Aufgaben zur Topologie

Prof. Dr. C.-F. Bödigheimer Wintersemester 2016/17

Week 8 — Homological algebra and homotopy invariance of homology

Due: 21. December 2016

§ 3. — Homologies.

Considérons une variété V à p dimensions; soit maintenant W une variété à q dimensions ($q \le p$) faisant partie de V. Supposons que la frontière complète de W se compose de λ variétés continues à q-1 dimensions

$$\varphi_1, \quad \varphi_2, \quad \dots, \quad \varphi_r.$$

Nous exprimerons ce fait par la notation

$$v_1 + v_2 + \ldots + v_k \smile 0$$
.

Plus généralement la notation

$$k_1v_1 + k_2v_2 + k_1v_3 + k_4v_4$$

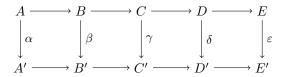
où les k sont des entiers et les v des variétés à q-t dimensions, signifiera qu'il existe une variété W à q dimensions faisant partie de V et dont la frontière complète se composera de k, variétés peu différentes de v, de k, variétés peu différentes de la variété opposée à v, et de k, variétés peu différentes de la variété opposée à v, et de k, variétés peu différentes de la variété opposée à v, et de k, variétés peu différentes de la variété opposée à v,.

Les relations de cette forme pourront s'appeler des homologies.

The birth of homology, from Analysis Situs, H. Poincaré (1895).

Exercise 8.1 (The five-lemma.)

Prove the famous five-lemma. Let R be a ring and suppose we have the following diagram of modules over R:



Assume that this diagram is commutative and that the two horizontal rows of homomorphisms are exact. Moreover, assume that α is surjective, β and δ are bijective and ε is injective. Prove that γ is bijective.

Application: let $\phi: B \to B'$ be a homomorphism of R-modules taking a submodule $A \subseteq B$ to a submodule $A' \subseteq B'$, so that we have restricted and induced homomorphisms $\phi|_A: A \to A'$ and $\bar{\phi}: B/A \to B'/A'$. If $\phi|_A$ and $\bar{\phi}$ are both isomorphisms then so is ϕ .

Exercise 8.2 (Mapping cones and mapping cylinders of chain complexes.)

Let A and B be chain complexes with differential ∂_A resp. ∂_B and let $f: A \to B$ be a chain map.

(i) Define a new chain complex $\operatorname{Cone}(f)$ by $\operatorname{Cone}(f)_n = A_{n-1} \oplus B_n$ and setting its differential $\partial \colon A_{n-1} \oplus B_n \to A_{n-2} \oplus B_{n-1}$ to be the sum of the four maps

$$\partial_A : A_{n-1} \to A_{n-2} \qquad \partial_B : B_n \to B_{n-1} \qquad 0 : B_n \to A_{n-2} \qquad (-1)^n . f_{n-1} : A_{n-1} \to B_{n-1},$$

or as a formula

$$\partial(a,b) := (\partial_A(a), (-1)^n \cdot f_{n-1}(a) + \partial_B(b)).$$

- (1) Prove that this is indeed a chain complex.
- (2) Construct chain maps $B \to \text{Cone}(f)$ and $\text{Cone}(f) \to A[1]$, where A[1] simply means the chain complex A with the modified grading $A[1]_n = A_{n-1}$, and show that you have constructed a short exact sequence

$$0 \to B \longrightarrow \operatorname{Cone}(f) \longrightarrow A[1] \to 0.$$

(ii) Now define a chain complex $\operatorname{Cyl}(f)$ by $\operatorname{Cyl}(f)_n = A_{n-1} \oplus B_n \oplus A_n$ with differential $\partial \colon \operatorname{Cyl}(f)_n \to \operatorname{Cyl}(f)_{n-1}$ given in block form by the matrix

$$\begin{pmatrix} \partial_A & 0 & 0 \\ (-1)^n \cdot f_{n-1} & \partial_B & 0 \\ (-1)^{n+1} \cdot \mathrm{id} & 0 & \partial_A \end{pmatrix}.$$

- (3) Prove that this is a chain complex.
- (4) Construct a chain homotopy equivalence $\operatorname{Cyl}(f) \simeq B$.

Exercise 8.3 (Cones of continuous maps and dunce caps.)

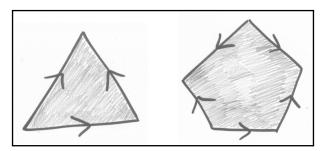
Let Z be a space with subspace $A \subseteq Z$ and let $f: A \to Y$ be a continuous map. Recall (cf. Exercise 5.6) that the space $Z \cup_f Y$ is defined to be the quotient of the disjoint union $Z \sqcup Y$ by the smallest equivalence relation \sim such that $a \sim f(a)$ for all $a \in A$.

Now let $g: X \to Y$ be a continuous map and define its mapping cylinder to be $\operatorname{Cyl}(g) = Z \cup_f Y$ where $Z = X \times [0, 1]$, $A = X \times \{0\}$ and f is g composed with the obvious identification $X \times \{0\} \cong X$. Define its mapping cone to be $\operatorname{Cone}(g) = \operatorname{Cyl}(g)/\sim$, where \sim is the smallest equivalence relation such that $(x, 1) \sim (x', 1)$ for all $x, x' \in X$.

- (1) Draw a picture to show what is going on geometrically in these constructions.
- (2) Construct an embedding $Y \to \operatorname{Cone}(g)$ and a projection $\operatorname{Cone}(g) \to \Sigma X$, where ΣX is the suspension of X, defined to be $X \times [0,1]/\sim$, where \sim is the smallest equivalence relation such that $(x,1) \sim (x',1)$ and $(x,0) \sim (x',0)$ for all $x,x' \in X$.
- (3) Show that Cyl(q) is homotopy equivalent to Y.

(We will see later in the course that these constructions yield those of the previous exercise after applying the singular chain functor.)

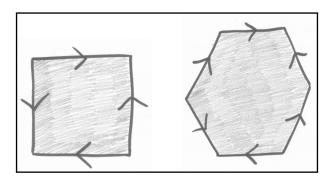
- (4) Now let $A \subseteq X$ be a closed subspace for which there exists an open neighbourhood $U \supseteq A$ that deformation retracts onto A. Let $f, g \colon A \to Y$ be two continuous maps which are homotopic. Prove that $X \cup_f Y$ and $X \cup_g Y$ are homotopy equivalent. Thus the operations Cyl(-) and Cone(-) are homotopy invariant.
- (5) Thus show that the following two spaces are contractible:



(Hint: realise each of them as $\mathbb{D}^2 \cup_f \mathbb{S}^1$ for some map $f : \partial \mathbb{D}^2 \to \mathbb{S}^1$, and consider the degree of this map.) The left-hand space above is often called the "dunce cap". There are many *generalised dunce caps* like the right-hand space above – each of them is the quotient of a polygon with an odd number of sides, which are all identified with certain choices of orientations.

(6) Using a similar trick to above, show that the following two spaces each have fundamental group isomorphic to \mathbb{Z} , and draw a generator in each case:

(Note: in the left-hand space on the next page, in addition to the depicted identifications of edges, we also identify all four (not just two) vertices to a single point.)



Exercise 8.4 (Mapping tori of chain complexes.)

Let R be a ring, C a chain complex of R-modules and $f\colon C\to C$ be a chain map from C to itself. We can formally adjoin an invertible indeterminate t to C to obtain a chain complex \bar{C} of $R[t^{\pm 1}]$ -modules by first setting $\bar{C}_n = C_n \otimes_R R[t^{\pm 1}]$ and then defining $\bar{\partial}$ to be $\bar{\partial}$ extended by linearity in t (more formally: $\bar{\partial} = \bar{\partial} \otimes \mathrm{id}$, where id is the identity map $R[t^{\pm 1}] \to R[t^{\pm 1}]$). Here, $R[t^{\pm 1}]$ is the ring of Laurent polynomials in t with coefficients in R, or, equivalently, the group-ring $R[\mathbb{Z}]$ of the group \mathbb{Z} with coefficients in R. The chain map f extends by linearity in t to a chain map $\bar{f}\colon \bar{C}\to \bar{C}$. There is also a canonical chain map $t\colon \bar{C}\to \bar{C}$ where each $t_n\colon \bar{C}_n\to \bar{C}_n$ is just multiplication by t. Define:

$$Torus(f) = Cone(\bar{f} - t).$$

- (1) Describe this explicitly in terms of the C_n , ∂_C and f_n .
- (2) Suppose that we have a commutative square

$$\begin{array}{ccc}
C & \xrightarrow{f} & C \\
\alpha \downarrow & & \downarrow \alpha \\
D & \xrightarrow{g} & D
\end{array}$$

Define a chain map $(\alpha, \alpha)_{\sharp}$: Torus $(f) \to \text{Torus}(g)$ and show that your construction satisfies the two functoriality properties $(\text{id}, \text{id})_{\sharp} = \text{id}$ and $(\alpha, \alpha)_{\sharp} \circ (\alpha', \alpha')_{\sharp} = (\alpha \circ \alpha', \alpha \circ \alpha')_{\sharp}$.

(3) Show that, for any chain map $f: C \to C$, the chain map $(f, f)_{\sharp}: \text{Torus}(f) \to \text{Torus}(f)$ induces isomorphisms on all homology groups.

(Hint: construct a chain homotopy from $(f, f)_{\sharp}$ to the "multiplication by t" chain map from Torus(f) to itself. Then show that this "multiplication by t" chain map induces isomorphisms on all homology groups and use the homotopy-invariance property of homology to deduce that the same is true for $(f, f)_{\sharp}$.)

(4) Deduce that, for chain maps $f: C \to D$ and $g: D \to C$, the chain complexes $Torus(f \circ g)$ and $Torus(g \circ f)$ have the same homology groups.

(Hint: consider the chain maps $(f \circ g, f \circ g)_{\sharp}$ and $(g \circ f, g \circ f)_{\sharp}$.)

The 6-point space Σ^2 "would be homeomorphic to a 2-sphere if it were only Hausdorff." More precisely, consider the following conditions on a topological space X:(1) The complement of each point in X is acyclic (in singular homology); (2) $H_2(X) \neq 0$. We have seen that the T_0 space Σ^2 satisfies these two conditions. However, simply by adding the extra condition (3) X is Hausdorff, one can conclude that X is homeomorphic to the 2-sphere. (See [5].)

From Singular homology groups and homotopy groups of finite topological spaces by M. C. McCord (1966). In his notation, Σ^2 is the 6-point space considered in Exercise 8.5(c) on the next page. Thus you have a strong hint as to what the homology of that space "should" be!

Exercise 8.5 (Finite topological spaces.)

- (a) There are three topological spaces X having exactly two points. In each case, compute the singular chain complex $S_{\bullet}(X)$ and the homology $H_n(X)$ for all n.
- (b) Consider the 4-point topological space $\{a, b, c, d\}$ whose topology is generated by the base

$$\{a\};\{b\};\{a,b,c\};\{a,b,d\}$$

and calculate its homology.

(c)* Do the same for the 6-point space $\{a, b, c, d, e, f\}$ whose topology is generated by the base

$${a}; {b}; {a,b,c}; {a,b,d}; {a,b,c,d,e}; {a,b,c,d,f}.$$

(d)* In general, there is a (2n+2)-point space $\{a_1,b_1,\ldots,a_{n+1},b_{n+1}\}$ whose topology is generated by the base

$${a_1}; {b_1}; {a_1, b_1, a_2}; {a_1, b_1, b_2}; \ldots ; {a_1, b_1, \ldots, a_n, b_n, a_{n+1}}; {a_1, b_1, \ldots, a_n, b_n, b_{n+1}}.$$

Make a conjecture about its homology, and about which (more familiar!) space it is homotopy equivalent to. (e)** Prove your conjecture.

Exercise 8.6* (A chain complex of chain maps.)

Let C and D be chain complexes of R-modules. We define a chain map of degree d to be a collection $f = \{f_n\}_{n \in \mathbb{Z}}$ of homomorphisms of R-modules $f_n \colon C_n \to D_{n+d}$ such that $\partial_{n+d}^D \circ f_n = f_{n-1} \circ \partial_n^C$ for all n. We define a pre-chain map of degree d to be simply a collection $f = \{f_n\}_{n \in \mathbb{Z}}$ of homomorphisms $f_n \colon C_n \to D_{n+d}$, with no condition.

- (1) Show that the set of all pre-chain maps of a fixed degree d forms an R-module, denoted $\operatorname{PreChain}_d(C, D)$.
- (2) Given $f = \{f_n\} \in \operatorname{PreChain}_d(C, D)$, show that the formula

$$(df)_n = \partial_{n+d}^D \circ f_n - (-1)^d f_{n-1} \circ \partial_n^C$$

defines a pre-chain map $df \in \operatorname{PreChain}_{d-1}(C, D)$.

- (3) Show that ddf = 0, and hence that $PreChain_{\bullet}(C, D)$ is a chain complex.
- (4) Prove that there is a natural isomorphism between $H_0(\operatorname{PreChain}_{\bullet}(C,D))$ and the set of chain-homotopy-classes of chain maps (of degree 0) from C to D. (Hint: first note that $Z_0(\operatorname{PreChain}_{\bullet}(C,D))$ is naturally isomorphic to the set of chain maps of degree 0.)