Aufgaben zur Topologie I

Prof. Dr. C.-F. Bödigheimer Wintersemester 2019/20

due by: 6.11.2019

Jean-Pierre Serre, *1926, french mathematician

Exercise 4.1 (Quasi-isomorphisms)

Let $\iota: A \to B$ be the inclusion of a subcomplex A of a chain complex B. Assume the following: For each n and any $b \in B_n$ there exists some $a \in A_n$ and some $b' \in B_{n+1}$ such that $\iota(a) = b + \partial(b')$. Show that ι induces an isomorphism in homology $\iota_* = H_n(\iota): H_n(A) \to H_n(B)$ for all n. Remark: A chain map which induces isomorphisms in all homology groups is called a quasi-isomorphism.

Exercise 4.2 (Free and projective modules)

Let \mathbb{K} be a commutative ring with unit. A \mathbb{K} -module \mathbb{M} is called *free* if it has a basis $\mathfrak{B} \subset \mathbb{K}$, this means, each $x \in \mathbb{M}$ can be expressed as $x = \kappa_1 b_1 + \ldots + \kappa_n b_n$ for finitely many uniquely determined basis elements $b_1, \ldots, b_n \in \mathfrak{B}$ and coefficients $\kappa_1, \ldots, \kappa_n \in \mathbb{K}$.

- 1. A free module is projective.
- 2. Any module is a quotient of a free (and thus of a projective) module.
- 3. Any submodule $\mathbb{L} \subset \mathbb{M}$ with a projective quotient \mathbb{M}/\mathbb{L} is a direct summand.

Let $\phi \colon \mathbb{K} \to \mathbb{K}'$ be a ring-homomorphism; it makes \mathbb{K}' into a \mathbb{K} -module.

- 4. If \mathbb{M} is a \mathbb{K} -module, then $\mathbb{M}' := \mathbb{M} \otimes_{\mathbb{K}} \mathbb{K}'$ is a \mathbb{K}' -module.
- 5. If \mathbb{M} is free over \mathbb{K} , then $\mathbb{M}' := \mathbb{M} \otimes_{\mathbb{K}} \mathbb{K}'$ is free over \mathbb{K}' .

Let $\mathbb{K} = \mathbb{Z}$ and let $\phi_n \colon \mathbb{Z} \to \mathbb{Z}/n$ be the obvious epimorphism. Clearly, any \mathbb{Z}/n -module is also a \mathbb{Z} -module, but a \mathbb{Z} -module is a a \mathbb{Z}/n -module if and only if nx = 0 holds for any module element x.

6. $\mathbb{M} = \mathbb{Z}/n$ is free over \mathbb{Z}/n , but not over \mathbb{Z} and not over any \mathbb{Z}/nm for m > 1.

Exercise 4.3 (Acyclic vs. contractible chain complexes)

a) Let \mathbb{K} be a commutative ring, and let P be a non-negatively graded chain complex of projective \mathbb{K} -modules P_n . Assume that P is acyclic, i.e., all its homology groups are trivial. Show that P is contractible.

b) Give an example of a non-negatively graded chain complex of abelian groups, which is acyclic, but not contractible. c) Show that the unbounded chain complex of projective $\mathbb{Z}/4$ -modules

$$\dots \xrightarrow{2 \cdot} \mathbb{Z}/4 \xrightarrow{2 \cdot} \mathbb{Z}/4 \xrightarrow{2 \cdot} \mathbb{Z}/4 \xrightarrow{2 \cdot} \dots$$

is acyclic, but not contractible.

L'opérateur bord.
Soit u un cube singulier de dimension n ; nous allons définir certaines faces particulières de u .
Soit <i>H</i> une partie à p éléments de l'ensemble $\{1, \dots, n\}$ et soit $q = n - p$; soit <i>K</i> le complémentaire de <i>H</i> , et φ_{κ} l'application strictement croissante de <i>K</i> sur l'ensemble $\{1, \dots, q\}$. Si $\varepsilon = 0$ ou 1, nous définirons un nouveau cube singu- lier $\lambda_{H}^{\varepsilon} u$, de dimension q , en posant:
$(\lambda_H^{\epsilon}u)(x_1,\cdots,x_q)=u(y_1,\cdots,y_n)$
où les y_i sont donnés par:
$si \ i \ \epsilon \ H, \qquad y_i = \epsilon$
si $i \in K$, $y_i = x_{\varphi_K(i)}$.
Si <i>H</i> est réduit à un seul élément <i>i</i> , on écrit $\lambda_i^{\epsilon} u$ au lieu de $\lambda_{\{i\}}^{\epsilon} u$. On a donc:
$(\lambda_i^0 u)(x_1,\cdots,x_{n-1}) \ = \ u(x_1,\cdots,x_{i-1},0,x_i,\cdots,x_{n-1})$
$(\lambda_i^1 u)(x_1, \cdots, x_{n-1}) = u(x_1, \cdots, x_{i-1}, 1, x_i, \cdots, x_{n-1}).$
Ceci étant, nous appellerons bord du cube u de dimension n l'élément de $Q_{n-1}(X)$ défini par:
$du = \sum_{i=1}^{n} (-1)^{i} (\lambda_{i}^{0} u - \lambda_{i}^{1} u).$
La formule évidente:
$\lambda_i^{\epsilon} \circ \lambda_j^{\epsilon'} = \lambda_{j-1}^{\epsilon'} \circ \lambda_i^{\epsilon} \qquad (i < j)$
entraîne que $ddu = 0$. En outre, d applique $D_n(X)$ dans $D_{n-1}(X)$, car si u est un cube dégénéré, $\lambda_i^{\epsilon} u$ l'est aussi pour $i \leq n - 1$, et $\lambda_n^0 u = \lambda_n^1 u$. Il en résulte que $D(X)$ est un sous-groupe permis du groupe différentiel $Q(X)$.

J.-P. Serre: *Homologie singuliere des espaces fibres. Applications.* Ann. Math. 54 (1951), 425-505, here page 440. This is one of the most important articles in algebraic topology, by one of its greatest masters.

Exercise 4.4 (Wrong cubic homology)

We consider continuous maps $c: \mathbb{I}^n \to X$ from the n-cube $\mathbb{I}^n = \mathbb{I} \times \cdots \times \mathbb{I}$, and $\mathbb{I} = [0, 1]$ being the interval, to a space X and call them *singular n-cubes* in X. They form the basis for the free \mathbb{Z} -module $K_n(X)$. For n < 0 we set $K_n(X) = 0$; and \mathbb{I}^0 is just a point. Define face maps $d_i^0, d_i^1: \mathbb{I}^{n-1} \longrightarrow \mathbb{I}^n$ by

$$d_i^0(t_0,\ldots,t_{n-1}) = (t_0,\ldots,t_{i-1},0,t_i,\ldots,t_{n-1})$$

and

$$d_i^1(t_0,\ldots,t_{n-1}) = (t_0,\ldots,t_{i-1},1,t_i,\ldots,t_{n-1}).$$

They induce face operators $\partial_i^0, \partial_i^1 \colon K_n(X) \longrightarrow K_{n-1}(X)$ by setting $\partial_i^0(c) := c \circ d_i^0$ resp. $\partial_i^1(c) := c \circ d_i^1$ for a basis element $c \in K_n(X)$.

(i) Prove the following cubical identities:

- 1. $\partial_{i-1}^b \circ \partial_i^a = \partial_i^a \circ \partial_j^b$ for $0 \le i < j \le n$ and $a, b \in \{0, 1\}$,
- 3.

where the dots mean: if you like, define degeneracy maps $s_i^0, s_i^1 \colon \mathbb{I}^n \to \mathbb{I}^{n-1}$ and prove relations between any two of them and with the face maps.

Define a boundary operator $\partial \colon K_n(X) \longrightarrow K_{n-1}(X)$ by

$$\partial = \sum_{i=0}^{n} (-1)^{i} \left(\partial_{i}^{1} - \partial_{i}^{0}\right).$$

(i) Prove $\partial \circ \partial = 0$.

So we have a chain complex $K_{\bullet}(X)$. Its homology we call wrong cubical homology $WH_n^{\Box}(X) := H_n(K_{\bullet}(X))$. What is wrong about it ? — Well, see yourself:

- (ii) Prove for X a point: WH[□]_n(X) = Z for each n ≥ 0.
 (Hint: Do the computation similarly to the simplicial case: What are all singular cubes ? What is their boundary ?) The result is not what we expected, since the dimension axiom is not satisfied; we will see later how to correct this.
- (iii) Show that any continuous map $f: X \to Y$ induces a chain map $K_n(f): K_n(X) \to K_n(Y)$ and thus a homomorphism $WH_n^{\square}(f): WH_n^{\square}(X) \to WH_n^{\square}(Y)$ between homology groups.
- (iv) Show further, that WH_n^{\square} is a functor from the category of topological spaces to the category of K-modules.
- (v) Prove: If $f \simeq g \colon X \to Y$ are homotopic, then $K_n(f) \simeq K_n(g)$ are chain homotopic. Conclude that $WH_n^{\square}(f) = WH_n^{\square}(g)$.

Exercise 4.5 (The chain complex of chain functions)

Let C and D be two chain complexes over the ring \mathbb{K} , with boundary operators ∂^C resp. ∂^D . We define a *chain* function f of degree k to be a collection of homomorphisms $f_n: C_n \to D_{n+k}$. Note that we do not assume any compatibility with the boundary operators; also note that k can be negative. Obviously, the chain functions of degree k form a \mathbb{K} -module $F_k := \operatorname{ChFunc}_k(C, D)$.

Furthermore, by declaring d(f) to be the chain function with

$$d(f)_n := \partial^D \circ f_n - (-1)^k f_{n-1} \circ \partial^C \quad \text{for all } n,$$

we obtain a homomorphism

$$d\colon F_k\longrightarrow F_{k-1}$$

a) Show that $d \circ d = 0$, so that F with this boundary operator is a chain complex.

- b) Show that $Z_0(F)$, the cycles of degree 0, are the *chain maps* (i.e., they satisfy $\partial^D \circ f_n = f_{n-1} \circ \partial^C$).
- c) Show that $B_0(F)$, the boundaries of degree 0, are all chain maps homotopic to zero.

d) Show that $H_0(F)$ are the chain homotopy classes of chain maps $C \to D$.

e^{*}) What are $Z_n(F)$, $B_n(F)$ and $H_n(F)$ for n > 0?

Exercise 4.6^{*} (Cycles and geometric intuition)

Let X be a space and $c = \sum_{\alpha} \mu_{\alpha} c_{\alpha}$ an n-cycle. The index α is in some finite index set \mathcal{A} . The coefficients μ_{α} are integers and we can assume $\mu_{\alpha} \neq 0$. Written out in basic chains with sign ± 1 , we have altogether $r := \sum_{\alpha \in \mathcal{A}} |\mu_{\alpha}|$ terms.

We take, for each $\alpha \in \mathcal{A}$, exactly $|\mu_{\alpha}|$ copies of an n-simplex and denote it by $\Delta(\alpha, k)$, where $k = 1, \ldots, |\mu_{\alpha}|$. Altogether there are r such simplices and we put them together to form a space $\tilde{P}(c) = \bigsqcup \Delta(\alpha, k)$. We can regard c as a continuous map $\tilde{f}_c \colon \tilde{P}(c) \to X$, defined by c_α on each $\Delta(\alpha, k)$. Each simplex has n+1 faces, which we denote by $\Delta_i(\alpha, k)$, where $i = 0, 1, \ldots, n$.

From the cycle condition

$$0 = \partial(a) = \sum_{\mathcal{A}} \sum_{i=0}^{n} (-1)^{i} \partial_{i}(c_{\alpha}) = \sum_{\mathcal{A}} \sum_{i=0}^{n} (-1)^{i} (c_{\alpha} \circ d_{i})$$
(1)

we conclude that for all these r(n + 1) faces this sum must, via their signs, cancel in $S_{n-1}(X)$. This means for any basic (n-1)-chain $b \in \mathcal{B}_{n-1}(X)$ the following: Set $\mathfrak{J}(b) := \{(\alpha, i) \in \mathcal{A} \times [n] \mid c_{\alpha} \circ d_i = b\}$, where [n] denotes the set $\{0, 1, \ldots, n\}$. For almost all b the set $\mathfrak{J}(b)$ must be empty. For all others

$$\sum_{(\alpha,i)\in\mathfrak{J}(b)} (-1)^i \mu_\alpha = 0 \tag{2}$$

must hold. In other words, for each b, we have

$$\sum_{(\alpha,i)\in\mathfrak{J}(b),\,(-1)^{i}\mu_{\alpha}>0}|\mu_{\alpha}| = \sum_{(\alpha,i)\in\mathfrak{J}(b),\,(-1)^{i}\mu_{\alpha}<0}|\mu_{\alpha}|,\qquad(3)$$

when we split the sum in positive and negative coefficients $(-1)^i \mu_\alpha$. So the two sets $K^+(b)$ resp. $K^-(b)$ of triples (α, k, i) with $b = c_\alpha \circ d_i$, $k = 1, \ldots, |\mu_\alpha|$ and $(-1)^i \operatorname{sign}(\mu_\alpha) = +1$ resp. with $b = c_\alpha \circ d_i$, $k = 1, \ldots, |\mu_\alpha|$ and $(-1)^i \operatorname{sign}(\mu_\alpha) = -1$ have the same size and we can choose a bijection $\pi_b \colon K^+(b) \to K^-(b)$ with the property

$$(-1)^{i}\operatorname{sign}(\mu_{\alpha})\partial_{i}(c_{\alpha}) = (-1)^{j}\operatorname{sign}(\mu_{\beta})\partial_{j}(c_{\beta}), \quad \text{if} \quad \pi_{b}(\alpha, k, i) = (\beta, l, j)$$

$$(4)$$

Note that k and l do not occur in the equation. And note that there are many choices for such a bijection or pairing. We take the disjoint union of all $K^+(b)$ resp. of all $K^-(b)$ and call them K^+ resp. K^- . The obvious bijection we call $\pi \colon K^+ \to K^-$.

Now recall $\tilde{P}(c) = \bigsqcup \Delta(\alpha, k)$. On each simplex we took the continuus map $c_{\alpha} \colon \Delta(\alpha, k) \to X$. It follows from the equation above, that c_{α} and c_{β} agree on their faces $\Delta_i(\alpha, k)$ resp. $\Delta_j(\alpha, l)$, if $\pi_b(\alpha, k, i) = (\beta, l, j)$. Thus in $\tilde{P}(c)$ we can identify the two faces $\Delta_i(\alpha, k)$ and $\Delta_j(\beta, l)$ by declaring

$$\Delta_i(\alpha, k) \ni (t_0, \dots, t_{i-1}, 0, t_i, \dots, t_{n-1}) \equiv (t_0, \dots, t_{j-1}, 0, t_j, \dots, t_{n-1}) \in \Delta_j(\beta, k).$$
(5)

Call this space $P(c,\pi)$ the tautological complex of the cycle c with pairing π . We have a well-defined map

$$f_c \colon P(c,\pi) \longrightarrow X,$$

which is c_{α} on each $\Delta(\alpha, k)$.

Now we want to investigate this space and this map.

- (1) Show by an example with n = 1 that $P(c, \pi)$ depends on the choice of the pairing π .
- (2) Show that c gives rise to a canonical n-cycle w_c in $P(c, \pi)$. Its homology class $[w_c] \in H_n(P(c, \pi))$ we call the *tautological class* of $P(c, \pi)$.
- (3) Show that $f_{c*}([w_c]) = [c]$ in $H_n(X)$.

Remarks: (1) $P(c, \pi)$ is a space for which one can define simplicial homology, as we did in Exercise 2.4. Obviously, we can regards w_c as a simplicial cycle; and in $H_n^{\triangle}(P(c,\pi))$ the class $[w_c]$ is non-zero, because there are no simplicial (n+1)-chains to kill it. Later we will see that the natural transformation $H_n^{\triangle} \to H_n$ from simplicial to singular homology is an isomorphism; thus $[w_c]$ is non-zero in $H_n(P(c,\pi))$. But of course, this does not mean, that $f_c[w-c] = [c]$, is non-zero.

(2) The space $P(c, \pi)$ is the union of n-simplices and each (n-1)-simplex is in exactly two n-simples (related by the pairing π). One might think that $P(c, \pi)$ is a manifold; but this is not the case. Nevertheless, it has many features of a manifold and is called a pseudo-manifold.

(3) What about $\mathbb{Z}/2$ as coefficients? What about $\mathbb{Z}/3$?