Aufgaben zur Topologie

Prof. Dr. C.-F. Bodigheimer
Wintersemester 2016,/17

Week 13 — Products of spheres, linking number, cellular homology. Not due for handing-in.
(Non-compulsory)

Exercise 13.1 (Homology of products of spheres.)
Recall from the lectures that, for spaces X and Y with “good” basepoints (this means that the basepoint is closed
as a subset and also has an open neighbourhood that deformation retracts onto it), there are split short exact
sequences _ _ _ B

0> H;(X)®eH(Y) — H(XxY)— H(XAY)—=0

for ¢ > 0. Note that the smash product S™ A X is homeomorphic to the n-fold reduced suspension X =% 5X.
(a) Use this fact, the above short exact sequences and the Suspension Theorem to show that

H;(X) 0<i<n—1
Hi(S"x X)={Z& H,(X)® Hy(X) i=n
Hy(X) ® Hi—n(X) i>n+1.

(b) Calculate the homology of a product of two spheres S¥ x S*.
(c)* More generally, what is the homology of an iterated product of spheres ¥ x - .. x Ski?

Exercise 13.2 (Homology of knot complements.)

Let f: S! x D? < R3 be a framed knot in Euclidean space, i.e., an embedding of S' x D? into R?. The complement
of its image, M = R3 \. f(S! x D?), is then a non-compact 3-manifold.

(a) Describe an open covering {U,V} of R? such that U ~ M, V ~ St and UNV ~S! x St.

(b) Using the Mayer-Vietoris sequence for this covering, calculate the homology of the knot-complement M, in
particular concluding that Hq (M) = Z.

(c¢) Draw a l-cycle p representing a generator of Hq(M).

Exercise 13.3 (Linking number.)

As in the previous exercise, let f: S* x D? < R? be a framed knot, write K = f(S! x D?) and M = R3 \ K. Fix
a generator [u] of Hy(M) = Z as in part (c) of the previous exercise. For any curve c: S! — M we may define its
linking number with K, denoted L(c, K) or just L(c), to be the unique integer such that

ca([wr]) = Lle, K). [,

where [w1] € H(S!) is a generator. Note that L(c, K) depends on the choices of 1 and w;. See the figure on the
next page for an example.
Show:
(a) L(c1) = L(ca), if ¢1 >~ co: St — M.
(b) L(c) = 0, if the image of ¢ and K may be separated by a plane in R3.
(c) Suppose that ®: R3 x [0,1] — R? is an ambient isotopy, i.e., each ®; = ®(—,t) is a self-homeomorphism of R?
and ®g is the identity. Then L(c, K) = L(¢/, K'), where ¢/ = ®; o ¢ and K’ = ®;(K), and we use the generator
1) = (1), ([u]) of Hy (RS  K).
(d)* Now let fi, fo: St x D? < R3 be two non-intersecting framed knots in R3. Let K; = f;(S' x D?) and ¢; = f;oc,
where c: St — St x D? is defined by c(t) = (¢,0) (so ¢; is the “core” of the framed knot f;). Then we may define a
difference map

D:S'xs' — §?



Figure for Exercise 13.3: The union of the curves K and C is the Whitehead link. Note that L(C, K) = 0. The
surface F' shows that C' is nullhomologous in R? \. K, and F’ shows that C' is homologous to u + (—u) = 0. (But
still, K and C cannot be isotoped to curves separated by a plane.)

by the formula
c1(t1) — ca(t2)
ller(t1) — ca(t2) ||
Consider the induced homomorphism D, : Hy(S! x S') — H(S?). Prove that D, = 0 if L(cy, K3) = L(co, K1) = 0.
See the figure above for an example.

D(t1,t2) =

Exercise 13.4 (Mapping degree for tori.)
We know that for the torus T = S* x S! we have Hy(T) 2 Z. So let us choose a generator [7] of Ha(T) and define
the mapping degree of a self-map f of the torus to be the unique integer deg(f) such that

fi([7]) = deg(f)-[7].

(a) This definition is independent of whether we choose [7] or —[7] as our generator.

(b) If f and g are homotopic, then deg(f) = deg(g).

(c) If f1, fo: St — St are two self-maps of the circle, and f = f; x fo: T — T is their product — a self-map of the
tor

orus — then we have:

deg(f) = deg(f1) - deg(f2).
Show this using the following steps (or via another argument if you prefer):

(i) We may assume without loss of generality that f; is the map z — 2™ and f3 is z — 2™ for some m,n € Z.
(ii) Recall the comultiplication V: §? — S? V S? and the fold map F: S? VS§? — §? from Exercise 12.1. These may
be iterated, leading to maps Vj: S — \/k S? and Fj: \/k S? — S%. On second homology groups, we have

(Vi) =(1,...,1)ez”
(F)«(0,...,0,1,0,...,0) =1 € Z.

(iii) Let A =S'vS! C S! x S. Then the quotient map q: S' x St — (S! x S)/A =2 S? induces an isomorphism on
Hy(—).

(iv) Let B C S' x S! be an (m x n) rectangular grid in the usual picture of the torus as a square with edge
identifications. Then (S' x S!)/B is homeomorphic to a wedge sum of mn copies of S?. Under this identification,
the quotient map St x St — (St x S')/B = \/™" $? is homotopic to V5 o q.

(v) The following diagram is commutative up to homotopy, and so the result follows.



St x St f=hx ) St x St

o |
vmn an

S2 V" s? S2

Exercise 13.5 (Cellular homology of quotients of the 3-simplex.)

Let X be the 3-simplex, the 2-skeleton of which is depicted on the left-hand side in the figure below, and identify
its four faces in two pairs, as indicated in the middle part of the figure, to obtain a quotient space Y.

(a) Describe the natural cell complex structure on X and the induced structure on Y, with two 0-cells { P, @}, three
1-cells {a, b, c}, two 2-cells {Fy, F»} and one 3-cell w.

(b) Compute the differentials in the cellular chain complex

0 Z(P,Q) < Z{a,b,c) + Z(Fy, Fy) + Z{w) + 00 - --

of Y, and thus compute its homology.

(c) Now identify the faces of the 3-simplex as indicated on the right-hand side of the figure, to obtain a quotient
space Z. Describe the induced cell structure on Z, with one 0-cell, two 1-cells, two 2-cells and one 3-cell.

(d) Compute the cellular homology of Z.

Exercise 13.6* (Cellular homology of a quotient of the dodecahedron.)

Let X be the dodecahedron, which has a cell structure with 20 zero-cells, 30 one-cells, 12 two-cells and one three-cell.
For each face, imagine pushing it through the interior of the dodecahedron until it lies in the same plane as the
opposite face, and then rotating it by ¥ radians. This gives a homeomorphism between each pair of opposite faces.
Let ~ be the equivalence relation generated by z ~ ¢(x), where ¢ is one of these homeomorphisms. Describe the
induced cell structure on the quotient space X/~ and its cellular chain complex. Prove that the (cellular) homology
of X/~ is the same as the homology of S3. This is the famous Poincaré homology sphere.

Figures for Exercise 13.5: The left-hand figure is the 2-skeleton (the union of all cells of dimension at most 2) of the
3-simplex X. The middle figure describes how to identify two pairs of faces of X to obtain the quotient space Y.
Similarly, the right-hand figure shows how to identify the same two pairs of faces — in a different way — to obtain
the quotient space Z.



Dodekaederraum.

Von Poincaréschen Riumen mit endlicher Fundamentalgruppe sind uns
zwei bekannt, Thre Fundamentalgruppen stimmen mit denen des Dodeka-
ederraumes iiberein. Wir wissen nicht, ob die beiden Riume untereinander
und mit dem Dodekaederraum homéomorph sind ). Dagegen gibt es aufler
der Fundamentalgruppe noch eine
andere Eigenschaft, die Poincarés
Poincaréscher Raum mit dem Do-
dekaederraum gemein hat, nidmlich
die Zerlegbarkeit in zwei Doppelringe.

Wir benennen die Kanten und
Flachenstiicke des Diskontinuititsbe-
reiches, der uns den Dodekaederraum
liefert, wie in der Fig 11 (schema-
tisches Netz der Dodekaederfliche) an-
gegeben ist, und schreiben die wesent-
lichen Relationen an, die man aus den
Kantenumliufen gewinnt. Wir sind
dann nach § 10 sicher, daB die von
den @, =6 Erzeugenden C,,..., C,
und den « =10 (den Kanten a),..., k) entsprechenden) wesentlichen
Relationen definierte Gruppe mit der biniiren Ikosaedergruppe (§ 6, 8. 26)

From W. Threlfall, H. Seifert, Topologische Untersuchung der Diskontinuitdtsbereiche endlicher Bewegungsgruppen
des dreidimensionalen sphdrischen Raumes, Math. Ann. (1931).



