Aufgaben zur Topologie

Prof. Dr. C.-F. Bödigheimer Wintersemester 2016/17

Week 13 — Products of spheres, linking number, cellular homology.

Not due for handing-in. (Non-compulsory)

Exercise 13.1 (Homology of products of spheres.)

Recall from the lectures that, for spaces X and Y with "good" basepoints (this means that the basepoint is closed as a subset and also has an open neighbourhood that deformation retracts onto it), there are split short exact sequences

$$0 \to \widetilde{H}_i(X) \oplus \widetilde{H}_i(Y) \longrightarrow \widetilde{H}_i(X \times Y) \longrightarrow \widetilde{H}_i(X \wedge Y) \to 0$$

for $i \ge 0$. Note that the smash product $\mathbb{S}^n \wedge X$ is homeomorphic to the *n*-fold reduced suspension $\widetilde{\Sigma}^n X = \widetilde{\Sigma} \cdots \widetilde{\Sigma} X$. (a) Use this fact, the above short exact sequences and the Suspension Theorem to show that

$$\widetilde{H}_i(\mathbb{S}^n \times X) \cong \begin{cases} \widetilde{H}_i(X) & 0 \leqslant i \leqslant n-1 \\ \mathbb{Z} \oplus \widetilde{H}_n(X) \oplus \widetilde{H}_0(X) & i = n \\ \widetilde{H}_i(X) \oplus \widetilde{H}_{i-n}(X) & i \geqslant n+1. \end{cases}$$

(b) Calculate the homology of a product of two spheres $\mathbb{S}^k \times \mathbb{S}^\ell$.

(c)* More generally, what is the homology of an iterated product of spheres $\mathbb{S}^{k_1} \times \cdots \times \mathbb{S}^{k_i}$?

Exercise 13.2 (Homology of knot complements.)

Let $f: \mathbb{S}^1 \times \mathbb{D}^2 \hookrightarrow \mathbb{R}^3$ be a framed knot in Euclidean space, i.e., an embedding of $\mathbb{S}^1 \times \mathbb{D}^2$ into \mathbb{R}^3 . The complement of its image, $M = \mathbb{R}^3 \setminus f(\mathbb{S}^1 \times \mathbb{D}^2)$, is then a non-compact 3-manifold.

(a) Describe an open covering $\{U, V\}$ of \mathbb{R}^3 such that $U \simeq M$, $V \simeq \mathbb{S}^1$ and $U \cap V \simeq \mathbb{S}^1 \times \mathbb{S}^1$.

(b) Using the Mayer-Vietoris sequence for this covering, calculate the homology of the knot-complement M, in particular concluding that $H_1(M) \cong \mathbb{Z}$.

(c) Draw a 1-cycle μ representing a generator of $H_1(M)$.

Exercise 13.3 (Linking number.)

As in the previous exercise, let $f: \mathbb{S}^1 \times \mathbb{D}^2 \hookrightarrow \mathbb{R}^3$ be a framed knot, write $K = f(\mathbb{S}^1 \times \mathbb{D}^2)$ and $M = \mathbb{R}^3 \setminus K$. Fix a generator $[\mu]$ of $H_1(M) \cong \mathbb{Z}$ as in part (c) of the previous exercise. For any curve $c: \mathbb{S}^1 \to M$ we may define its *linking number with* K, denoted L(c, K) or just L(c), to be the unique integer such that

$$c_*([\omega_1]) = L(c, K).[\mu],$$

where $[\omega_1] \in H_1(\mathbb{S}^1)$ is a generator. Note that L(c, K) depends on the choices of μ and ω_1 . See the figure on the next page for an example.

Show:

(a) $L(c_1) = L(c_2)$, if $c_1 \simeq c_2 \colon \mathbb{S}^1 \to M$.

(b) L(c) = 0, if the image of c and K may be separated by a plane in \mathbb{R}^3 .

(c) Suppose that $\Phi \colon \mathbb{R}^3 \times [0,1] \to \mathbb{R}^3$ is an ambient isotopy, i.e., each $\Phi_t = \Phi(-,t)$ is a self-homeomorphism of \mathbb{R}^3 and Φ_0 is the identity. Then L(c,K) = L(c',K'), where $c' = \Phi_1 \circ c$ and $K' = \Phi_1(K)$, and we use the generator $[\mu'] = (\Phi_1)_*([\mu])$ of $H_1(\mathbb{R}^3 \smallsetminus K')$.

(d)* Now let $f_1, f_2: \mathbb{S}^1 \times \mathbb{D}^2 \hookrightarrow \mathbb{R}^3$ be two non-intersecting framed knots in \mathbb{R}^3 . Let $K_i = f_i(\mathbb{S}^1 \times \mathbb{D}^2)$ and $c_i = f_i \circ c$, where $c: \mathbb{S}^1 \to \mathbb{S}^1 \times \mathbb{D}^2$ is defined by c(t) = (t, 0) (so c_i is the "core" of the framed knot f_i). Then we may define a difference map

$$D: \mathbb{S}^1 \times \mathbb{S}^1 \longrightarrow \mathbb{S}^2$$

Figure for Exercise 13.3: The union of the curves K and C is the Whitehead link. Note that L(C, K) = 0. The surface F shows that C is nullhomologous in $\mathbb{R}^3 \setminus K$, and F' shows that C is homologous to $\mu + (-\mu) = 0$. (But still, K and C cannot be isotoped to curves separated by a plane.)

by the formula

$$D(t_1, t_2) = \frac{c_1(t_1) - c_2(t_2)}{\|c_1(t_1) - c_2(t_2)\|}$$

Consider the induced homomorphism $D_*: H_2(\mathbb{S}^1 \times \mathbb{S}^1) \to H_2(\mathbb{S}^2)$. Prove that $D_* = 0$ if $L(c_1, K_2) = L(c_2, K_1) = 0$. See the figure above for an example.

Exercise 13.4 (Mapping degree for tori.)

We know that for the torus $\mathbb{T} = \mathbb{S}^1 \times \mathbb{S}^1$ we have $H_2(\mathbb{T}) \cong \mathbb{Z}$. So let us choose a generator $[\tau]$ of $H_2(\mathbb{T})$ and define the mapping degree of a self-map f of the torus to be the unique integer $\deg(f)$ such that

$$f_*([\tau]) = \deg(f).[\tau].$$

(a) This definition is independent of whether we choose $[\tau]$ or $-[\tau]$ as our generator.

(b) If f and g are homotopic, then $\deg(f) = \deg(g)$. (c) If $f_1, f_2: \mathbb{S}^1 \to \mathbb{S}^1$ are two self-maps of the circle, and $f = f_1 \times f_2: \mathbb{T} \to \mathbb{T}$ is their product – a self-map of the torus – then we have:

$$\deg(f) = \deg(f_1) \cdot \deg(f_2).$$

Show this using the following steps (or via another argument if you prefer):

(i) We may assume without loss of generality that f_1 is the map $z \mapsto z^m$ and f_2 is $z \mapsto z^n$ for some $m, n \in \mathbb{Z}$. (ii) Recall the comultiplication $\nabla \colon \mathbb{S}^2 \to \mathbb{S}^2 \lor \mathbb{S}^2$ and the fold map $F \colon \mathbb{S}^2 \lor \mathbb{S}^2 \to \mathbb{S}^2$ from Exercise 12.1. These may be iterated, leading to maps $\nabla_k \colon \mathbb{S}^2 \to \bigvee^k \mathbb{S}^2$ and $F_k \colon \bigvee^k \mathbb{S}^2 \to \mathbb{S}^2$. On second homology groups, we have

$$(\nabla_k)_*(1) = (1, \dots, 1) \in \mathbb{Z}^k$$

 $(F_k)_*(0, \dots, 0, 1, 0, \dots, 0) = 1 \in \mathbb{Z}.$

(iii) Let $A = \mathbb{S}^1 \vee \mathbb{S}^1 \subset \mathbb{S}^1 \times \mathbb{S}^1$. Then the quotient map $q: \mathbb{S}^1 \times \mathbb{S}^1 \to (\mathbb{S}^1 \times \mathbb{S}^1)/A \cong \mathbb{S}^2$ induces an isomorphism on $H_2(-).$

(iv) Let $B \subset \mathbb{S}^1 \times \mathbb{S}^1$ be an $(m \times n)$ rectangular grid in the usual picture of the torus as a square with edge identifications. Then $(\mathbb{S}^1 \times \mathbb{S}^1)/B$ is homeomorphic to a wedge sum of mn copies of \mathbb{S}^2 . Under this identification, the quotient map $\mathbb{S}^1 \times \mathbb{S}^1 \to (\mathbb{S}^1 \times \mathbb{S}^1)/B \cong \bigvee^{mn} \mathbb{S}^2$ is homotopic to $\nabla_{mn} \circ q$.

(v) The following diagram is commutative up to homotopy, and so the result follows.

Exercise 13.5 (Cellular homology of quotients of the 3-simplex.)

Let X be the 3-simplex, the 2-skeleton of which is depicted on the left-hand side in the figure below, and identify its four faces in two pairs, as indicated in the middle part of the figure, to obtain a quotient space Y. (a) Describe the natural cell complex structure on X and the induced structure on Y, with two 0-cells $\{P, Q\}$, three

1-cells $\{a, b, c\}$, two 2-cells $\{F_1, F_2\}$ and one 3-cell ω .

(b) Compute the differentials in the cellular chain complex

$$0 \leftarrow \mathbb{Z} \langle P, Q \rangle \leftarrow \mathbb{Z} \langle a, b, c \rangle \leftarrow \mathbb{Z} \langle F_1, F_2 \rangle \leftarrow \mathbb{Z} \langle \omega \rangle \leftarrow 0 \leftarrow \cdots$$

of Y, and thus compute its homology.

(c) Now identify the faces of the 3-simplex as indicated on the right-hand side of the figure, to obtain a quotient space Z. Describe the induced cell structure on Z, with one 0-cell, two 1-cells, two 2-cells and one 3-cell.
(d) Compute the cellular homology of Z.

Exercise 13.6^{*} (Cellular homology of a quotient of the dodecahedron.)

Let X be the dodecahedron, which has a cell structure with 20 zero-cells, 30 one-cells, 12 two-cells and one three-cell. For each face, imagine pushing it through the interior of the dodecahedron until it lies in the same plane as the opposite face, and then rotating it by $\frac{\pi}{5}$ radians. This gives a homeomorphism between each pair of opposite faces. Let \sim be the equivalence relation generated by $x \sim \phi(x)$, where ϕ is one of these homeomorphisms. Describe the induced cell structure on the quotient space X/\sim and its cellular chain complex. Prove that the (cellular) homology of X/\sim is the same as the homology of \mathbb{S}^3 . This is the famous *Poincaré homology sphere*.

Figures for Exercise 13.5: The left-hand figure is the 2-skeleton (the union of all cells of dimension at most 2) of the 3-simplex X. The middle figure describes how to identify two pairs of faces of X to obtain the quotient space Y. Similarly, the right-hand figure shows how to identify the same two pairs of faces – in a *different* way – to obtain the quotient space Z.

Dodekaederraum.

From W. Threlfall, H. Seifert, Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes, Math. Ann. (1931).