Aufgaben zur Topologie

Prof. Dr. C.-F. Bödigheimer Wintersemester 2016/17

Week 6 — Fundamental groups and first homology groups

Due: 7. December 2016

Exercise 6.1 (Gradients, rotation and divergence: grad, rot and div.)

(1) Let X be an open subset of \mathbb{R}^2 and define real vector spaces as follows.

• $C_0 = C^{\infty}(X)$, the space of smooth real-valued functions on X.

• $C_{-1} = C^{\infty}(X) \times C^{\infty}(X)$, to be thought of as the space of smooth vector fields $v = (v_1, v_2)$ on X, in coordinates. • $C_{-2} = C^{\infty}(X)$, to be thought of as the space of volume forms on X.

There are linear maps grad: $C_0 \to C_{-1}$ and rot: $C_{-1} \to C_{-2}$ defined by $\operatorname{grad}(f) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$ and $\operatorname{rot}(v_1, v_2) = \frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y}$.

(a) Show (using vector calculus) that this is a chain complex (over the field \mathbb{R}), where all undefined chain modules are 0.

(b) For arbitrary X, find the dimension of $H_0(C_{\bullet})$, i.e., the kernel of grad.

(c) When X is not simply-connected, give an example of a vector field that has zero rotation, but is not the gradient of any smooth function on X, thus showing that the homology group $H_{-1}(C_{\bullet})$ is non-trivial in this case.

(2) Now let X be an open subset of \mathbb{R}^3 and define real vector spaces as follows.

 $\circ \ C_0 = C^{\infty}(X).$

 $\circ \ C_{-1} = C^{\infty}(X) \times C^{\infty}(X) \times C^{\infty}(X).$

 $\circ \ C_{-2} = C^{\infty}(X) \times C^{\infty}(X) \times C^{\infty}(X).$

 $\circ \ C_{-3} = C^{\infty}(X).$

(a) Recall the definitions of the linear operators grad: $C_0 \to C_{-1}$, rot: $C_{-1} \to C_{-2}$ and div: $C_{-2} \to C_{-3}$ in this setting, and show that these form a chain complex.

(b) As above, compute the dimension of $H_0(C_{\bullet})$.

(c) Show that the homology group $H_{-1}(C_{\bullet})$ is non-trivial when X is not simply-connected by finding a vector field with zero rotation and which is not the gradient of any smooth function on X.

(d)* Find an X such that $H_{-2}(C_{\bullet})$ is non-trivial, i.e., we need a vector field defined on X with zero divergence and which is not the rotation of any other vector field on X. (A first case to consider is $X = \mathbb{R}^3 - \{(0,0,0)\}$.)

Exercise 6.2 (Induced maps on π_1 and the abelianisation of π_1 .) Recall: If $f: \mathbb{S}^1 \to \mathbb{S}^1$ is a map of degree k, then the induced map $\pi_1(f): \pi_1(\mathbb{S}^1, 1) \to \pi_1(\mathbb{S}^1, 1)$ is the multiplication by k in \mathbb{Z} .

(1) Consider the following map $T_a: \mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{S}^1 \times \mathbb{S}^1$, called the Dehn twist along the curve a.

The loop a is taken to itself, whereas the loop b is taken to the diagonal loop c pictured on the right-hand side. In general, each vertical loop on the left-hand side is skewed to the right as it travels upwards, so that it becomes one of the 45-degree diagonal loops on the right-hand side.

Describe the induced homomorphism $\pi_1(T_a)$ on the fundamental group $\pi_1(\mathbb{S}^1 \times \mathbb{S}^1) = \mathbb{Z} \times \mathbb{Z}$.

(2) Dehn twists may be defined more generally for surfaces. Given a piece of a surface, homeomorphic to a cylinder, one may define the Dehn twist T_a along a as follows:

(it acts by the identity outside of the shaded region). Taking a to be one of the standard generators for the fundamental group of F_2 (recall this from lectures), describe the induced homomorphism $\pi_1(T_a): \pi_1(F_2) \to \pi_1(F_2)$.

A result that will soon appear in lectures is the fact that the first homology $H_1(X)$ of a path-connected space X is isomorphic to the abelianisation of its fundamental group $\pi_1(X, x)$ based at any point $x \in X$.

(3)* Using the computations of the fundamental groups of orientable and non-orientable surfaces from the lecture, compute their first homology groups.

(4)* Let $F_{g,n}$ be the orientable surface of genus g with n > 0 points removed. Compute its fundamental group und its first homology group. (Hint: Write $F_{g,n}$ "in normal form", that means as a quotient space of a regular 4g-gon; draw n - 1 extra (not necessarily straight) edges from one corner to another or the same corner; now remove in each of the n "compartments" one interior point; find a retraction onto the subspace which consists of the 4g edges on the boundary and the n - 1 extra edges.)

Exercise 6.3 (Nullhomotopies and nullhomologies.) Consider the following three curves on the surface F_3 .

(a) Observe that the curve A is nullhomotopic.

(b) Construct a 2-chain whose boundary is equal to the 1-cycle represented by the curve B. Thus, B is nullhomologous. (Write F_3 in normal form as above and use the obvious triangulation.)

(c)* However, B is not nullhomotopic (show this using your knowledge of $\pi_1(F_3)$; this is harder than one expects). (d)* Show that the curve C is neither nullhomotopic nor nullhomologous. (Consider the commutator subgroup of $\pi_1(F_3)$, which also gives an alternative way to deduce that B is nullhomologous.)

Exercise 6.4 (Disjoint unions of spaces.)

Let X be a topological space which splits as the topological disjoint union of subspaces $X = \bigsqcup_{\alpha} X_{\alpha}$. Show that the singular chain complex $S_{\bullet}(X)$ of X splits into a direct sum of summands indexed by α , and that the boundary operator ∂ preserves the summands. Deduce that the subcomplexes of cycles and of boundaries also split with respect to α , and therefore so does the homology of X, in other words we have, for each n,

$$H_n\left(\bigsqcup_{\alpha} X_{\alpha}\right) \cong \bigoplus_{\alpha} H_n(X_{\alpha}).$$

Exercise 6.5 (Coverings and H_1 .)

Let $\xi: \tilde{X} \to X$ be a covering. Recall from the lecture that the map of fundamental groups $\pi_1(\xi): \pi_1(\tilde{X}, \tilde{x}) \to \pi_1(X, x)$ is injective. Consider the covering

of $X = \mathbb{S}^1 \vee \mathbb{S}^1$.

(a) Show that $H_1(\tilde{X}) \cong \mathbb{Z}^3$, whereas $H_1(X) \cong \mathbb{Z}^2$.

(b) Compute the homomorphism $\pi_1(\xi)$ of fundamental groups induced by ξ , then abelianise this to compute the homomorphism $H_1(\xi)$ that it induces on first homology. Deduce that coverings do not always induce injective maps on homology.

Exercise 6.6^{*} (Multi-valued functions: integrating on non-simply-connected domains.) Let $\Omega \subset \mathbb{C}$ be a region (i.e., open and connected) and $z_0 \in \Omega$, and consider a holomorphic function $f: \Omega \to \mathbb{C}$; we assume that $f'(z) \neq 0$ for all $z \in \Omega$. We would like to define a new function

$$z \mapsto \int_w f(\zeta) d\zeta := \int_0^1 f(w(t)) \dot{w}(t) dt,$$

where w is a path in Ω from z_0 to z; but this path integral depends on the path w and not just on its endpoint w(1) = z; so we would get a multi-valued function. However, — since f is holomorphic —, it depends only on the homotopy class [w], not on the actual path. This is our chance: If $\xi \colon \tilde{\Omega} \to \Omega$ denotes the universal covering of Ω , we define a function

$$\tilde{F} \colon \tilde{\Omega} \to \mathbb{C}, \quad \tilde{F}([w], z) := \int_w f(\zeta) d\zeta = \int_0^1 f(w(t)) \dot{w}(t) dt.$$

- (1) \tilde{F} is well-defined.
- (2) \tilde{F} is holomorphic. (N.B: $\tilde{\Omega}$ is a holomorphic manifold, or a Riemann surface; cf. Exercise 3.2.)
- (3) Now define the *period homomorphism* Per_f: $\pi_1(\Omega, z_0) \to \mathbb{C}$ as follows:

$$\operatorname{Per}_f([w]) = \int_w f(\zeta) d\zeta.$$

Convince yourself of the formulae:

 $\operatorname{Per}_f(\alpha\beta) = \operatorname{Per}_f(\alpha) + \operatorname{Per}_f(\beta), \operatorname{Per}_f(\alpha^{-1}) = -\operatorname{Per}_f(\alpha), \operatorname{Per}_f(1) = 0$, which say that Per_f is a homomorphism. There are more formulae like:

 $\operatorname{Per}_{f+g}(\alpha) = \operatorname{Per}_{f}(\alpha) + \operatorname{Per}_{g}(\alpha), \operatorname{Per}_{\lambda f}(\alpha) = \lambda \operatorname{Per}_{f}(\alpha), \operatorname{Per}_{\overline{f}}(\alpha) = \overline{\operatorname{Per}_{f}(\alpha)}, \text{ which say what } ?$

Next conclude, that the kernel $K := \ker(\operatorname{Per}_f) \leq \pi_1(\Omega, z_0)$ of Per_f contains at least the commutator subgroup of $\pi_1(\Omega, z_0)$. Now let $\xi_f : \Omega_f \to \Omega$ be the covering corresponding to that subgroup K, i.e., the quotient of $\tilde{\Omega}$ by the action of K by deck transformations. Denote this quotient map by q_f . Show that

$$\tilde{F}([a * w], z) = \tilde{F}([w], z) + \operatorname{Per}_f([a]),$$

where a is a closed loop based at z_0 and w is any path from z_0 to z. Conclude that \tilde{F} factors as the composite of q_f followed by a well-defined map $F: \Omega_f \to \mathbb{C}$. Summarising, we have the diagram:

Thus we have found the natural domain of (well-)definition of the multi-valued function $z \mapsto \int_{z_0}^{z} f$.

(5) Examples.

In each example, describe $\pi_1(\Omega, z_0)$, compute the period homomorphism and describe the covering $\xi_f \colon \Omega_f \to \Omega$ and the function F.

(5.1): Take $\Omega = \mathbb{C} - \{0\}$ and $f(z) = \frac{1}{z}$. (5.2): Take $\Omega = \mathbb{C} - \{-1, 1\}$ and $f(z) = \frac{1}{1+z} + \frac{1}{1-z}$. (5.3): Take $\Omega = \mathbb{C} - \{-1, 1\}$ and $f(z) = \frac{a}{1+z} + \frac{b}{1-z}$, for integers $a, b \in \mathbb{Z}$. (5.4): Take $\Omega = \mathbb{C} - \{-1, 1\}$ and $f(z) = \frac{1}{1+z} + \frac{\pi}{1-z}$.

In the last three examples, feel free to build a model of the covering Ω_f as demonstrated in lectures.

§ 52. Fundamentalgruppe eines zusammengesetzten Komplexes.

Häufig läßt sich die Bestimmung der Fundamentalgruppe eines Komplexes R dadurch vereinfachen, daß man R in zwei Teilkomplexe mit bekannten Fundamentalgruppen zerlegt. R' und R" seien zwei zusammenhängende Teilkomplexe eines zusammenhängenden n-dimensionalen simplizialen Komplexes R; jedes Simplex von R soll mindestens einem der beiden Teilkomplexe angehören. Der Durchschnitt D von R' und R", der wegen des vorausgesetzten Zusammenhanges von R nicht leer ist, sei ebenfalls zusammenhängend. F, F', F", Fo seien die Fundamentalgruppen von R, R', R" und D. Wir wählen als Anfangspunkt für die geschlossenen Wege einen Punkt O von D. Dann ist jeder geschlossene Weg von D zugleich ein Weg von R' und R". Somit entspricht jedem Element von Fr ein Element von F und eines von F". Dann gilt der Satz I: F ist eine Faktorgruppe des freien Produktes F' F'; man erhält & aus dem freien Produkt, wenn man je zwei Elemente von & und F", die demselben Elemente von Fr entsprechen, zusammenfallen läßt, also durch ihre Gleichsetzung eine neue Relation zwischen den Erzeugenden von F' und F" hinzufügt.

The Seifert-van-Kampen Theorem, from Lehrbuch der Topologie, H. Seifert and W. Threlfall.