
Summer school on

Analysis of multiple ergodic averages

Kopp, September 24- September 29, 2023

I. Convergence of ergodic averages

1. Tao, T. (2008). Norm convergence of multiple ergodic averages
for commuting transformations. Ergodic Theory and Dynamical
Systems, 28(2), 657-688. doi:10.1017/S0143385708000011
ArXiv link: https://arxiv.org/abs/0707.1117
Remarks: Prove Theorems 1.1 and 1.6 in the case l = 2 (for two com-
muting transforms).
James Leng, UCLA

2. Austin, T. (2010). On the norm convergence of non-conventional
ergodic averages. Ergodic Theory and Dynamical Systems, 30(2),
321-338
Arxiv link: https://arxiv.org/abs/0805.0320
Remarks: Prove Theorem 1.1 in the special case of Z-actions (r = 1),
with the standard sequence of averaging sets IN + aN = {−N, . . . , N}
rather than Følner sequences, and if need be, for two commuting actions
(d = 2).
Noa Bihlmaier, Tübingen

3. Walsh, M. N. (2012). Norm convergence of nilpotent ergodic
averages. Annals of Mathematics, 1667-1688.
Arxiv link: https://arxiv.org/abs/1109.2922
Remarks: Prove Theorem 1.1 (generalization of the above results to
nilpotent groups).
Chiara Paulsen and Lars Niedorf, Kiel

II. Szemeredi’s and Roth Thoerems

4. Furstenberg, H., Katznelson, Y., & Ornstein, D. (1982). The
ergodic theoretical proof of Szemerédi’s theorem. Bulletin of
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the American Mathematical Society, 7(3), 527-552.
Access Link: https://projecteuclid.org/journals/bulletin-of-the-american-
mathematical-society-new-series/volume-7/issue-3/The-ergodic-theoretical-
proof-of-Szemerédis-theorem/bams/1183549768.full
Remarks: State and prove Theorem II (briefly state but don’t spend time
on the proof of Theorem I). The proof is contained in §6-§10. If there is
time, briefly discuss some special cases (in §2).
Patrick Hermle, Wuppertal

5. Ruzsa, I. Z. (1994). Generalized arithmetical progressions and
sumsets. Acta Mathematica Hungarica, 65(4), 379-388.
and
Gowers, W. T. (1998). A new proof of Szemerédi’s theorem for
arithmetic progressions of length four. Geometric & Functional
Analysis GAFA, 8(3), 529-551.
Access links: https://link.springer.com/article/10.1007/BF01876039
and
https://link.springer.com/article/10.1007/s000390050065
Remarks: Prove Theorem 1.1 (Freiman’s theorem) from the first ref-
erence. Using this, prove the results in Sections 3 and 4 of the second
reference. These will be used in the following talk.
Dimas de Albuquerque and Gautam Neelakantan Memana, UW Madison

6. Gowers, W. T. (1998). A new proof of Szemerédi’s theorem for
arithmetic progressions of length four. Geometric & Functional
Analysis GAFA, 8(3), 529-551.
Access link: https://link.springer.com/article/10.1007/s000390050065
Remarks: Prove Theorem 20, assuming the results from Sections 3 and 4
(in particular, Proposition 9 and Corollary 14), presented in the preceding
talk.
Kornélia Héra, Budapest/Bonn

7. Green, B. (2006). Montreal Lecture Notes on Quadratic Fourier
Analysis. Proceedings of the CRM-Clay Conference on Additive
Combinatorics, Montreal 2006.
Arxiv link: https://arxiv.org/abs/math/0604089
Remarks: Start with Definition 1.10, prove Proposition 2.2, Propositions
1.13 and 1.14 are covered in the preceding two talks. Apply Proposition
2.2 to find arithmetic progressions of length 4 in subsets of Fn

5 .
Bora Çalim and Nihan Tanısalı, Istanbul

8. Prendiville, S. (2017). Quantitative bounds in the polynomial
Szemerédi theorem: the homogeneous case. Discrete Analysis,
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2017(5).
ArXiv link: https://arxiv.org/pdf/1409.8234.pdf
Remarks: Give the proof of Corollary 5.3 (Local von Neumann theorem)
in the integer setting as discussed in §3-5. Briefly discuss how these ar-
guments can be used to deduce Proposition 2.2 in the following paper (in
the finite field setting).
Borys Kuca, Crete

9. Peluse, S. (2019). On the polynomial Szemerédi theorem in fi-
nite fields. Duke Mathematical Journal, 168(5), 749-774. (Part
1)
ArXiv link: https://arxiv.org/abs/1802.02200
Remarks: Cover sections 1-3. State Theorem 1.1, reduce it to Theorem
2.1 and prove this theorem in the case m1 = 1 (the base case of the in-
duction), assuming Proposition 2.2. Illustrate the inductive step using the
simpified example in §4.1.
Lars Becker, Bonn

10. Peluse, S. (2019). On the polynomial Szemerédi theorem in fi-
nite fields. Duke Mathematical Journal, 168(5), 749-774. (Part
2)
ArXiv link: https://arxiv.org/abs/1802.02200
Remarks: Cover sections 4-6 (except §4.1). State Theorem 2.1 in the
general case by induction on m1. Reduce it to Lemma 4.1 and then prove
it.
Jonathan Chapman, Bristol

11. Peluse, S., & Prendiville, S. (2019). Quantitative bounds in
the nonlinear Roth theorem. arXiv preprint arXiv:1903.02592.
(Part 1)
ArXiv link: https://arxiv.org/abs/1903.02592
Remarks: Cover §2 and §6-§8. Take what is needed from §1 (Introduc-
tion). Would be good to cover the outline of the proof in §1 (coordinate
with the person giving the next talk).
Alternative reference:
Prendiville, S. (2020). The inverse theorem for the nonlinear
Roth configuration: an exposition. arXiv preprint arXiv:2003.04121.
Guo-Dong Hong, Caltech

12. Peluse, S., & Prendiville, S. (2019). Quantitative bounds in
the nonlinear Roth theorem. arXiv preprint arXiv:1903.02592.
(Part 2)
ArXiv link: https://arxiv.org/abs/1903.02592
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Remarks: Cover §3-5 and the relevant parts from §1 (coordinate with
the person giving the preceding talk).
Alternative reference:
Prendiville, S. (2020). The inverse theorem for the nonlinear
Roth configuration: an exposition. arXiv preprint arXiv:2003.04121.
Seljon Akhmedli, Northwestern

III. Applications of Peluse-Prendiville theory

13. Frantzikinakis, N. (2023). Joint ergodicity of sequences. Ad-
vances in Mathematics, 417, 108918.
ArXiv link: https://arxiv.org/abs/2102.09967
Remarks: The goal is to prove Theorem 1.1 and, if time permits, Corol-
laries 1.3, 1.4. This covers §1-4. §2 gives the ideas of the proof in the
special, simpler case of the Furstenberg-Weiss theorem (Theorem 2.1).
First prove this, and then go on to the proof of Theorem 1.1.
Andreas Mountakis, Warwick

14. Durcik, P., & Roos, J. (2022). A new proof of an inequality of
Bourgain. arXiv preprint arXiv:2210.01326.
ArXiv link: https://arxiv.org/abs/2210.01326
Remarks: Prove Theorem 1.
Leonidas Daskalakis, Rutgers

IV. Wiener–Wintner, return time’s theorem, and pointwise
convergence on nilmanifolds

15. Leibman, A. (2005). Pointwise convergence of ergodic averages
for polynomial sequences of translations on a nilmanifold. Er-
godic Theory and Dynamical Systems, 25(1), 201-213.
Access link: https://people.math.osu.edu/leibman.1/preprints/pen.pdf
Remarks: Work out the proofs of Theorems A, B and C only for to
Følner sequence [−N,N ] on Z.
Konstantinos Tsinas, Crete

16. Rudolph, D. J. (1994). A joinings proof of Bourgain’s return
time theorem. Ergodic Theory and Dynamical Systems, 14(1),
197-203.
Remarks: Prove Theorem 1.
Zi Li Lim, UCLA
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17. Assani, I., Duncan, D., & Moore, R. (2016). Pointwise charac-
teristic factors for Wiener–Wintner double recurrence theorem.
Ergodic Theory and Dynamical Systems, 36(4), 1037-1066.
ArXiv link: https://arxiv.org/abs/1402.7094
Remarks: Focus on proving (1) of Theorem 2.3. This is divided into
Theorems 4.1 and 5.1. Try to cover the proof of both (§1-5). This paper
uses results from the previous two papers.
Leon Duensing, Tübingen

V. Harmonic analysis of ergodic averages

18. Durcik, P. (2015). An L4 estimate for a singular entangled
quadrilinear form. Mathematical Research Letters, 22(5), 1317-
1332.
ArXiv link: https://arxiv.org/abs/1412.2384
Remarks: Prove Theorem 1.
Jacob Denson and Jacob Fiedler, UW Madison

19. Durcik, P., Kovač, V., Škreb, K. A., & Thiele, C. (2019). Norm
variation of ergodic averages with respect to two commuting
transformations. Ergodic Theory and Dynamical Systems, 39(3),
658-688.
ArXiv link: https://arxiv.org/abs/1603.00631
Remarks: Prove only Theorem 2.
Fred Lin, Bonn and Martin Hsu, Purdue

20. Tao, T. (2016). Cancellation for the multilinear Hilbert trans-
form. Collectanea Mathematica, (67), 191–206
ArXiv link: https://arxiv.org/abs/1505.06479
Remarks: Prove Theorem 1.2 (use Theorem 3.9 as blackbox).
Wojciech S lomian, Wroc law

21. Zorin-Kranich, P. (2017). Cancellation for the simplex Hilbert
transform. Mathematical Research Letters, 24(2), 581-592. ArXiv
link: https://arxiv.org/abs/1507.02436
Remarks: Prove Theorem 1.3.
Jianghao Zhang, Bonn

22. Durcik, P., Kovač, V., & Thiele, C. (2019). Power-type can-
cellation for the simplex Hilbert transform. Journal d’Analyse
Mathématique, 139(1), 67-82.
ArXiv link: https://arxiv.org/abs/1608.00156
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Remarks: Prove Theorem 1 (cover §2-§4). Mention Corollary 2.
Jaume de Dios, UCLA/ETH

23. Durcik, P., & Thiele, C. (2020). Singular Brascamp-Lieb in-
equalities with cubical structure. Bulletin of the London Math-
ematical Society, 52(2), 283-298.
ArXiv link: https://arxiv.org/abs/1809.08688
Remarks: Prove Theorem 1.
Michel Alexis, McMaster/Bonn

24. Durcik, P., & Kovač, V. (2021, November). Boxes, extended
boxes and sets of positive upper density in the Euclidean space.
In Mathematical Proceedings of the Cambridge Philosophical So-
ciety (Vol. 171, No. 3, pp. 481-501). Cambridge University
Press.
ArXiv link: https://arxiv.org/pdf/1809.08692.pdf
Remarks: Prove Theorems 1 and 2, assuming the main result of the pre-
ceding paper.
Ethan Ackelsberg, IAS/EPFL

Additional topics

25. Karagulyan G., Lacey M., Martirosyan, V. (2022) On the con-
vergence of multiple ergodic means. New York J. Math. 28 ,
1448–1462.
ArXiv link: https://arxiv.org/pdf/2208.00215.pdf
Gevorg Mnatsakanyan, Bonn

26. Jones R., Seeger A., Wright, J.(2008) Strong variational and
jump inequalities in harmonic analysis. Trans. Amer. Math.
Soc. 360 , no. 12, 6711–6742. On pages 2-3, the paper sketches an
alternative proof of Birkhoff’s ergodic theorem via a stronger variational
bound using Lépingle. Collect together the ingredients for this sketch from
the various ressources quoted here and present this proof in detail.
Joe Trate, Bonn

27. Host, B., & Kra, B. (2005). Nonconventional ergodic averages
and nilmanifolds. Annals of Mathematics, 397-488.
Access link: https://annals.math.princeton.edu/wp-content/uploads/annals-
v161-n1-p08.pdf Remarks: Workout everything in the Conze–Lesigne
case k = 2 (see Section 8), and until and including Lemma 8.8.
Henrik Kreidler, Wuppertal
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28. Furstenberg, H., & Weiss, B. (1996). A Mean Ergodic Theorem

for 1
NΣN

n=1f(T
nx)g(Tn2

x). In Convergence in ergodic theory and
probability (pp. 193-228). de Gruyter.
Yoav Cohn, HUJI
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