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Wintersemester 2016/17

Week 2 — Umlauf, linking and winding numbers of curves to be done by: 02.11.2016

Figure 1: From the notes of C.-F. Gauß, probably between 1823 and 1827.

Exercise 1.1 (‘Two-dimensional intermediate value theorem’)
Let f : D2 → R2 be a smooth function and P ∈ R2 a point such that P 6∈ f(S1) = f(∂D2). Recall the definition of
the umlauf number U(f, P ) of the curve f |S1 : S1 → R2 about the point P . Assuming that U(f, P ) 6= 0, show that
there exists a point z ∈ D2 such that f(z) = P .

Exercise 1.2 (Linking numbers of curves in R3)
(a) Let L be any one-dimensional affine subspace of R3 and let f : S1 → R3 be a smooth curve which is disjoint from
L. By considering a projection of f onto a plane orthogonal to L, define the umlauf number U(f, L) of f about L.
(b) Show that if f and g are curves in the complement of L that are homotopic via a homotopy that never intersects
L, then U(f, L) = U(g, L).
(c) Fix a smooth curve f : S1 → R3 and let H : R × [0, 1] → R3 be a continuous function that never intersects f
and has the property that for each fixed t the function H(−, t) : R → R3 is an affine injection. Denote by Lt the
one-dimensional affine subspace H(R× {t}) of R3. Show that U(f, L0) = U(f, L1).
(d) We return to the situation where we have a fixed one-dimensional affine subspace L of R3 and a smooth curve
f : S1 → R3 in its complement. Consider a two-dimensional half-space with L as its boundary. (There are many
possibilities – they are all related to each other by a rotation about L.) Define what it means for the half-space
to intersect f transversely, and, if it does, the sign of the intersection. How can one calculate U(f, L) using these
signed intersections ?
(e)* Now let C be the unit circle in a two-dimensional affine subspace of R3. Find a continuous function K : S3 ×
[0, 1]→ S3 such that (i) each K(−, t) is a diffeomorphism of S3, (ii) K(−, 0) is the identity on S3 and (iii) K(C, 1)
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is a one-dimensional affine subspace of R3 together with the point at infinity.
(f)* Using this, define the umlauf number U(f, C) of any smooth curve f : S1 → R3 which does not intersect C.
(g)* Consider a two-dimensional disc embedded into R3 in such a way that its boundary is C. Similarly to part (d),
define a transverse intersection of f with the disc, the sign of such an intersection and show how one can compute
U(f, C) using these concepts.

Exercise 1.3 (Circumnavigating the world)
Let B be a sailing boat on the surface of the world S2, and assume that it never visits the north or the south pole.
What does it mean for B to circumnavigate the world ? If you are given a map of its journey (which starts and ends
at the basepoint Hamburg ∈ S2), how can you use lines of longitude to detect whether it has really circumnavigated
the world ?

Exercise 1.4 (Local index of vector fields)
For each of the following sets of integers, give a vector field V on S2 with precisely k zeros ζ1, . . . , ζk having the
listed integers as their local indices ind(V, ζi):
(a) k = 2 and indices 1, 1,
(b) k = 1 and index 2,
(c) k = 4 and indices 1, 1, 1,−1,
(d) k = 2 and indices 2, 0,
(e) k = 7 and indices 1, 1, 1, 1, 1,−1,−2.
(Do this by a drawing.)

Figure 2: A little later in the notes of C.-F. Gauß.

Exercise 1.5 (Symmetric vector fields on spheres)
In this exercise we will take the point of view that a tangent vector field on S2 ⊂ R3 is a continuous function
V : S2 → R3 with the property that x and V (x) are orthogonal vectors for each x ∈ S2.
(a) Suppose that V (x) = V (−x) for each x ∈ S2. If x is a zero of V , what is the relationship between the local
index of V at x and the local index of V at −x?
(b) Now fix an angle θ ∈ [0, 2π]. Consider the following equation (where x ∈ S2):

V (−x) = cos(θ)V (x) + sin(θ) (x× V (x)), (1)

where × denotes the cross product in R3. Show that (1) holds for x if and only if it holds for −x.
(c) Now assume that (1) holds for all x ∈ S2. If x is a zero of V , what is the relationship between the local index
of V at x and the local index of V at −x ? How does this relationship depend on θ?
(d) Now let V be an arbitrary vector field (not necessarily satisfying (1)) and define another vector field Vθ for
θ ∈ [0, 2π] by

Vθ(x) = cos(θ)V (x) + sin(θ) (x× V (x)).

What are the zeros of Vθ in comparison to the zeros of V ? How is the local index of a zero of Vθ determined by the
local indices of the zeros of V ?
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(e)* Now let F ⊂ R3 be a torus, symmetrically embedded into R3 such that x ∈ F implies that −x ∈ F and the
tangent spaces TxF and T−xF are parallel. Let us say that it is the z-axis that passes through the ‘hole’ in the
torus (so F is disjoint from the z-axis).
We will think of vector fields on F as continuous functions V : F → R3 with the property that V (x) is parallel to
TxF for each x ∈ F . Let p : R3 → R2 be the projection onto the (x, y)-axis. Show that, when x ∈ F , the vector
W (x) = p(x)×(0, 0, 1) always lies in the tangent plane TxF , where × is the cross product in R3. This is therefore an
example of a non-vanishing vector field on F . Now suppose that V is any vector field on F satisfying the following
property: for each x ∈ F ,

V (−x) = the reflection of V (x) about the axis {λ.W (x) | λ ∈ R} in the tangent plane TxF.

If x is a zero of V , what is the relationship between the local index of V at x and the local index of V at −x? Give
an example of a vector field V that has zeros and satisfies this property.

Figure 3: The surface F from Exercise 1.6.

Exercise 1.6 (‘Satz vom Igel’ for higher-genus surfaces)
The orientable surface F of genus g we imagine as smoothly embedded in R3 (see Figure 3 on page 3), symmetric
with respect to the origin and to the (x, y)-plane. The intersection with this plane consists of an outer curve C0

and g further curves C1, . . . , Cg. We have an upper resp. lower half-surface F+ and F−, both a disc with an outer
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boundary curve C+
0 resp. C−

0 and g inner boundary curves C+
1 , . . . , C

+
g resp. C−

1 , . . . , C
−
g .

(a) Show that T (F ) is trivial over both F+ and F−. (Move a point ζ towards the point on the dotted core curve
K+ resp. K− closest to ζ and slide the tangent plane along. The curves K+ and K− lie in planes parallel to the
(x, y)-plane, where all tangent planes have a canonical isomorphism to R2.) In the end we have for each curve a
clutching function φi : Ci → GL2(R), i = 0, 1, . . . , g.
(b) In the case of a torus, g = 1, conclude that the tangent bundle is trivial over the whole surface.
(c) Now assume a vector field is given. This vector field is a function V : F → R3 such that V (ζ) is tangent to
F at ζ, i.e., V (ζ) ∈ Tζ(F ). What can we conclude about the zeroes of V ? If we assume that V has no zeroes;
then — since F is orientable — in each tangent plane we get by left-rotation of V (ζ) with angle 90◦ a second and
linearly independent vector and thus a basis in each tangent space. Restricting to the curves Ci we have functions
ψi : Ci → GL2(R). But these functions must satisfy relations. What are these relations, and what do they imply for
non-vanishing vector fields on F?
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