
Aufgaben zur Topologie

Prof. Dr. C.-F. Bödigheimer
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Week 13 — Products of spheres, linking number, cellular homology. Not due for handing-in.
(Non-compulsory)

Exercise 13.1 (Homology of products of spheres.)
Recall from the lectures that, for spaces X and Y with “good” basepoints (this means that the basepoint is closed
as a subset and also has an open neighbourhood that deformation retracts onto it), there are split short exact
sequences

0→ H̃i(X)⊕ H̃i(Y ) −→ H̃i(X × Y ) −→ H̃i(X ∧ Y )→ 0

for i > 0. Note that the smash product Sn∧X is homeomorphic to the n-fold reduced suspension Σ̃nX = Σ̃ · · · Σ̃X.
(a) Use this fact, the above short exact sequences and the Suspension Theorem to show that

H̃i(Sn ×X) ∼=


H̃i(X) 0 6 i 6 n− 1

Z⊕ H̃n(X)⊕ H̃0(X) i = n

H̃i(X)⊕ H̃i−n(X) i > n+ 1.

(b) Calculate the homology of a product of two spheres Sk × S`.
(c)* More generally, what is the homology of an iterated product of spheres Sk1 × · · · × Ski?

Exercise 13.2 (Homology of knot complements.)
Let f : S1×D2 ↪→ R3 be a framed knot in Euclidean space, i.e., an embedding of S1×D2 into R3. The complement
of its image, M = R3 r f(S1 × D2), is then a non-compact 3-manifold.
(a) Describe an open covering {U, V } of R3 such that U 'M , V ' S1 and U ∩ V ' S1 × S1.
(b) Using the Mayer-Vietoris sequence for this covering, calculate the homology of the knot-complement M , in
particular concluding that H1(M) ∼= Z.
(c) Draw a 1-cycle µ representing a generator of H1(M).

Exercise 13.3 (Linking number.)
As in the previous exercise, let f : S1 × D2 ↪→ R3 be a framed knot, write K = f(S1 × D2) and M = R3 rK. Fix
a generator [µ] of H1(M) ∼= Z as in part (c) of the previous exercise. For any curve c : S1 → M we may define its
linking number with K, denoted L(c,K) or just L(c), to be the unique integer such that

c∗([ω1]) = L(c,K).[µ],

where [ω1] ∈ H1(S1) is a generator. Note that L(c,K) depends on the choices of µ and ω1. See the figure on the
next page for an example.

Show:
(a) L(c1) = L(c2), if c1 ' c2 : S1 →M .
(b) L(c) = 0, if the image of c and K may be separated by a plane in R3.
(c) Suppose that Φ: R3 × [0, 1]→ R3 is an ambient isotopy, i.e., each Φt = Φ(−, t) is a self-homeomorphism of R3

and Φ0 is the identity. Then L(c,K) = L(c′,K ′), where c′ = Φ1 ◦ c and K ′ = Φ1(K), and we use the generator
[µ′] = (Φ1)∗([µ]) of H1(R3 rK ′).

(d)* Now let f1, f2 : S1×D2 ↪→ R3 be two non-intersecting framed knots in R3. Let Ki = fi(S1×D2) and ci = fi ◦c,
where c : S1 → S1 ×D2 is defined by c(t) = (t, 0) (so ci is the “core” of the framed knot fi). Then we may define a
difference map

D : S1 × S1 −→ S2
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Figure for Exercise 13.3: The union of the curves K and C is the Whitehead link. Note that L(C,K) = 0. The
surface F shows that C is nullhomologous in R3 rK, and F ′ shows that C is homologous to µ + (−µ) = 0. (But
still, K and C cannot be isotoped to curves separated by a plane.)

by the formula

D(t1, t2) =
c1(t1)− c2(t2)

‖c1(t1)− c2(t2)‖
.

Consider the induced homomorphism D∗ : H2(S1× S1)→ H2(S2). Prove that D∗ = 0 if L(c1,K2) = L(c2,K1) = 0.
See the figure above for an example.

Exercise 13.4 (Mapping degree for tori.)
We know that for the torus T = S1 × S1 we have H2(T) ∼= Z. So let us choose a generator [τ ] of H2(T) and define
the mapping degree of a self-map f of the torus to be the unique integer deg(f) such that

f∗([τ ]) = deg(f).[τ ].

(a) This definition is independent of whether we choose [τ ] or −[τ ] as our generator.
(b) If f and g are homotopic, then deg(f) = deg(g).
(c) If f1, f2 : S1 → S1 are two self-maps of the circle, and f = f1 × f2 : T → T is their product – a self-map of the
torus – then we have:

deg(f) = deg(f1) · deg(f2).

Show this using the following steps (or via another argument if you prefer):

(i) We may assume without loss of generality that f1 is the map z 7→ zm and f2 is z 7→ zn for some m,n ∈ Z.
(ii) Recall the comultiplication ∇ : S2 → S2 ∨ S2 and the fold map F : S2 ∨ S2 → S2 from Exercise 12.1. These may

be iterated, leading to maps ∇k : S2 →
∨k S2 and Fk :

∨k S2 → S2. On second homology groups, we have

(∇k)∗(1) = (1, . . . , 1) ∈ Zk

(Fk)∗(0, . . . , 0, 1, 0, . . . , 0) = 1 ∈ Z.

(iii) Let A = S1 ∨ S1 ⊂ S1 × S1. Then the quotient map q : S1 × S1 → (S1 × S1)/A ∼= S2 induces an isomorphism on
H2(−).
(iv) Let B ⊂ S1 × S1 be an (m × n) rectangular grid in the usual picture of the torus as a square with edge
identifications. Then (S1 × S1)/B is homeomorphic to a wedge sum of mn copies of S2. Under this identification,
the quotient map S1 × S1 → (S1 × S1)/B ∼=

∨mn S2 is homotopic to ∇mn ◦ q.
(v) The following diagram is commutative up to homotopy, and so the result follows.
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S1 × S1 S1 × S1

S2
∨mn S2 S2

f = f1 × f2

q q

∇mn Fmn

Exercise 13.5 (Cellular homology of quotients of the 3-simplex.)
Let X be the 3-simplex, the 2-skeleton of which is depicted on the left-hand side in the figure below, and identify
its four faces in two pairs, as indicated in the middle part of the figure, to obtain a quotient space Y .
(a) Describe the natural cell complex structure on X and the induced structure on Y , with two 0-cells {P,Q}, three
1-cells {a, b, c}, two 2-cells {F1, F2} and one 3-cell ω.
(b) Compute the differentials in the cellular chain complex

0← Z〈P,Q〉 ← Z〈a, b, c〉 ← Z〈F1, F2〉 ← Z〈ω〉 ← 0← 0← · · ·

of Y , and thus compute its homology.
(c) Now identify the faces of the 3-simplex as indicated on the right-hand side of the figure, to obtain a quotient
space Z. Describe the induced cell structure on Z, with one 0-cell, two 1-cells, two 2-cells and one 3-cell.
(d) Compute the cellular homology of Z.

Exercise 13.6* (Cellular homology of a quotient of the dodecahedron.)
Let X be the dodecahedron, which has a cell structure with 20 zero-cells, 30 one-cells, 12 two-cells and one three-cell.
For each face, imagine pushing it through the interior of the dodecahedron until it lies in the same plane as the
opposite face, and then rotating it by π

5 radians. This gives a homeomorphism between each pair of opposite faces.
Let ∼ be the equivalence relation generated by x ∼ φ(x), where φ is one of these homeomorphisms. Describe the
induced cell structure on the quotient space X/∼ and its cellular chain complex. Prove that the (cellular) homology
of X/∼ is the same as the homology of S3. This is the famous Poincaré homology sphere.

Figures for Exercise 13.5: The left-hand figure is the 2-skeleton (the union of all cells of dimension at most 2) of the
3-simplex X. The middle figure describes how to identify two pairs of faces of X to obtain the quotient space Y .
Similarly, the right-hand figure shows how to identify the same two pairs of faces – in a different way – to obtain
the quotient space Z.
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From W. Threlfall, H. Seifert, Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen
des dreidimensionalen sphärischen Raumes, Math. Ann. (1931).
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