Non-correlation between Fourier coefficients of automorphic forms and trace functions

Vignesh Arumugam Nadarajan

École Polytechnique Fédérale de Lausanne

Cusp forms

Cusp form - a holomorphic cusp or Maass cusp form of weight 0 of some fixed level.
Since $f(z+1)=f(z), f$ admits a Fourier expansion which we will write as

Cusp forms

Cusp form - a holomorphic cusp or Maass cusp form of weight 0 of some fixed level.
Since $f(z+1)=f(z), f$ admits a Fourier expansion which we will write as

$$
f(z)=\sum_{n=1}^{\infty} \rho_{f}(n) n^{\frac{k-1}{2}} e(n z)
$$

for a holomorphic form of weight k

Cusp forms

Cusp form - a holomorphic cusp or Maass cusp form of weight 0 of some fixed level.
Since $f(z+1)=f(z), f$ admits a Fourier expansion which we will write as

$$
f(z)=\sum_{n=1}^{\infty} \rho_{f}(n) n^{\frac{k-1}{2}} e(n z)
$$

for a holomorphic form of weight k and

$$
f(z)=\sum_{n=1}^{\infty} \rho_{f}(n)|n|^{-\frac{1}{2}} W_{i t_{f}}(4 \pi|n| y) e(n x)
$$

for a Maass cusp form of weight 0 .

Cusp forms

Cusp form - a holomorphic cusp or Maass cusp form of weight 0 of some fixed level.
Since $f(z+1)=f(z), f$ admits a Fourier expansion which we will write as

$$
f(z)=\sum_{n=1}^{\infty} \rho_{f}(n) n^{\frac{k-1}{2}} e(n z)
$$

for a holomorphic form of weight k and

$$
f(z)=\sum_{n=1}^{\infty} \rho_{f}(n)|n|^{-\frac{1}{2}} W_{i t_{f}}(4 \pi|n| y) e(n x)
$$

for a Maass cusp form of weight 0 .
This normalization is chosen so that the terms are almost bounded on average. Here $e(n z)=e^{2 \pi i n z}$ and $W_{i t_{f}}$ is a Whittaker function.

A question

p - prime. Let $K: \mathbb{Z} / p \mathbb{Z} \rightarrow \mathbb{C}$ be a function.

A question

p - prime. Let $K: \mathbb{Z} / p \mathbb{Z} \rightarrow \mathbb{C}$ be a function.

Question

What is the size of the sum

$$
S_{V}(f, K, p)=\sum_{n \geq 1} \rho_{f}(n) K(n) V(n / p)
$$

A question

p - prime. Let $K: \mathbb{Z} / p \mathbb{Z} \rightarrow \mathbb{C}$ be a function.

Question

What is the size of the sum

$$
S_{V}(f, K, p)=\sum_{n \geq 1} \rho_{f}(n) K(n) V(n / p)
$$

The trivial bound is

$$
S(f, K, p)<_{f, V}\|K\|_{\infty} p
$$

Trace functions vs. modular forms

For trace functions, we can do much better! Here is the theorem of É. Fouvry, E. Kowalski and Ph. Michel, [GAFA15]

Theorem

Let f be a Hecke eigenform. Let K be an isotypic trace function of conductor cond(K).
There exists $s \geq 1$ absolute constant such that:

$$
S_{V}(f, K ; p) \ll_{f, V, \delta} \operatorname{cond}(K)^{s} p^{1-\delta}
$$

holds for any $\delta<1 / 8$.

What is a Trace function?

Trace function

A function $K: \mathbb{F}_{p} \rightarrow \mathbb{C}$ is called a trace function if there exists a constructible ℓ-adic sheaf \mathcal{F} on $\mathbb{A}_{\mathbb{F}_{p}}^{1}$ (satisfying some technical conditions) s.t.

$$
K(x)=\iota\left(\operatorname{tr} \mathcal{F}\left(\mathbb{F}_{p}, x\right)\right)
$$

Examples

$$
K(n)= \begin{cases}e\left(\frac{\phi_{1}(n)}{p}\right) \chi\left(\phi_{2}(n)\right) & S_{1}(n) S_{2}(n) \not \equiv 0 \bmod p \\ 0 & \text { otherwise }\end{cases}
$$

for $\phi_{i}(X) \in \mathbb{F}_{p}(X)$ and $S_{i}(x) \in \mathbb{F}_{p}[X]$ the denominator of $\phi_{i}(X)$. We exclude the case

$$
K(x)=e\left(\frac{a x+b}{p}\right), a, b \in \mathbb{F}_{p}
$$

Trace functions

Example (due to Deligne, studied extensively by Katz)

Define the Hyper-kloostermann sum as the multiplicative convolution of additive characters

$$
K I_{m}(a ; p)=\frac{1}{p^{(m-1) / 2}} \sum_{x_{1} x_{2} \ldots x_{m}=a} e\left(\frac{x_{1}+\ldots+x_{m}}{p}\right)
$$

where $x_{1}, \ldots, x_{m} \in \mathbb{F}_{p}^{\times}$.

$$
K(n)= \begin{cases}K I_{m}(\phi(n) ; p) & S(n) \not \equiv 0 \\ 0 & \text { otherwise }\end{cases}
$$

for $\phi(X) \in \mathbb{F}_{p}(X)$ and $S(X) \in \mathbb{F}_{p}[X]$ its denominator.

Generalisation to number fields - Notations

We study the same question for automorphic forms over number fields.
F - number field

Generalisation to number fields - Notations

We study the same question for automorphic forms over number fields.
F - number field
\mathfrak{p} - prime ideal of \mathcal{O}_{F}

Generalisation to number fields - Notations

We study the same question for automorphic forms over number fields.
F - number field
\mathfrak{p} - prime ideal of \mathcal{O}_{F}
$K: \mathbb{F}_{q} \rightarrow \mathbb{C}$

Generalisation to number fields - Notations

We study the same question for automorphic forms over number fields.
F - number field
\mathfrak{p} - prime ideal of \mathcal{O}_{F}
$K: \mathbb{F}_{q} \rightarrow \mathbb{C}$
ϕ - cuspidal GL_{2}-automorphic form over F of level \mathfrak{N}.

Generalisation to number fields - Notations

We study the same question for automorphic forms over number fields.
F - number field
\mathfrak{p} - prime ideal of \mathcal{O}_{F}
$K: \mathbb{F}_{q} \rightarrow \mathbb{C}$
ϕ - cuspidal GL_{2}-automorphic form over F of level \mathfrak{N}.
\mathfrak{N} coprime to \mathfrak{p} fixed.

Generalisation to number fields

The question that we consider is to bound

$$
\sum_{m \in F^{\times}} K\left(m_{\mathfrak{p}}\right) W_{\phi}\left(\left(\begin{array}{cc}
m \varpi_{\mathfrak{p}} & 0 \\
0 & 1
\end{array}\right)\right)
$$

where W_{ϕ} is the global Whittaker function of ϕ.

Generalisation to number fields

The question that we consider is to bound

$$
\sum_{m \in F^{\times}} K\left(m_{\mathfrak{p}}\right) W_{\phi}\left(\left(\begin{array}{cc}
m \varpi_{\mathfrak{p}} & 0 \\
0 & 1
\end{array}\right)\right)
$$

where W_{ϕ} is the global Whittaker function of ϕ. In fact $m \in \mathfrak{p}^{-1}$. Here $m_{\mathfrak{p}}$ the congruence class of $m \varpi_{\mathfrak{p}}$ at \mathfrak{p}.

Trivial bound

Assume ϕ is an automorphic form that is spherical at \mathfrak{p} (i.e. $K_{\mathfrak{p}}$ invariant) and $\|\phi\|_{2}=1$.

Trivial bound

Assume ϕ is an automorphic form that is spherical at \mathfrak{p} (i.e. $K_{\mathfrak{p}}$ invariant) and $\|\phi\|_{2}=1$. We have the following trivial bound:

$$
\left|\sum_{m \in F^{\times}} K\left(m_{\mathfrak{p}}\right) W_{\phi}\left(\left(\begin{array}{cc}
m \pi_{\mathfrak{p}} & 0 \\
0 & 1
\end{array}\right)\right)\right|<_{\phi, F, K} \operatorname{Nm}(\mathfrak{p})^{\frac{1}{2}+\vartheta}
$$

where $\vartheta>\frac{7}{64}$ is the known approximation to the Ramanujan-Petersson conjecture.

Our result

Theorem[N. 2022+]

Assume that F is a totally real field. If K a trace function s.t. its Fourier transform \widehat{K} has trivial automorphism group, then

$$
\left|\sum_{m \in F^{\times}} K\left(m_{\mathfrak{p}}\right) W_{\phi}\left(\left(\begin{array}{cc}
m \pi_{\mathfrak{p}} & 0 \\
0 & 1
\end{array}\right)\right)\right|<_{\phi, F, K, \delta} \mathrm{Nm}(\mathfrak{p})^{\frac{1}{2}-\delta}
$$

for any $\delta<\frac{1}{12}$.

Strategy of the proof

The strategy of the proof is to estimate the amplified second moment using the relative trace formula.

Strategy of the proof

The strategy of the proof is to estimate the amplified second moment using the relative trace formula.
Define a factorizable function $h \in C_{c}^{\infty}\left(\mathrm{GL}_{2}\left(\mathbb{A}_{F}\right)\right)$ i.e. a smooth function that is compactly supported modulo the center. We will consider then a spectral average whose cuspidal part looks as follows and apply to it the relative trace formula:

Strategy of the proof

The strategy of the proof is to estimate the amplified second moment using the relative trace formula.
Define a factorizable function $h \in C_{c}^{\infty}\left(G L_{2}\left(\mathbb{A}_{F}\right)\right)$ i.e. a smooth function that is compactly supported modulo the center. We will consider then a spectral average whose cuspidal part looks as follows and apply to it the relative trace formula:

$$
\sum_{\pi} \sum_{\varphi \in \mathscr{B}(\pi, \mathfrak{N p})}\left|\sum_{m \in F^{\times}} W_{R(h) \varphi, f}\left(\left(\begin{array}{cc}
m & 0 \\
0 & 1
\end{array}\right)\right)\right|^{2}
$$

where the π varies over cuspidal representations of level $\mathfrak{N p}$ and $\mathscr{B}(\pi, \mathfrak{N p})$ is an orthonormal basis of $\pi^{K_{0}(\mathfrak{N p})}$

Strategy of the proof- suite

Assume

F a totally real field.

Strategy of the proof- suite

Assume
F a totally real field.
ϕ a cuspidal form that is $K_{0}(\mathfrak{N})$ invariant.

Strategy of the proof- suite

Assume

F a totally real field.
ϕ a cuspidal form that is $K_{0}(\mathfrak{N})$ invariant.
ϕ a pure tensor i.e. $W_{\phi}=\prod_{v} W_{\phi, v}$.

Strategy of the proof- suite

$$
\left|\sum_{m \in F^{\times}} W_{R(h) \phi, f}\left(\begin{array}{cc}
m & 0 \\
0 & 1
\end{array}\right)\right|^{2}
$$

Strategy of the proof- suite

$$
\begin{gathered}
\left|\sum_{m \in F^{x}} W_{R(h) \phi, f}\left(\begin{array}{cc}
m & 0 \\
0 & 1
\end{array}\right)\right|^{2} \\
=\left|w\left(\pi_{\infty}\right)\right|^{2}\left|\sum_{r \in \Lambda} x_{i} \lambda_{\pi}(l)\right|^{2}\left|\sum_{m \in F^{x}} W_{\phi}\left(\begin{array}{cc}
m \varpi_{p} & 0 \\
0 & 1
\end{array}\right) K\left(m_{p}\right)\right|^{2}
\end{gathered}
$$

Strategy of the proof- suite

$$
\begin{gathered}
\left|\sum_{m \in F^{\times}} W_{R(h) \phi, f}\left(\begin{array}{cc}
m & 0 \\
0 & 1
\end{array}\right)\right|^{2} \\
=\left|w\left(\pi_{\infty}\right)\right|^{2}\left|\sum_{\mathfrak{l} \in \Lambda} x_{\mathfrak{l}} \lambda_{\pi}(\mathfrak{l})\right|^{2}\left|\sum_{m \in F^{\times}} W_{\phi}\left(\begin{array}{cc}
m \varpi_{\mathfrak{p}} & 0 \\
0 & 1
\end{array}\right) K\left(m_{p}\right)\right|^{2}
\end{gathered}
$$

$w\left(\pi_{\infty}\right) \in \mathbb{C}$ is the spectral weight and Λ is a set of prime ideals whose norm is of size L.

Strategy of the proof- suite

By applying the relative trace formula to the operator $R(h)$ and using positivity the cuspidal contribution satisfies

$$
\begin{aligned}
& \sum_{\pi} \sum_{\varphi \in \mathscr{B}(\pi, \mathfrak{N p})}\left|\sum_{m \in F^{\times}} W_{R(h) \varphi, f}\left(\begin{array}{cc}
m & 0 \\
0 & 1
\end{array}\right)\right|^{2} \\
& \ll f_{\infty}, F, K(\mathrm{Nm}(\mathfrak{p}))^{1+\epsilon} \cdot L^{1+\epsilon}+\sqrt{\mathrm{Nm}(\mathfrak{p})} \cdot L^{4+\epsilon}
\end{aligned}
$$

Strategy of the proof- suite

By applying the relative trace formula to the operator $R(h)$ and using positivity the cuspidal contribution satisfies

$$
\begin{aligned}
& \sum_{\pi} \sum_{\varphi \in \mathscr{B}(\pi, \mathfrak{N p})}\left|\sum_{m \in F^{\times}} W_{R(h) \varphi, f}\left(\begin{array}{cc}
m & 0 \\
0 & 1
\end{array}\right)\right|^{2} \\
& \ll f_{\infty}, F, K(\mathrm{Nm}(\mathfrak{p}))^{1+\epsilon} \cdot L^{1+\epsilon}+\sqrt{\mathrm{Nm}(\mathfrak{p})} \cdot L^{4+\epsilon}
\end{aligned}
$$

Recall that L is the length of the amplifier.

Strategy of the proof- suite

Now for ϕ a cusp form that is $K_{0}(\mathfrak{N})$ invariant in a representation π, with ϕ a pure tensor, by positivity:

$$
\left|\sum_{m \in F^{\times}} W_{R(h) \phi, f}\left(\begin{array}{cc}
m & 0 \\
0 & 1
\end{array}\right)\right|^{2} \ll f_{\infty}, F, K(N m(\mathfrak{p}))^{1+\epsilon} \cdot L^{1+\epsilon}+\sqrt{\operatorname{Nm}(\mathfrak{p})} \cdot L^{4+\epsilon}
$$

Strategy of the proof- suite

Using our previous calculation,

$$
\begin{gathered}
\left|w\left(\pi_{\infty}\right)\right|^{2}\left|\sum_{\mathfrak{l} \in \Lambda} x_{\mathfrak{l}} \lambda_{\pi}(\mathfrak{l})\right|^{2}\left|\sum_{m \in F^{\times}} W_{\phi}\left(\begin{array}{cc}
m \varpi_{\mathfrak{p}} & 0 \\
0 & 1
\end{array}\right) K\left(m_{p}\right)\right|^{2} \\
\ll f_{\infty}, F, K(N m(\mathfrak{p}))^{1+\epsilon} \cdot L^{1+\epsilon}+\sqrt{N m(\mathfrak{p})} \cdot L^{4+\epsilon}
\end{gathered}
$$

Strategy of proof- fin

With ϕ and π as above, we will choose h s.t. $\left|w\left(\pi_{\infty}\right)\right|>0$ and using the amplifier due to A.Venkatesh, we choose:

$$
x_{\mathfrak{l}}= \begin{cases}\operatorname{sign}\left(\lambda_{\pi}(\mathfrak{l})\right) & \text { if } \mathfrak{l} \in \Lambda \text { and } \lambda_{\pi}(\mathfrak{l}) \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Strategy of proof- fin

With ϕ and π as above, we will choose h s.t. $\left|w\left(\pi_{\infty}\right)\right|>0$ and using the amplifier due to A.Venkatesh, we choose:

$$
x_{\mathfrak{l}}=\left\{\begin{array}{lc}
\operatorname{sign}\left(\lambda_{\pi}(\mathfrak{l})\right) & \text { if } \mathfrak{l} \in \Lambda \text { and } \lambda_{\pi}(\mathfrak{l}) \neq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

This gives

$$
\begin{aligned}
& \left(\sum_{\mathfrak{l} \in \Lambda}\left|\lambda_{\pi}(\mathfrak{l})\right|\right)^{2}\left|\sum_{m \in F^{\times}} W_{\phi}\left(\begin{array}{cc}
m \varpi_{\mathfrak{p}} & 0 \\
0 & 1
\end{array}\right) K\left(m_{p}\right)\right|^{2} \\
& \ll f_{\infty}, F, K(N m(\mathfrak{p}))^{1+\epsilon} \cdot L^{1+\epsilon}+\sqrt{N m(\mathfrak{p})} \cdot L^{4+\epsilon}
\end{aligned}
$$

Strategy of proof- fin

With ϕ and π as above, we will choose h s.t. $\left|w\left(\pi_{\infty}\right)\right|>0$ and using the amplifier due to A.Venkatesh, we choose:

$$
x_{\mathfrak{l}}=\left\{\begin{array}{lc}
\operatorname{sign}\left(\lambda_{\pi}(\mathfrak{l})\right) & \text { if } \mathfrak{l} \in \Lambda \text { and } \lambda_{\pi}(\mathfrak{l}) \neq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

This gives

$$
\begin{aligned}
& \left(\sum_{\mathfrak{l} \in \Lambda}\left|\lambda_{\pi}(\mathfrak{l})\right|\right)^{2}\left|\sum_{m \in F^{\times}} W_{\phi}\left(\begin{array}{cc}
m \varpi_{\mathfrak{p}} & 0 \\
0 & 1
\end{array}\right) K\left(m_{p}\right)\right|^{2} \\
& \ll f_{\infty}, F, K(\mathrm{Nm}(\mathfrak{p}))^{1+\epsilon} \cdot L^{1+\epsilon}+\sqrt{\mathrm{Nm}(\mathfrak{p})} \cdot L^{4+\epsilon}
\end{aligned}
$$

Since

$$
\sum_{\mathfrak{l} \in \Lambda}\left|\lambda_{\pi}(\mathfrak{l})\right| \ggg L^{1-\epsilon}
$$

we may conclude by setting $L=(N m(\mathfrak{p}))^{\frac{1}{6}}$.

Thank you for your kind attention!

