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Week 5 — Classification of coverings; Seifert-van-Kampen Theorem Due: 30. November 2016

Exercise 5.1 (Coverings and homeomorphisms.)
If ξ : X̃ → X is a covering of a locally path-connected space X all of whose path-components are 1-connected, then
X̃ is homeomorphic to a disjoint union of copies of X; if, in addition, X̃ is 0-connected, then ξ is a homeomorphism.

Exercise 5.2 (Connected coverings of Lie groups are Lie groups.)

Exercise 5.3 (Fundamental groups of topological groups are abelian.)
(1) Let G be a topological group; we denote its multiplication by µ = � : G×G→ G, (x, y) 7→ x �y and the inverse by
−1 : G→ G, x 7→ x−1, and we take the neutral element 1 as basepoint. Consider for two pointed maps a, b : S1 → G
the pointwise multiplication (a � b)(t) := a(t) � b(t), and the pointwise inversion a−1(t) := a(t)−1. Show that this is a
group structure on the set M = maps((S1, 1), (G, 1)) of based maps. Convince yourself that all of this is continuous
in the compact-open topology on M .
(2) Show that this group structure induces a well-defined group structure on the set of based homotopy classes,
that is on [(S1, 1), (G, 1)] = π1(G, 1), by setting [a] � [b] := [a � b] and [a]−1 := [a−1], where the homotopy class of the
constant map t 7→ 1 is the neutral element.
(3) Recall now the old group structure on π1(G, 1), denoted here by [a]∗ [b] = [a∗b] and [a]−1 = [ā], where a∗b is the
concatenation of two paths and ā is the reverse path. Show (by pictures, not by formulae) that the multiplications
satisfy the following exchange property: ([a] ∗ [b]) � ([c] ∗ [d]) = ([a] � [c]) ∗ ([b] � [d]).
(4) Assume that S is a set with two group structures ∗ and � satisfying the exchange property. Then the group
structures agree (∗ = � ) and are abelian. (Not all of the group axioms are needed for the proof of this statement;
which ones are used?)
(5) Thus the statement is proved.

Exercise 5.4 (Homotopy invariance of pull-backs.)
Let ξ : X̃ → X be a covering and let f0, f1 : Y → X be two maps. Denote the pullbacks (for i = 0, 1) of ξ by
ξi = f∗i (ξ) : Yi = f∗i (X̃)→ Y .
(1) If f0 and f1 are homotopic, there is a homeomorphism Φ: f∗0 (X̃)→ f∗1 (X̃) with ξ1 ◦ Φ = ξ0.
(Hint: Consider the pull-back F ∗(X̃) → Y × [0, 1] of ξ along a homotopy F between f0 and f1, and lift the path
t 7→ (y, t) with an arbitrary starting point in f∗0 (X̃) ⊂ F ∗(X̃) over (y, 0).)
(2) If f : Y → X is null-homotopic, then f∗(ξ) is a trivial covering.
(3) Application: The inclusions ιn : S1 ∼= RP 1 ↪→ RPn are not null-homotopic; even better, ιn induces isomorphisms
on fundamental groups.

Exercise 5.5 (Branched coverings and polynomials.) Let p(z) = zn + an−1z
n−1 + . . . a1z + a0 be a non-constant

complex polynomial. Denote by S the set of all critical points, i.e., points z with p′(z) = 0 and V the set of all
critical values v = p(ζ) for ζ ∈ S.
(1) Show that p : C− S → C− V is an n-fold covering.
(Hint: C is locally path-connected and V is a closed subset (why?), so for each z ∈ C−V you may find a connected
open neighbourhood U of z in C− V . Study the preimage p−1(U) and use the Inverse Function Theorem.)

Now we consider the special cases pn(z) = zn for n ≥ 2 as maps from the disc Br(0) of radius r > 0 around 0 to
the disc Brn(0). We just saw that the restriction pn| : Br(0) − 0 → Brn(0) − 0 is an n-fold covering. But what is
pn : Br(0)→ Brn(0), where ζ = 0 has only one point in its pre-image and not n points (as do all other points) ? The
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map pn is a prototypical example of a so-called branched covering ; we will not define this notion in all generality,
but want to prove that a non-constant complex polynomial p is a branched covering in the following sense:
(2) Show that for each critical value v ∈ V there is a neighbourhood U ⊂ C and a partition k1+k2+· · ·+kl = n, such
that the restriction p| : p−1(U)→ U is homeomorphic to the Whitney sum of l branched coverings pk1 , pk2 , . . . , pkl
as considered above.
(Note: we call two coverings ξ : X̃ → X and ν : Ỹ → Y homeomorphic if there are homeomorphisms φ : X → Y and
φ̃ : X̃ → Ỹ such that ν ◦ φ̃ = φ ◦ ξ.)
(3)* What happens in a neighbourhood of ∞ if we extend p to S2 → S2 by setting p(∞) =∞ ?

A discussion of the function z 7→ z2 and its inverse ζ 7→
√
ζ from Vorlesungen über allgemeine Funktionentheorie

und elliptische Funktionen by A. Hurwitz and R. Courant, using polar coordinates z = reiϕ and ζ = z2 = %eiϑ.

Exercise 5.6* (Spaces with fundamental group Z/nZ.)
Let f : S1 → S1 be a map of degree grad(f) = n. Consider the space M(n) = S1 ∪f D2 obtained by attaching a
2-disc to a circle along its boundary using the map f — i.e., the quotient (S1 t D2)/ ∼ where ∼ is the equivalence
relation generated by the relations ζ ∼ f(ζ) for ζ ∈ ∂D2 = S1.
(1) Make a sketch of this identification.
(2) Show that π1(M(n)) ∼= Z/nZ.

Exercise 5.7* (Any group is the fundamental group of some space.)
(1) Let G be a group with finite presentation 〈s1, . . . , sn | r1, . . . , rk〉. Using a similar idea to Exercise 5.6, and
the Seifert-van-Kampen Theorem multiple times, construct a space X such that π1(X) ∼= G. First find a space Y0
whose fundamental group is the free group 〈s1, . . . , sn | 〉, then attach a 2-disc to form a space Y1 with fundamental
group 〈s1, . . . , sn | r1〉, and so on, until you find Yk = X.
(2) Now suppose that G is any group, not necessarily possessing a finite presentation, or even a finite generating set
(think of G = Q, for example, or G = S1, considered as an abstract (uncountable!) group). Using a limit argument,
show that there is nevertheless a space X with fundamental group G. You may use the following facts:
(a) Suppose that X is path-connected and is the union of a family of path-connected open subspaces Xα. Assume
that each intersection Xα∩Xβ is Xγ for some γ. Also assume that X and each Xα are “nice” (i.e., locally 0-connected
and semi-locally 1-connected). Let x ∈

⋂
αXα. Then π1(X,x) is the direct limit of the subgroups π1(Xα, x).

(b) Any group is the direct limit of the family of all of its finitely presentable subgroups.
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Note: There is a subtlety with the limit argument if one tries to use fact (b): it is not possible to pick a finite
presentation for each finitely presentable subgroup of G in a way that is compatible with all inclusions between
them. To rectify this, you can instead use the following modification of fact (b):
(c) Any group G is the direct limit of the diagram of groups whose objects are all finitely presentable subgroups of
G equipped with a choice of presentation, and whose morphisms are just those inclusions 〈s1, . . . , sn | r1, . . . , rk〉 ↪→
〈s′1, . . . , s′m | r′1, . . . , r′l〉 for which {s1, . . . , sn} is a subset of {s′1, . . . , s′m} and {r1, . . . , rk} is a subset of {r1, . . . , r′l}.

Exercise 5.8* (Addendum to the classification theorem for coverings.)
Let X be a 0-connected, locally 0-connected and semi-locally 1-connected space. We denote by

char : Cov0(X,x0) −→ G(π1(X,x0))

the function, which associates to an isomorphism class [ξ] = [ξ : (X̃, x̃0)→ (X,x0)] of based and connected coverings
the characteristic subgroup char[ξ] = ξ∗(π1(X,x0)) of π1(X,x0).
(1) char[ξ1] ≤ char[ξ2] ⇐⇒ There is a unique morphism ξ1 → ξ2.
(2) char[ξ] is normal ⇐⇒ ξ is regular (i.e., “fibre-transitive”).
(3) Let H ≤ π1(X,x0) be a subgroup and denote by ξ̄ : X̄ → X the universal covering of X. In the commutative
diagram

X̄

XH

X

qH

ξH
ξ̄

we have:
(3.1) qH : X̄ → XH := X̄/H is a universal covering; thus D(qH) ∼= H for the group of deck transformations.
(3.2) D(ξH) ∼= Weyl(H) = NG(H)/H, the Weyl group of H in G = π1(X,x0).
(3.3) In particular, D(ξH) ∼= π1(X,x0)/H if H is normal.
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