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Blatt 3 due by: 30. 10. 2019

In the figures, the strand going under a crossing is graphically represented
by a line broken near the crossing; the strand going over a crossing is repre-
sented by a continued line. An example of a braid diagram is given in Fig-
ure 1.2. Here the top horizontal line represents R x {0}, and the bottom
horizontal line represents R x {1}. In the sequel we shall sometimes draw and
sometimes omit these lines in the figures.
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Fig. 1.2. A braid diagram on four strands

Exercise 3.1 (Homotopic versus homologous)
Let w and v are two closed curves in a space X.

(1) Assume that w and v are freely homotopic in X. This means: w(0) = w(1) = z¢ and v(0) = v(1) = yo, but
zo and yp may be distinct and thus zy must be moved towards yg during the homotopy. Show that w and v are
homologous, when regarded as 1-cycles in X.

(2) Assume w and v are in the same path-component of X. Show that there exists a closed curve ¢ in X, such that
¢ is homologous to w + v, when regarded as 1-cycles.

(3) Find an example of two closed curves w and v, which are homologous (when regarded as 1-cycles), but are not
homotopic.  (Hint: Consider a surface.)

Exercise 3.2 (Coverings and first homology group)

Let £: X — Y be a connected covering of a connected space. Recall that the induced homomorphism of fundamental
groups m1(€): m1 (X, x0) = m(Y, yo) is injective. Is the same true for H (§): H1(X) — H1(Y) ? Consider the covering
of Y = S! v S! shown in the following figure.

1) Compute H; (X and Hy(Y') using the Hurewicz isomorphism.

2) Compute H;(¢) using the Hurewicz isomorphism and conclude that the answer to the question above is not
always Yes.




A 2-fold covering of the space Y = S! vV S', used in Exerc. 3.2.

Exercise 3.3 (Induced homomorphisms)

(i) Let X,Y be topological spaces and t: X — Y, p: Y — X continuous maps, which satisfy po ¢ =idx, i.e., X
is a retract of Y. Show that, for every n € N, the homology H,,(X) of X is isomorphic to a direct summand
of the homology H,(Y) of Y.

(ii) Let f: X — Y be a constant function. Show that H, (f): H,(X) — H,(Y) is the trivial homomorphism for
all n > 0. How can one describe Ho(f)?

(iii) Describe for a general f: X — Y the induced map Hy(f): Ho(X) — Ho(Y).

(iv) Compute, with the help of the Hurewicz isomorphism, the homomorphism

z=H (S ™Y g (S'VSY 2 (Z+Z)P =T x 7

induced by the pinch map S! — S! v S!, which identifies 1 and —1.

Exercise 3.4 (Some small chain complexes)
a) Consider the following chain complex A,

0 17}

0 Z 73 7? 0

All non-trivial terms are shown, the term Z sits in degree 0, and boundary operator is written as matrix 0 =
1 -1
1 1 |. Compute all homology groups.
-1 -1

b) Consider the following chain complex B,

0 2)2<27)202/6<> 2072/4% 7 0

All non-trivial terms are shown, the term Z/2 sits in degree 0, and the boundary operators are in matrix form

01 = (1 1), 0o = (i ;>7 and 03 = (g) Compute all homology groups.



Exercise 3.5 (Chain homotopy is an equivalence relation.)

Let A, B,C be chain complexes over some ring K, and let f, f/, f”: A — B and ¢,¢9': B — C be chain maps.
Suppose ®@: f ~ f', U: f' ~ f” and ©: g ~ ¢’ are chain homotopies. Show that there are chain homotopies

(a) f~f,

(b) f' = f,

(c) f=f"

Furthermore,

(d)gof=~gofand

(e) gofagof.

Thus chain homotopy is an equivalence relation and is preserved by pre-composition and post-composition.

Exercise 3.6* (Braid groups)
a) Let us first consider the symmetric group &,,. It is generated by the transpositions 7; = (i, + 1) for ¢ =
1,2,...,n — 1 with relations

(D) TiTi1Ti = Tig1TiTit1
(II) TiTj = TjTi, lf |Z —]| Z 2
(1) 72 =1

Show that &2 is isomorphic to Z/2.  (Hint: Use the sign homomorphism sign: &,, — {£1} = Z/2, which has a
section (right-inverse)).

b) Now we consider the braid group B,,. It is generated by string-twists 8; for i = 1,2,...,n — 1 with relations as
above, but without (III), namely

(I) BiBisx1Bi = Bix18iBiv1
(I) B:Bj = B;Bs, if |i—j| > 2

Show that B¢ is isomorphic to Z. (Hint: Use the homomorphism @1 B, — Z, defined by 5; +— 1. Is it
well-defined ? Does it have a section ?)

Fig. 1.5a. The Reidemeister move Qs

Fig. 1.5b. The Reidemeister move 23

The relations in the braid group are called Reidemeister moves. This figure and the figure at the beginning are from
the book Chr. Kassel, V.Turaev: Braid Groups, p. 7 + 9.



c¢)* Connect the two cases via a diagrame

1 — > [B,,By] B, 2. 7 0
o e
1 A, G, 2 7/2 0

by defining a homomorphism ®; the unnamed homomorphism on the right is the obvious one. Here, [B,,, B,,] denotes
the commutator subgroup of B,,. The kernel of sign is of course the well-known alternating group 2(,,. The kernel
of @ is denoted by PB,, and called the pure braid group. -
Correction: In the previous version of this exercise we had mistakenly defined PB,, as the kernel of sign instead
of ®. This is now corrected above.

Remark: The braid group B, is usually defined as the group of isotopy classes of disjoint strings in R? x [0,1]
runnning (upwards) from the points (i,0,0) to the points (§,0,1), fori,j =1,2,...,n. The group multiplication is
given by concatenation along the third variable (like in the fundamental group). See the figure. The group is (almost
obviously) the fundamental group of the unordered configuration space of n distinct points in R%. And by the way:
The symmetric group &, is also a fundamental group of some unordered configuration space on n points, but now
in R*®. Can you see the homomorphism ® ¢




8.10. Theorem (Poincaré). There is a compact 3-manifold having the homology
groups of S* but which is not simply connected.

PrOOF. Consider the group I of rotational symmetries of a ‘regular icosa-
hedron, the “icosahedral group.” We have I < SO(3) and it is wel_l known
that I is isomorphic to the alternating group A5 on five letters. (This can be

Figure VI-6. Shows that I = 4.

seen geometrically by considering the five tetrahedra inscribed in a
dodecahedron (which is dual to the icosahedron) and the permutations of
them induced by the action of I. See Figure VI-6.) Also well known is the
fact that this group is simple. Consider the homomorphism S* —SO(3), where
$3 is the group of unit quaternions. The inverse image of I in S3 is a group
I', of which I is the quotient by the subgroup { + 1} = I'. The dodecahedron
has an inscribed cube, so that I contains the rotation group of a cube.
Assuming the cube to be aligned with the coordinate axes, this implies that
the quaternions i, j, k are in I'. Thus iji~ %' =ijij=k*= —1 is in the
commutator subgroup [I,I']. The image of [I’,I'] in I is [I,I]=1, and it
follows that [I',I'] = I'. The space in question is 3 = S3/I’. From covering
space theory, we have 7,(2%) ~ I and so H,(2%) ~ n,(Z%)/[n,,7,] = 0. By the
Universal Coefficient Theorem, H*(Z?®) ~ Hom(H,(Z%),Z) = 0. By Poincaré
duality, H,(2%) ~ H(Z3) = 0. O

This example occupies an interesting niche in the history of topology.
Poincaré originally conjectured that a manifold which is a homology sphere
is homeomorphic to a sphere. When the above counterexample, called the
“Poincaré dodecahedral space,” and others came to light, the conjecture was
modified to include the hypothesis of simple connectivity. Today, for smooth
manifolds, that conjecture is known to be true with the single exception of
dimension three, where it remains an open and very important conjecture
called, of course, the “Poincaré Conjecture.”

The "Poincaré sphere’, as explained in G.Bredon, Topology and Geometry, p. 353+354.



