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Week 5 — Classification of coverings; Seifert-van-Kampen Theorem Due: 30. November 2016

Exercise 5.1 (Coverings and homeomorphisms.)
If £&: X — X is a covering of a locally path-connected space X all of whose path-components are 1-connected, then
X is homeomorphic to a disjoint union of copies of X; if, in addition, X is 0- connected, then ¢ is a homeomorphism.

Exercise 5.2 (Connected coverings of Lie groups are Lie groups.)

Exercise 5.3 (Fundamental groups of topological groups are abelian.)

(1) Let G be a topological group; we denote its multiplication by u =.: GxG — G, (z,y) — x.y and the inverse by
1. G = G,2— 271, and we take the neutral element 1 as basepoint. Consider for two pointed maps a,b: St — G
the pointwise multiplication (a.b)(t) := a(t).b(t), and the pointwise inversion a=!(¢) := a(t)~!. Show that this is a
group structure on the set M = maps((S,1), (G, 1)) of based maps. Convince yourself that all of this is continuous
in the compact-open topology on M.

(2) Show that this group structure induces a well-defined group structure on the set of based homotopy classes,
that is on [(S%, 1), (G,1)] = m1(G, 1), by setting [a] . [b] := [a.b] and [a] 7! := [a~!], where the homotopy class of the
constant map t + 1 is the neutral element.

(3) Recall now the old group structure on 71 (G, 1), denoted here by [a]* [b] = [a*b] and [a] ™! = [a], where a*b is the
concatenation of two paths and a is the reverse path. Show (by pictures, not by formulae) that the multiplications
satisfy the following exchange property: ([a] * [b]) . ([¢] * [d]) = ([a] « [¢]) * ([b] « [d]).

(4) Assume that S is a set with two group structures * and . satisfying the exchange property. Then the group
structures agree (x = .) and are abelian. (Not all of the group axioms are needed for the proof of this statement;
which ones are used?)

(5) Thus the statement is proved.

Exercise 5.4 (Homotopy invariance of pull-backs.)

Let £: X — X be a _covering and let fo, fi: Y — X be two maps. Denote the pullbacks (for i = 0,1) of § by
&= [1(6): Yi= [1(X) > V. ) )

(1) If fo and f1 are homotopic, there is a homeomorphism ®: f3(X) — f{(X) with & o & = &.

(Hint: Consider the pull-back F*(X) — Y x [0, 1] of ¢ along a homotopy I’ between fy and fi, and lift the path
t— (y,t) with an arbitrary starting point in f&(X) C F*(X) over (y,0).)

(2) If f: Y — X is null-homotopic, then f*(§) is a trivial covering.

(3) Application: The inclusions ¢, : S! =2 RP! < RP"™ are not null-homotopic; even better, ¢,, induces isomorphisms
on fundamental groups.

Exercise 5.5 (Branched coverings and polynomials.) Let p(z) = 2" + a,,_12" "' 4+ ...a12 + ap be a non-constant
complex polynomial. Denote by S the set of all critical points, i.e., points z with p’(z) = 0 and V the set of all
critical values v = p(¢) for ¢ € S.

(1) Show that p: C— S — C —V is an n-fold covering.

(Hint: C is locally path-connected and V' is a closed subset (why?), so for each z € C —V you may find a connected
open neighbourhood U of z in C — V. Study the preimage p~1(U) and use the Inverse Function Theorem.)

Now we consider the special cases p,(z) = 2™ for n > 2 as maps from the disc B,.(0) of radius > 0 around 0 to
the disc B,»(0). We just saw that the restriction p,|: B,(0) — 0 — B,»(0) — 0 is an n-fold covering. But what is
Pn: Br(0) = B,»(0), where ¢ = 0 has only one point in its pre-image and not n points (as do all other points) ? The



map p,, is a prototypical example of a so-called branched covering; we will not define this notion in all generality,
but want to prove that a non-constant complex polynomial p is a branched covering in the following sense:

(2) Show that for each critical value v € V there is a neighbourhood U C C and a partition ky +ks+- - -+k; = n, such
that the restriction p|: p~1(U) — U is homeomorphic to the Whitney sum of I branched coverings pi, , Piy, - - - » Pk,
as considered above.

(Note: we call two coverings ¢ : X — X and v: Y — Y homeomorphic if there are homeomorphisms ¢: X — Y and
é: X — Y such that yoq~3:¢o§.)

(3)* What happens in a neighbourhood of oo if we extend p to S — S? by setting p(co) = oo ?

Diie Schar der konzentrischen Kreise r = konst. geht.also in die Schar
der kenzentrischen Kreise p = konst. iiber, und die Winkel ¢ werden
verdoppelt. LiBt man also ¢ bei festem
¥ = 0 von ( bis 2 x laufen, so variiert
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A discussion of the function z — 22 and its inverse ¢ — /C from Vorlesungen tiber allgemeine Funktionentheorie

und elliptische Funktionen by A. Hurwitz and R. Courant, using polar coordinates z = re’® and ¢ = 2% = pe'”.

Exercise 5.6* (Spaces with fundamental group Z/nZ.)

Let f: S* — S* be a map of degree grad(f) = n. Consider the space M(n) = S! U; D? obtained by attaching a
2-disc to a circle along its boundary using the map f — i.e., the quotient (S! LID?)/ ~ where ~ is the equivalence
relation generated by the relations ¢ ~ f(¢) for ¢ € OD? = S

(1) Make a sketch of this identification.

(2) Show that m1 (M (n)) = Z/nZ.

Exercise 5.7* (Any group is the fundamental group of some space.)

(1) Let G be a group with finite presentation (s1,...,s, | r1,...,7%). Using a similar idea to Exercise 5.6, and
the Seifert-van-Kampen Theorem multiple times, construct a space X such that m1(X) = G. First find a space Yj
whose fundamental group is the free group (s1,..., s, | ), then attach a 2-disc to form a space Y; with fundamental
group (81,...,8, | 71), and so on, until you find Y, = X.

(2) Now suppose that G is any group, not necessarily possessing a finite presentation, or even a finite generating set
(think of G = Q, for example, or G = S, considered as an abstract (uncountable!) group). Using a limit argument,
show that there is nevertheless a space X with fundamental group G. You may use the following facts:

(a) Suppose that X is path-connected and is the union of a family of path-connected open subspaces X,. Assume
that each intersection X,NXg is X, for some 7. Also assume that X and each X, are “nice” (i.e., locally O-connected
and semi-locally 1-connected). Let € (], Xq. Then 71 (X, x) is the direct limit of the subgroups m1(Xa, ).

(b) Any group is the direct limit of the family of all of its finitely presentable subgroups.



Note: There is a subtlety with the limit argument if one tries to use fact (b): it is not possible to pick a finite
presentation for each finitely presentable subgroup of G in a way that is compatible with all inclusions between
them. To rectify this, you can instead use the following modification of fact (b):

(¢) Any group G is the direct limit of the diagram of groups whose objects are all finitely presentable subgroups of
G equipped with a choice of presentation, and whose morphisms are just those inclusions (sq,...,8, | 71,...,7%) <
(sh,...s8m, | m,...,r]) for which {s1,...,s,} is a subset of {s},...,s],} and {r1,...,rg} is a subset of {ry,...,7]}.

Exercise 5.8% (Addendum to the classification theorem for coverings.)
Let X be a 0-connected, locally 0-connected and semi-locally 1-connected space. We denote by

char: Cov®(X, x0) — G(m1(X, x0))

the function, which associates to an isomorphism class [¢] = [¢: (X, %) — (X, xo)] of based and connected coverings
the characteristic subgroup char[€] = &, (71 (X, zg)) of m1 (X, z0).

(1) char[¢] < char[¢s] <= There is a unique morphism &; — &s.

(2) char[¢] is normal <= ¢ is regular (i.e., “fibre-transitive”).

(3) Let H < m(X,z0) be a subgroup and denote by £: X — X the universal covering of X. In the commutative
diagram

we have:

(3.1) qg: X — X := X/H is a universal covering; thus D(qg) = H for the group of deck transformations.
(3.2) D(€n) = Weyl(H) = Ng(H)/H, the Weyl group of H in G = m1(X, z9).

(3.3) In particular, D(€y) = m (X, 20)/H if H is normal.



