Aufgaben zur Topologie

Prof. Dr. C.-F. Bodigheimer
Wintersemester 2016,/17

Week 2 — Umlauf, linking and winding numbers of curves to be done by: 02.11.2016

THEOREM AUS DER GEOMETRIA SITUS.

Es sei die Amplitudo einer ganzen in sich selbst zuriickkehrenden Curve
— *+2.360"% Sie hat wenigstens Knoten
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Der Beweis scheint nicht leicht zu sein; wahrscheinlich wird dazu dienen, dass
man die Curve ihrem Laufe nach in Theile abtheilt, deren Grenzen die Punkte

sind, in denen ihre Richtung = 90°(22-1), dann eine unendliche gerade Linie,
deren Richtung = 90°, in der Richtung 0° durch die Fliche schiebt und die
Folge der Stiicke gehorig beachtet. So ist fiir diese Curve das Schema
folgendes :
4 1 AB
B 0 DCAB
C 1 DCBA
D 2 DBCA
g R 7
ete. —

Figure 1: From the notes of C.-F. Gauf}, probably between 1823 and 1827.

Exercise 1.1 (‘Two-dimensional intermediate value theorem’)

Let f: D? — R? be a smooth function and P € R? a point such that P ¢ f(S!) = f(9D?). Recall the definition of
the umlauf number U(f, P) of the curve f|si: S — R? about the point P. Assuming that U(f, P) # 0, show that
there exists a point 2z € D? such that f(z) = P.

Exercise 1.2 (Linking numbers of curves in R?)

(a) Let L be any one-dimensional affine subspace of R3 and let f: S! — R? be a smooth curve which is disjoint from
L. By considering a projection of f onto a plane orthogonal to L, define the umlauf number U(f, L) of f about L.
(b) Show that if f and g are curves in the complement of L that are homotopic via a homotopy that never intersects
L, then U(f,L) =U(g, L).

(c) Fix a smooth curve f: S' — R?® and let H: R x [0,1] — R? be a continuous function that never intersects f
and has the property that for each fixed ¢ the function H(—,¢): R — R? is an affine injection. Denote by L; the
one-dimensional affine subspace H(R x {t}) of R3. Show that U(f, Lo) = U(f, L1).

(d) We return to the situation where we have a fixed one-dimensional affine subspace L of R? and a smooth curve
f: St — R? in its complement. Consider a two-dimensional half-space with L as its boundary. (There are many
possibilities — they are all related to each other by a rotation about L.) Define what it means for the half-space
to intersect f transversely, and, if it does, the sign of the intersection. How can one calculate U(f, L) using these
signed intersections ?

(e)* Now let C' be the unit circle in a two-dimensional affine subspace of R?. Find a continuous function K : S? x
[0,1] — S3 such that (i) each K(—,t) is a diffeomorphism of S, (ii) K(—,0) is the identity on S* and (iii) K(C,1)



is a one-dimensional affine subspace of R? together with the point at infinity.

(f)* Using this, define the umlauf number U(f,C) of any smooth curve f: S! — R3 which does not intersect C.
(g)* Consider a two-dimensional disc embedded into R? in such a way that its boundary is C. Similarly to part (d),
define a transverse intersection of f with the disc, the sign of such an intersection and show how one can compute
U(f,C) using these concepts.

Exercise 1.3 (Circumnavigating the world)

Let B be a sailing boat on the surface of the world S?, and assume that it never visits the north or the south pole.
What does it mean for B to circumnavigate the world ? If you are given a map of its journey (which starts and ends
at the basepoint Hamburg € S?), how can you use lines of longitude to detect whether it has really circumnavigated
the world ?

Exercise 1.4 (Local index of vector fields)

For each of the following sets of integers, give a vector field V on S? with precisely k zeros (i,...,(; having the
listed integers as their local indices ind(V, (;):

(a) k=2 and indices 1,1,

(b) k=1 and index 2,

(c) k= and indices 1,1,1, —1,

(d) k=2 and indices 2,0,

(e) k=7 and indices 1,1,1,1,1,—1, 2.

(

Der Beweis ist doch sehr leicht. Man nenne n die Anzahl der Knoten
und bezeichne sie in der Folge, wie man sie trifft, indem man die Curve in
einem angenommenen Sinne der Bewegung durchliuft, durch 1,2,3,....x.
Da bei dieser Bewegung jeder Knoten zweimal getroffen wird, so sei Q die
aus 27 Gliedern bestehende Reihe dieser Zahlen, indem man das Zeichen --
beischreibt, so oft man auf die innere (rechte) Seite des durchschnittenen Arms
kommt, sonst —. Man zihle die 4 und —Zeichen bloss da zusammen, wo
die Zahlen zum erstenmal vorkommen und habe so + a-, — fmal. Indem
man nun die Charactere des Theils der Curve, der zuniichst vor dem ersten
Knoten liegt, durch 7,y" ausdriickt, ist die Amplitudo der ganzen Curve

= ({+7+a—p) 360"

Figure 2: A little later in the notes of C.-F. Gau8.

Exercise 1.5 (Symmetric vector fields on spheres)

In this exercise we will take the point of view that a tangent vector field on S? C R? is a continuous function
V:S? — R3 with the property that z and V(z) are orthogonal vectors for each z € S2.

(a) Suppose that V(x) = V(—=z) for each x € S%. If = is a zero of V, what is the relationship between the local
index of V' at x and the local index of V' at —a7

(b) Now fix an angle 6 € [0,27]. Consider the following equation (where x € S?):

V(—z) = cos(0) V(z) + sin(d) (z x V(x)), (1)

where x denotes the cross product in R3. Show that (1) holds for z if and only if it holds for —z.
(c) Now assume that (1) holds for all z € S%. If x is a zero of V, what is the relationship between the local index
of V' at x and the local index of V' at —x ? How does this relationship depend on 67
(d) Now let V be an arbitrary vector field (not necessarily satisfying (1)) and define another vector field Vy for
0 € 10, 27| by

Vo(z) = cos(0) V(z) +sin(f) (x x V(z)).

What are the zeros of Vy in comparison to the zeros of V7 How is the local index of a zero of Vy determined by the
local indices of the zeros of V7



(e)* Now let F' C R® be a torus, symmetrically embedded into R? such that 2 € F implies that —2z € F and the
tangent spaces T, F and T_,F are parallel. Let us say that it is the z-axis that passes through the ‘hole’ in the
torus (so F is disjoint from the z-axis).

We will think of vector fields on F as continuous functions V: F — R? with the property that V(z) is parallel to
T, F for each x € F. Let p: R® — R? be the projection onto the (z,y)-axis. Show that, when z € F, the vector
W (z) = p(z) x (0,0, 1) always lies in the tangent plane T, F, where x is the cross product in R3. This is therefore an
example of a non-vanishing vector field on F'. Now suppose that V is any vector field on F' satisfying the following
property: for each z € F,

V(—z) = the reflection of V(z) about the axis {\.W(z) | A € R} in the tangent plane T, F.

If x is a zero of V', what is the relationship between the local index of V' at x and the local index of V' at —x? Give
an example of a vector field V' that has zeros and satisfies this property.

Figure 3: The surface F' from Exercise 1.6.

Exercise 1.6 (‘Satz vom Igel’ for higher-genus surfaces)

The orientable surface F' of genus g we imagine as smoothly embedded in R3 (see Figure 3 on page 3), symmetric
with respect to the origin and to the (z,y)-plane. The intersection with this plane consists of an outer curve Cy
and g further curves C1, ..., Cy. We have an upper resp. lower half-surface F* and F~, both a disc with an outer



boundary curve C’S’ resp. C; and g inner boundary curves Cf‘, RN C’;r resp. Cp,...,Cy .

(a) Show that T'(F') is trivial over both F'* and F~. (Move a point ¢ towards the point on the dotted core curve
K7 resp. K~ closest to ¢ and slide the tangent plane along. The curves KT and K_ lie in planes parallel to the
(x,y)-plane, where all tangent planes have a canonical isomorphism to R?.) In the end we have for each curve a
clutching function ¢;: C; — GLy(R), i =0,1,...,g.

(b) In the case of a torus, g = 1, conclude that the tangent bundle is trivial over the whole surface.

(c) Now assume a vector field is given. This vector field is a function V: F — R3 such that V() is tangent to
F at ¢, ie., V(¢) € T¢(F). What can we conclude about the zeroes of V7 If we assume that V' has no zeroes;
then — since F is orientable — in each tangent plane we get by left-rotation of V(¢) with angle 90° a second and
linearly independent vector and thus a basis in each tangent space. Restricting to the curves C; we have functions
;2 C; = GLg(R). But these functions must satisfy relations. What are these relations, and what do they imply for
non-vanishing vector fields on F'?



