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Overview

Inverse Function Theorems. Inverse function theorems (IFT) concern the
solvability of the equation

f(x) = y

near a point x0 where the derivative f ′(x0) is surjective. For C1-maps f : Rd ⊃
U → Rd between finite dimensional spaces the IFT is proved in undergraduate
analysis, but the same result holds true also for C1-maps

f : B1 ⊃ U → B2,

where B1 and B2 are (infinite dimensional) Banach spaces and f ′(x0) has a
bounded right inverse. A typical application of this occurs in elliptic non-linear
PDE, where we might have:

Sobolev spaces: B1 = Hs+2(Ω), B2 = Hs(Ω), Laplacian: f ′(0)h = ∆h.

Showing that the linearisation f ′(0) : B1 → B2 has a right inverse f ′(0)−1 thus
amounts to solving a Laplace equation, together with a bound of the form

||f ′(0)−1u||Hs+2 . ||u||Hs . (1)
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The applicability of a Banach space IFT is warranted by the right inverse
f

′
(0)−1 gaining as many derivatives as an application of f costs—one refers to

this by saying that there is no ‘loss of derivatives’.

Nash-Moser theory. The Nash–Moser theorem deals with situations where
there is a loss of derivatives. Indeed, given a non-linear map

f : C∞(Td) ⊃ U → C∞(Td)

that is C1 (in a suitable sense), the linearisation f ′(x0) : C∞(Td) → C∞(Td)
might be surjective, but instead of (1) one might only have bounds of the form

||f ′(x0)
−1u||Hs+m . ||u||Hs+r , (2)

where, morally speaking, m is the number of derivatives an application of f
‘costs’ and r ≥ 0 is the number of ‘lost derivatives’. In a situation like this
one might not be able to fix a pair of Banach spaces, while the Nash–Moser
theorem might still be applicable.

The phenomenon of a loss of derivatives occurs in several problems across
analysis and differential geometry, a prominent example being Nash’s isomet-
ric embedding theorem. As it turns out, this particular problem can be solved
without the Nash–Moser theorem (and this is not the only example where a
theorem, originally proved using Nash-Moser, has been reproved using Ba-
nach space methods). There are however situations where the Nash–Moser
technique seems indispensable.

KAM theory. An important example of this occurs inKAM Theory (KAM =
Kolmogorov–Arnold–Moser), which is concerned with the perturbation theory
of integrable Hamiltonian systems.

Much of the early interest in this stems from the question of stability of
our solar system: assuming that the n planets are not mutually attracted to
each other, they orbit around the sun with constant frequencies ω1, . . . , ωn,
which is to say that the orbit of the dynamical system is constrained to an
n-dimensional torus. A more realistic model is obtained by allowing for a
small perturbation of the system, taking into account a small (in comparison
to the sun) mutual attractive force. One then asks whether the invariant torus
survives the perturbation and thus the motion is qualitatively comparable to
the zero-mass situation or not, allowing for chaotic behaviour.

The classical KAM theorem has an answer to the question, albeit one that
is extremely sensitive to the frequency vector ω = (ω1, . . . , ωn) and should
rather be interpreted as a probabilistic statement: in the perturbed system, a
randomly chosen orbit lies on an invariant torus with high probability.
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List of topics

Each topic should be covered in one 60-75 minute talk. Talks marked with
a [†] can be left out if there are too few participants. In case of additional
demand, further topics can be provided (14 talks maximum).

# Topic Reference

1 Hamiltonian mechanics, integrable systems
and action-/angle variables

[2, Chapter 18]

2 Classical KAM theorem: statement and re-
duction to Thm. A+B

[4, Chapters 1-2]

3 Classical KAM theorem: overview of proof [4, Chapter 3]

4 Classical KAM theorem: KAM-step and end
of proof

[4, Chapter 4-5]

5 Littlewood Payley theory and regularisation
operators

[1, Chapter II.A.1]

6[†] Hölder space estimates of products and com-
positions

[1, Chapter II.A.2]

7 Banach space IFT and applications [1, Chapter III.A]

8[†] Fixed point method 1 (symmetric hyperbolic
systems)

[1, Chapter III.B.1]

9[†] Fixed point method 2 (isometric embed-
dings)

[1, Chapter III.B.2]

10 Nash-Moser: overview, examples, tame esti-
mates

[1, Chapter III.C.1-3]

11 Nash-Moser theorem – Part 1 [1, Chapter III.C.4]

12 Nash-Moser theorem – Part 2 [1, Chapter III.C.4]
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