNaturalNumber(W0) => ((~ (W0 = sz0))

=> (! [W1] : (! [W2] : ((aNaturalNumber(W1) & aNaturalNumber(W2))

=> (((sdtasdt(W0,W1) = sdtasdt(W0,W2))

| (sdtasdt(W1,W0) = sdtasdt(W2,W0))) => (W1 = W2))))))))).

fof(m_,hypothesis,(! [W0] : (! [W1] : ((aNaturalNumber(W0) & aNaturalNumber(W1))

=> ((sdtpldt(W0,W1) = sz0) => ((W0 = sz0) & (W1 = sz0))))))).

fof(m_,hypothesis,(! [W0] : (! [W1] : ((aNaturalNumber(W0) & aNaturalNumber(W1))

=> (sdtbszlzezqdt(W0,W1)

<=> (? [W2] : (aNaturalNumber(W2) & (sdtpldt(W0,W2) = W1)))))))).

fof(m_,hypothesis,(! [W0] : (! [W1] : ((aNaturalNumber(W0) & aNaturalNumber(W1))

=> (sdtbszlzezqdt(W1,W0) => ((aNaturalNumber(sdtmndt(W0,W1))

& (sdtpldt(W1,sdtmndt(W0,W1)) = W0)) & (! [W2] : ((aNaturalNumber(W2)

& (sdtpldt(W1,W2) = W0)) => (W2 = sdtmndt(W0,W1)))))))))).

fof(m__,hypothesis,aNaturalNumber(xm)).

7.2 Testing for Contradictions

It is quite common to accidentally introduce trivial inconsistencies in formal-
izations. Not just by function definitions, but also because some marginal
cases outside the main argument have not been treated right. E.g., although
the number 0 is quite uninteresting for the study of prime numbers, we still
have to deal with 0-cases or explicitly request that terms are nonzero. If
a text with non-trivial mathematical content checks unexpectedly fast then
one should become suspicious.

To find inconsistencies it is helpful to try to prove

Lemma 26. Contradiction.

in various places of a text. If the lemma is validated by Naproche then
one has to investigate further. In the source text of this document one finds
an Contradiction-Lemma which is commented out by %. This can be quickly
activated for a contradiction check. It can also be used to force rechecking
of the text: uncomment the lemma and then comment it again; this will
lead to rechecking at least from the position of the lemma onwards.

10

8 Linear and Discrete Orders

We need more axiomatic assumptions for the ordering of the natural num-
bers. The axioms so far do not guarantee that the ordering is linear. Also
we want a “discrete” order with nothing strictly between 0 and 1. So we
continue:

Axiom 27. m ≤ n or n < m.

Lemma 28. Assume that l < n. Thenm+l < m+n and l+m < n+m.

Lemma 29. Assume that m is nonzero and l < n. Then m∗ l < m∗n
and l ∗m < n ∗m.

Axiom 30. n = 0 or n = 1 or 1 < n.

Lemma 31. If m 6= 0 then n ≤ n ∗m.

9 Induction

Naproche has inherited an elegant treatment of induction from the SAD
system. Naproche has a special binary relation symbol ≺ for a universal
inductive relation: if at any point m property P is inherited at m provided
all ≺-predecessors of m satisfy P , then P holds everywhere.

So to prove that P holds universally, it suffices to prove the “inheritance”
along ≺. This modification of proof tasks is already carried out by the
parser when it comes across the keyword “proof by induction”. This will be
demonstrated in a later proof in this Introduction.

Axiom 32. If n < m then n ≺ m.

From this axiom one can derive Peano axioms for the natural numbers.
On the other hand, with some simple axioms about the successor operation
+1 and with ≺ one could have derived all the above structural axioms.

10 Division

We now get to notions that are crucial for the study of divisors and prime
numbers:

Definition 33. n divides m iff for some l m = n ∗ l.
Let x|y denote x divides y. Let a divisor of x denote a natural number
that divides x.

11

The definition is similar to the definition of ≤. Note, however, the
possible syntactic variations: “there exists a natural number l such that
m+ l = n”, “for some l m = n ∗ l”. It is also possible to put the quantifier
after the property: “n divides m iff m = n ∗ l for some l”.

Natural language has many mechanisms for putting information into
sentences in a compact, un-formalistic way. Un-formalistic means, e.g., that
natural language does not generally allow brackets (...) in speech. ForTheL
implements several of these natural language mechanisms. Although the
language has evolved, “The syntax and semantics of the ForTheL language”
by Andrei Paskevich is still a good guide to most constructs of the language.

11 An Interactive Proof

We shall later need a technical lemma on divisibility:

Lemma 34. Let l|m and l|m+ n. Then l|n.

On the computer I am using, Naproche does not find a proof on its own:
depending on some default timeouts the proof search is abandoned, and the
goal l|n fails. In Isabelle-Naproche this is signaled in the output window,
and the failed goal gets an underlining in red.

So the user has to “interactively” supply a proof, which in a first ap-
proximation is a list of statements which leads up to the claim, and which
Naproche’s ATP is able to prove successively. Proof statements can also
introduce assumptions and new variables to the argument, and they can
structure the proof.

Lemma 35. Let l|m and l|m+ n. Then l|n.

Proof. Assume that l is nonzero. Take p such that m = l ∗ p. Take q
such that m+ n = l ∗ q.

Let us show that p ≤ q. Proof by contradiction. Assume the contrary.
Then q < p. m+ n = l ∗ q < l ∗ p = m. Contradiction. qed.

Take r = q − p. We have (l ∗ p) + (l ∗ r) = l ∗ q = m+ n = (l ∗ p) + n.
Hence n = l ∗ r.

When Naproche encounters a statement immediately followed by an
explicit proof then Naproche defers proving the statement and first goes
through the proof. Since proofs may contain subproofs, this process may
take place recursively.

Proofs of a “toplevel” Lemma or Theorem use the

12

\begin{proof}...\end{proof}

environment well-known from LATEX. In our proof there is also a “lowlevel”
proof of p ≤ q indicated by “Let us show that”. Let us discuss some aspects
of the proof:

� Most sentences in a proof are statements, or statements extended by
certain constructs that organize the flow of the argument.

� “Assume that l is nonzero.” is an assumption that introduces the
premise “l is nonzero” to the argument. Instead of “Assume that” one
could also use variants like [let us — we can] (assume — presume —
suppose) [that].

� “Take p such that m = l ∗ p.” introduces a new variable p with a
specific property to the argument. To verify this construct the prover
has to show the existence of some object satisfying the property. Again
there are variants: [let us — we can] (choose — take — consider).

� “Let us show that p ≤ q.” claims that the statement p ≤ q holds and
announces a subsequent proof. Alternatives: [let us — we can] (prove
— show — demonstrate) (that).

� “Proof by contradiction” denotes the start of an indirect proof. It
is recommended to explicitly mark indirect proof. Note that in the
example this is a “lowlevel” proof that uses a simple

Proof [by ...](.) ... (qed. | end.)

environment instead of the LATEXproof environment.

� Other proof methods are “by cases” and “by induction”.

� “Assume the contrary.”: The contrary is the negation of the current
thesis which in this case is the statement claimed just before. “thesis”
denotes the current thesis, “contradiction” stands for “false”.

� “Then q < p.”: Words like “then”, “hence”, “thus”, “therefore”, “con-
sequently” are filler words which are redundant for Naproche but may
help human readers to understand the text.

� “m+ n = l ∗ q < l ∗ p = m”: binary relations like “=” or “<” can be
chained. The statement means the conjunction of the single relations.
These will be checked from left to right.

13

� “Contradiction. qed.”: The indirect proof has reached the desired
contradiction, and that proof environment is closed by “qed.”.

Naproche is able to prove the next lemma without an explicit proof in
the text.

Lemma 36. Let m|n 6= 0. Then m ≤ n.

12 Primes

Prime numbers are defined as usual. Indeed we define the adjective “prime”
which will enable us to write “prime natural number” or “prime divisor”.

Let x is nontrivial stand for x 6= 0 and x 6= 1.

Definition 37. n is prime iff n is nontrivial and for every divisor m
of n m = 1 or m = n.

12.1 Proof by Induction

The following lemma obviously holds by induction: either k is prime itself,
or k has a divisor strictly between 1 and k; by induction that divisor has a
prime divisor which is also a prime divisor of k.

Lemma 38. Every nontrivial k has a prime divisor.

Proof. Proof by induction.

The phrase “proof by induction” invokes a general induction principle
for the relation ≺. To prove ∀kφ(k), it suffices to prove:

∀v0(∀v1(v1 ≺ v0 → φ(v1))→ φ(v0).

So “proof by induction” transforms the thesis into a new thesis:

thesis: forall v0 ((aNaturalNumber(v0) and (not v0 = 0 and not v0 = 1))

implies ((InductionHypothesis :: forall v1 ((aNaturalNumber(v1) and

(not v1 = 0 and not v1 = 1)) implies (iLess(v1,v0)

implies exists v2 ((aNaturalNumber(v2) and doDivides(v2,v1))

and isPrime(v2))))) implies exists v1

((aNaturalNumber(v1) and doDivides(v1,v0)) and isPrime(v1))))

Note that internally, iLess represents the relation ≺. Since we had postu-
lated axiomatically that < is a subrelation of ≺, the induction principle for
≺ implies a standard induction principle for the natural numbers.

14

13 Classes

“sets” and “classes” are built-in notions of Naproche, as well as “element of
...”. “element of y” determines the type of elements-of-y. Such “of”-types
lead to several linguistic modifications: one can quantify over elements-of-y
like (for all — for some — no) (element of y); y has some element; etc.

Similarly, the subclass relation is given by the dependent type of subclasses-
of-T .

Let S, T stand for classes. Let x belongs to S stand for x is an element
of S.

Definition 39. A subclass of S is a class T such that every element
of T belongs to S.

Let T ⊆ S stand for T is a subclass of S.

To avoid the classical antinomies of set theory, classes can only have
“small” elements which in Naproche’s terminology are “setsized”; both these
adjective were identified earlier in the document. We extend the built-in
ontology of Naproche according to the following principles:

Axiom 40. Every element of every class is small.

Axiom 41. Every set is a small class and every small class is a set.

Classes can be naturally formed in ForTheL:

Definition 42. N is the class of natural numbers.

The verbose form is equivalent to the use of abstraction terms:

Definition 43. {m, . . . , n} = { natural number i|m ≤ i ≤ n}.

14 Finite Sequences and Products, using Intuitive
“...”-Notation

This section demonstrates how some notation that is considered vague can
be interpreted as formally exact. Mathematics often uses ...-notations to
indicate arbitrary size finite or even infinite mathematical objects.

From a LATEXstandpoint, a notation like {m, . . . , n} can canonically be
seen as the printout of a corresponding macro in the LATEXsource. Naproche
on the other hand accepts standard LATEXmacros as patterns, so that the
macro can be a properly introduced Naproche pattern with a first-order

15

definition. In this way, intuitive and customary notation can be used also
as Naproche input.

In the present text, {m, . . . , n} is printed from a macro defined by:
\newcommand{\Seq}[2]{\{#1,\dots,#2\}}.
This notation or macro can be given a precise semantics by ForTheL

definitions.

Definition 44. {m, . . . , n} is the class of natural numbers i such that
m ≤ i ≤ n.

So far there are basically no axioms for set formation, so we postulate:

Axiom 45. {m, . . . , n} is a set.

The macro for the {m, . . . , n}- notation is visible in the LATEXcode:

\begin{definition} $\Seq{m}{n}$ is the class of

natural numbers i such that $m \leq i \leq n$.

\end{definition}

14.1 Functions

The notion of “function” and some related notations like the domain of a
function F or the application F (x) of a function to an argument are provided
by Naproche. We add an axiom about smallness of values:

Axiom 46. Assume F is a function and x ∈ Dom(F). Then F (x) is
small.

Definition 47. A sequence of length n is a function F such that
Dom(F) = {1, . . . , n}.

The members F (i) of a sequence F are often written in an indexed
notation fi where this notation is defined by a macro

\newcommand{\val}[2]{#1_{#2}}.
The ForTheL semantics is defined by:

Let Fi stand for F (i).

Definition 48. Let F be a sequence of length n. {F1, . . . , Fn} =
{Fi|i ∈ Dom(F)}.

Dot notation is also used for iterations of all sorts. For Euclid’s theorem
we shall want to consider products of finitely many prime numbers. So we
postulate axiomatically:

16

Signature 49. Let F be a sequence of length n such that
{F1, . . . , Fn} ⊆ N. F1 · · ·Fn is a natural number.

Axiom 50. (Factorproperty) Let F be a sequence of length n such
that F (i) is a nonzero natural number for every i ∈ Dom(F). Then
F1 · · ·Fn is nonzero and F (i) divides F1 · · ·Fn for every i ∈ Dom(F).

Note that we can name toplevel sections by single words like “Factor-
property” or numbers. These can be referenced later in the form “(by Fac-
torproperty)”.

15 Finite and Infinite Sets

Finite sequences readily allow a formalization of finiteness for arbitrary sets
and classes.

Definition 51. S is finite iff S = {F1, . . . , Fn} for some natural
number n and some function F that is a sequence of length n.

Definition 52. S is infinite iff S is not finite.

16 Euclid’s Theorem

Now everything is in place for the proof that there are infinitely many prime
numbers.

Signature 53. P is the class of prime natural numbers.

Theorem 54. (Euclid) P is infinite.

Proof. Assume that r is a natural number and p is a sequence of length
r and {p1, . . . , pr} is a subclass of P.

(1) pi is a nonzero natural number for every i such that 1 ≤ i ≤ r.

Consider n = p1 · · · pr + 1. Take a prime divisor q of n.

Let us show that q 6= pi for all i such that 1 ≤ i ≤ r.

Proof by contradiction. Assume that q = pi for some natural number
i such that 1 ≤ i ≤ r. q is a divisor of n and q is a divisor of p1 · · · pr
(by Factorproperty, 1). Thus q divides 1. Contradiction. qed.

Hence {p1, . . . , pr} is not the class of prime natural numbers.

17

