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Exercise 4.1 (Quasi-isomorphisms)
Let ι : A→ B be the inclusion of a subcomplex A of a chain complex B. Assume the following:
For each n and any b ∈ Bn there exists some a ∈ An and some b′ ∈ Bn+1 such that ι(a) = b+ ∂(b′).
Show that ι induces an ismorphism in homology ι∗ = Hn(ι) : Hn(A)→ Hn(B) for all n.
Remark: A chain map which induces isomorphisms in all homology groups is called a quasi-isomorphism.

Exercise 4.2 (Free and projective modules)
Let K be a commutative ring with unit. A K-module M is called free if it has a basis B ⊂ K, this means, each x ∈M
can be expressed as x = κ1b1 + . . .+ κnbn for finitely many uniquely determined basis elements b1, . . . , bn ∈ B and
coefficients κ1, . . . , κn ∈ K.

1. A free module is projective.

2. Any module is a quotient of a free (and thus of a projective) module.

3. Any submodule L ⊂M with a projective quotient M/L is a direct summand.

Let φ : K→ K′ be a ring-homomorphism; it makes K′ into a K-module.

4. If M is a K-module, then M′ := M⊗K K′ is a K′-module.

5. If M is free over K, then M′ := M⊗K K′ is free over K′.

Let K = Z and let φn : Z → Z/n be the obvious epimorphism. Clearly, any Z/n-module is also a Z-module, but a
Z-module is a a Z/n-module if and only if nx = 0 holds for any module element x.
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6. M = Z/n is free over Z/n, but not over Z and not over any Z/nm for m > 1.

Exercise 4.3 (Acyclic vs. contractible chain complexes)
a) Let K be a commutative ring, and let P be a non-negatively graded chain complex of projective K-modules Pn.
Assume that P is acyclic, i.e., all its homology groups are trivial. Show that P is contractible.

b) Give an example of a non-negatively graded chain complex of abelian groups, which is acyclic, but not contractible.

c) Show that the unbounded chain complex of projective Z/4-modules

. . .
2·−→ Z/4 2·−→ Z/4 2·−→ Z/4 2·−→ . . .

is acyclic, but not contractible.

J.-P. Serre: Homologie singuliere des espaces fibres. Applications. Ann. Math. 54 (1951), 425-505, here page 440.
This is one of the most important articles in algebraic topology, by one of its greatest masters.

Exercise 4.4 (Wrong cubic homology)
We consider continuous maps c : In → X from the n-cube In = I × · · · × I, and I = [0, 1] being the interval, to a
space X and call them singular n-cubes in X. They form the basis for the free Z-module Kn(X). For n < 0 we set
Kn(X) = 0; and I0 is just a point. Define face maps d0i , d

1
i : In−1 −→ In by

d0i (t0, . . . , tn−1) = (t0, . . . , ti−1, 0, ti, . . . , tn−1)

and
d1i (t0, . . . , tn−1) = (t0, . . . , ti−1, 1, ti, . . . , tn−1).

They induce face operators ∂0i , ∂
1
i : Kn(X) −→ Kn−1(X) by setting ∂0i (c) := c ◦ d0i resp. ∂1i (c) := c ◦ d1i for a basis

element c ∈ Kn(X).

(i) Prove the following cubical identities:
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1. ∂bj−1 ◦ ∂
a
i = ∂ai ◦ ∂

b
j for 0 ≤ i < j ≤ n and a, b ∈ {0, 1},

2. ............................... ,

3. .............................. .

where the dots mean: if you like, define degeneracy maps s0i , s
1
i : In → In−1 and prove relations between any two of

them and with the face maps.
Define a boundary operator ∂ : Kn(X) −→ Kn−1(X) by

∂ =

n∑
i=0

(−1)i (∂1i − ∂
0
i ) .

(i) Prove ∂ ◦ ∂ = 0.
So we have a chain complex K•(X). Its homology we call wrong cubical homology WH2

n(X) := Hn(K•(X)).
What is wrong about it ? — Well, see yourself:

(ii) Prove for X a point: WH2
n(X) = Z for each n ≥ 0.

(Hint: Do the computation similarly to the simplicial case: What are all singular cubes ? What is their
boundary ?) The result is not what we expected, since the dimension axiom is not satisfied; we will see later
how to correct this.

(iii) Show that any continuous map f : X → Y induces a chain map Kn(f) : Kn(X) → Kn(Y ) and thus a
homomorphism WH2

n(f) : WH2
n(X)→WH2

n(Y ) between homology groups.

(iv) Show further, that WH2
n is a functor from the category of topological spaces to the category of K-modules.

(v) Prove: If f ' g : X → Y are homotopic, then Kn(f) ' Kn(g) are chain homotopic.
Conclude that WH2

n(f) = WH2
n(g).

Exercise 4.5 (The chain complex of chain functions)
Let C and D be two chain complexes over the ring K, with boundary operators ∂C resp. ∂D. We define a chain
function f of degree k to be a collection of homomorphisms fn : Cn → Dn+k. Note that we do not assume any
compatibility with the boundary operators; also note that k can be negative. Obviously, the chain functions of
degree k form a K-module Fk := ChFunck(C,D).
Furthermore, by declaring d(f) to be the chain function with

d(f)n := ∂D ◦fn − (−1)kfn−1 ◦ ∂C for all n,

we obtain a homomorphism
d : Fk −→ Fk−1

a) Show that d ◦ d = 0, so that F with this boundary operator is a chain complex.
b) Show that Z0(F ), the cycles of degree 0, are the chain maps (i.e., they satisfy ∂D ◦fn = fn−1 ◦ ∂C).
c) Show that B0(F ), the boundaries of degree 0, are all chain maps homotopic to zero.
d) Show that H0(F ) are the chain homotopy classes of chain maps C → D.
e∗) What are Zn(F ), Bn(F ) and Hn(F ) for n > 0 ?

Exercise 4.6∗ (Cycles and geometric intuition)
Let X be a space and c =

∑
α µαcα an n-cycle. The index α is in some finite index set A. The coefficients µα are

integers and we can assume µα 6= 0. Written out in basic chains with sign ±1, we have altogether r :=
∑
α∈A |µα|

terms.
We take, for each α ∈ A, exactly |µα| copies of an n-simplex and denote it by ∆(α, k), where k = 1, . . . , |µα|.
Altogether there are r such simplices and we put them together to form a space P̃ (c) =

⊔
∆(α, k). We can regard c
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as a continuous map f̃c : P̃ (c)→ X, defined by cα on each ∆(α, k). Each simplex has n+ 1 faces, which we denote
by ∆i(α, k), where i = 0, 1, . . . , n.
From the cycle condition

0 = ∂(a) =
∑
A

n∑
i=0

(−1)i ∂i(cα) =
∑
A

n∑
i=0

(−1)i (cα ◦ di) (1)

we conclude that for all these r(n+ 1) faces this sum must, via their signs, cancel in Sn−1(X). This means for any
basic (n-1)-chain b ∈ Bn−1(X) the following: Set J(b) := {(α, i) ∈ A × [n] | cα ◦ di = b}, where [n] denotes the set
{0, 1, . . . , n}. For almost all b the set J(b) must be empty. For all others∑

(α,i)∈J(b)

(−1)iµα = 0 (2)

must hold. In other words, for each b, we have∑
(α,i)∈J(b), (−1)iµα>0

|µα| =
∑

(α,i)∈J(b), (−1)iµα<0

|µα| , (3)

when we split the sum in positive and negative coefficients (−1)iµα. So the two sets K+(b) resp. K−(b) of triples
(α, k, i) with b = cα ◦ di, k = 1, . . . , |µα| and (−1)i sign(µα) = +1 resp. with b = cα ◦ di, k = 1, . . . , |µα| and
(−1)i sign(µα) = −1 have the same size and we can choose a bijection πb : K+(b)→ K−(b) with the property

(−1)i sign(µα) ∂i(cα) = (−1)j sign(µβ) ∂j(cβ), if πb(α, k, i) = (β, l, j) (4)

Note that k and l do not occur in the equation. And note that there are many choices for such a bijection or pairing.
We take the disjoint union of all K+(b) resp. of all K−(b) and call them K+ resp. K−. The obvious bijection we
call π : K+ → K−.

Now recall P̃ (c) =
⊔

∆(α, k). On each simplex we took the continous map cα : ∆(α, k) → X. It follows from the
equation above, that cα and cβ agree on their faces ∆i(α, k) resp. ∆j(α, l), if πb(α, k, i) = (β, l, j).

Thus in P̃ (c) we can identify the two faces ∆i(α, k) and ∆j(β, l) by declaring

∆i(α, k) 3 (t0, . . . , ti−1, 0, ti, . . . , tn−1) ≡ (t0, . . . , tj−1, 0, tj , . . . , tn−1) ∈ ∆j(β, k). (5)

Call this space P (c, π) the tautological complex of the cycle c with pairing π. We have a well-defined map

fc : P (c, π) −→ X,

which is cα on each ∆(α, k).
Now we want to investigate this space and this map.

(1) Show by an example with n = 1 that P (c, π) depends on the choice of the pairing π.

(2) Show that c gives rise to a canonical n-cycle wc in P (c, π). Its homology class [wc] ∈ Hn(P (c, π)) we call the
tautological class of P (c, π).

(3) Show that fc∗([wc]) = [c] in Hn(X).

Remarks: (1) P (c, π) is a space for which one can define simplicial homology, as we did in Exercise 2.4. Obviously,
we can regards wc as a simplicial cycle; and in H4n (P (c, π)) the class [wc] is non-zero, because there are no
simplicial (n+1)-chains to kill it. Later we will see that the natural transformation H4n → Hn from simplicial
to singular homology is an isomorphism; thus [wc] is non-zero in Hn(P (c, π). But of course, this does not mean,
that fc[w–c] = [c], is non-zero.
(2) The space P (c, π) is the union of n-simplices and each (n-1)-simplex is in exactly two n-simples (related by the
pairing π). One might think that P (c, π) is a manifold; but this is not the case. Nevertheless, it has many features
of a manifold and is called a pseudo-manifold.
(3) What about Z/2 as coefficients ? What about Z/3 ?
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