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1 Boxes, extended boxes and sets of positive
upper density in the Euclidean space

After P. Durcik and V. Kovač [DK]

A summary written by Ethan Ackelsberg

Abstract

We present an argument of Durcik and Kovač [DK] showing that
sets of positive upper Banach density in sufficiently high dimension
contain congruent copies of all large dilates of the 2n vertices of an
n-dimensional rectangular box, as well as the extension of a box by n
vertices completing 3-term arithmetic progressions.

1.1 Introduction

Euclidean Ramsey theory is concerned with finding congruent copies of ge-
ometric configurations in large subsets of Euclidean space. The relevant
notion of largeness for this paper is as follows: the upper Banach density of
a measurable subset A ⊆ Rd is the quantity

δ(A) := lim sup
N→∞

sup
x∈Rd

∣∣A ∩ (x + [0, N ]d
)∣∣

Nd
,

where |·| denotes the d-dimensional Lebesgue measure on Rd.
The first result states that sets of positive upper Banach density in suffi-

ciently high dimension contain congruent copies of all large dilates of the 2n

vertices of any given n-dimensional rectangular box.

Theorem 1 ([DK], Theorem 1). Let a1, . . . , an > 0. For any natural numbers
d1, . . . , dn ≥ 5 and any measurable set A ⊆ Rd1 × · · · × Rdn with δ(A) > 0,
there exists λ0 > 0 such that for any λ ≥ λ0, the set A contains a box

B(x1, . . . , xn; s1, . . . , sn) := {(x1 + ε1s1, . . . , xn + εnsn) : ε1, . . . , εn ∈ {0, 1}}

with xj, sj ∈ Rdj and ‖sj‖`2 = λaj.
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Extending the boxes appearing in Theorem 1 introduces new difficulties:
Bourgain [B] constructed a set A ⊆ R with δ(A) > 0 for which there is
an unbounded sequence sm → ∞ such that A does not contain any 3-term
arithmetic progressions with common difference sm. However, in higher di-
mensions, Cook, Magyar, and Pramanik [CMP] proved a density theorem
for 3-term arithmetic progressions when the size of the common difference is
measured in the `p norm for 1 < p <∞, p 6= 2.

The second main result of this paper is a common generalization of The-
orem 1 and the aforementioned result from [CMP] about 3-term arithmetic
progressions.

Theorem 2 ([DK], Theorem 2). Let a1, . . . , an > 0, and let 1 < p <∞, p 6=
2. There exists a threshold d0 such that for any natural numbers d1, . . . , dn ≥
d0 and any measurable set A ⊆ Rd1 × · · · × Rdn with δ(A) > 0, there exists
λ0 > 0 such that for any λ ≥ λ0, the set A contains a 3AP-extended box

B3AP (x, s) := B(x, s) ∪ {(x1 + 2s1, . . . , xn), . . . , (x1, x2, . . . , xn + 2sn)}

with x = (x1, . . . , xn), s = (s1, . . . , sn) ∈ Rd1 × · · · × Rdn and ‖sj‖`p = λaj.

1.2 Strategy of the proof

Rather than proving Theorem 2 directly, we deduce it from a result about
higher-dimensional configurations and then project. Namely, we will prove a
similar statement for corner-extended boxes

Bx(x1, . . . , xn; y1, . . . , yn; s1, . . . , sn)

:= {x1 + ε1s1, . . . xn + εnsn, y1, . . . , yn) : ε1, . . . , εn ∈ {0, 1}}
∪ {(x1, . . . , xn, y1 + s1, . . . , yn), . . . , (x1, . . . , xn, y1, . . . , yn + sn)}

with xj, yj, sj ∈ Rdj , sj 6= 0. Note that the projection (xj, yj) 7→ yj − xj
sends the corner-extended box Bx(x,y, s) ⊆

(
Rd1 × · · · × Rdn

)2 to the 3AP-
extended box B3AP (y−x, s) ⊆ Rd1 × · · · ×Rdn . Theorem 2 therefore follows
from

Theorem 3 ([DK], Theorem 3). Let a1, . . . , an > 0, and let 1 < p <∞, p 6=
2. There exists a threshold d0 such that for any natural numbers d1, . . . , dn ≥
d0 and any measurable set A ⊆

(
Rd1 × · · · × Rdn

)2 with δ(A) > 0, there exists
λ0 > 0 such that for any λ ≥ λ0, the set A contains a corner-extended box
Bx(x,y, s) for some x,y, s ∈ Rd1 × · · · × Rdn with ‖sj‖`p = λaj.
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In order to prove the existence of a configuration in the subset A, we
will establish positivity of an associated average that provides a normalized
count of configurations in A. To that end, define the measure σd,p on Rd

by σd,p(s) = δ(1 − ‖s‖p`p), where δ is the Dirac δ distribution. The dilated
measure σd,pλ , defined by σd,pλ (A) = σd,p(λ−1A), is supported on the surface
{s ∈ Rd : ‖s‖`p = λ}.

Fix d1, . . . , dn, and let D = d1 + · · · + dn. Let a = (a1, . . . , an) ∈ Rn
>0 be

fixed. For λ > 0, we let σpλa denote the product measure σd1,pλa1
× · · · × σdn,pλan

on Rd1 × · · · × Rdn ∼= RD. We then define the pattern-counting forms at a
scale λ > 0 by

N p
λ (f) :=

ˆ
R2D

∏
z∈B(x,s)

f(z) dσpλa(s) dx

and

Ñ p
λ (f) :=

ˆ
R3D

∏
z∈Bx(x,y,z)

f(z) dσpλa(s) dx dy.

The quantities N p
λ and Ñ p

λ are normalized counts of boxes and corner-
extended boxes at the scale λ, weighted by the function f . In particular,
if N p

λ (1A) > 0, then A contains a box B(x, s) for some x, s ∈ RD with
‖sj‖`p = λaj. Similarly, if Ñ p

λ (1A) > 0, then A contains a corner-extended
box B(x,y, s) for some x,y, s ∈ RD with ‖sj‖`p = λaj.

We will also work with smoothed approximations of the pattern-counting
forms, defined by

Mp,ε
λ (f) :=

ˆ
R2D

∏
z∈B(x,s)

f(z) ωp,ελa (s) ds dx

and

M̃p,ε
λ (f) :=

ˆ
R3D

∏
z∈Bx(x,y,z)

f(z) ωp,ελa (s) ds dx dy,

where ωp,ελa is a smooth bump function supported in an ε-neighborhood of the
surface

{
s ∈ RD : ‖sj‖`p = λaj for j ∈ {1, . . . , n}

}
. A precise definition for

ωp,ελa can be found in [DK, Section 2]. Finally, let

Ep,ελ (f) :=Mp,ε
λ (f)− b(p, ε)Mp,1

λ (f)

10



and

Ẽp,ελ (f) := M̃p,ε
λ (f)− b(p, ε)M̃p,1

λ (f),

where

b(p, ε) :=

´
RD ω

p,ε(s) ds´
RD ω

p,1(s) ds
.

We now sketch the proof of Theorem 1. The proof strategy for Theorem
3 is completely analogous.

Proof of Theorem 1 (sketch). A standard argument by contradiction shows
that it suffices to prove the following: for any sufficiently large N ≥ N(δ),
any measurable subset A ⊆ [0, N ]D with |A| ≥ δND, and any sequence of
scales λ1 < λ2 < · · · < λM ≤ N with λm+1 ≥ 2λm and M ≥ M(δ), there
exists m ∈ {1, . . . ,M} such that N 2

λm
(1A) > 0.

We may write

N 2
λm(1A) = b(2, ε)M2,1

λm
(1A) +

(
N 2
λm(1A)−M2,ε

λm
(1A)

)
+ E2,ε

λm
(f).

The main term b(2, ε)M2,1
λm

(1A) is large (≥ C(D, δ)ND) by an application
of the multidimensional Szemerédi theorem of Furstenberg and Katznelson
[FK] and an estimate on b(2, ε) from [CMP]. The first error term N 2

λm
(1A)−

M2,ε
λm

(1A) tends to zero as ε → 0, sinceM is a smoothed approximation of
N . The remaining error term E2,ε

λm
(f) is small for all large enough values of

m as a consequence of a singular Brascamp–Lieb inequality due to Durcik
and Thiele [DT]. Hence, taking ε sufficiently small and m sufficiently large,
N 2
λm

(1A) > 0 as desired.
The full argument can be found in [DK, Section 2], where the main term

is handled in [DK, Proposition 4], the first error term in [DK, Proposition
5], and the second error term in [DK, Proposition 6].

1.3 Key estimate

The most technically demanding part of the proof outlined above is the
estimate of the second error term E2,ε

λm
(f). We use the notation A(N) �P

B(N) to denote an inequality of the form A(N) ≤ CB(N), where C is a
constant depending on the parameters P .

Proposition 4 ([DK], Proposition 6). Let 1 < p < ∞, 0 < ε < 1
10D

, and
0 < λ1 < · · · < λM with λm+1 ≥ 2λm.

11



1. If f : RD → [0, 1] is a measurable function supported on [0, N ]D, then

M∑
m=1

∣∣Ep,ελm(f)
∣∣�D,ε N

D.

2. If f : R2D → [0, 1] is a measurable function supported on [0, N ]2D, then(
M∑
m=1

∣∣∣Ẽp,ελm(f)
∣∣∣2)1/2

�D,ε N
2D.

Part 1 of Proposition 4 is deduced from the following singular Brascamp–
Lieb inequality (Part 2 follows from a similar inequality corresponding to
corner-extended boxes):

Theorem 5 ([DK], Theorem 10(a)). Let K : RD → C be a bounded com-
pactly supported function satisfying the symbol estimates∣∣∣∂κK̂(ξ)

∣∣∣ ≤ Cκ‖ξ‖−|κ|`2 (1)

for any multi-index κ. Then∣∣∣∣∣∣
ˆ
R2D

K(s)
∏

ε∈{0,1}n
Fε(x + εs) ds dx

∣∣∣∣∣∣�(Cκ)κ,d1,...,dn

∏
ε∈{0,1}n

‖Fε‖L2n ,

where εs denotes the point (ε1s1, . . . , εnsn) ∈ Rd1 × · · · × Rdn.

In the special case d1 = · · · = dn, Theorem 5 follows from [DT, Theorem
1], and the general case can be reduced to this one (see [DK, Section 4] for
details).

We end with a sketch of the proof of Proposition 4 using Theorem 5.

Proof of Proposition 4 (sketch). For each m ∈ {1, . . . ,M}, expand

Ep,ελm(f) =

ˆ
R2D

∏
z∈B(x,s)

f(z)
(
ωp,ελma(s)− b(p, ε)ωp,1λma(s)

)
ds dx.

The function ωp,ελma(s)− b(p, ε)ωp,1λma(s) may be written in the form
n∑
i=1

n∏
j=1

ϕi,jλm(sj)

12



for some C1 functions ϕi,jλm with
´
ϕi,iλm = 0 and ϕi,jλm ≥ 0 for i 6= j.

Let αm ∈ {−1, 1} so that ∣∣Ep,ελm∣∣ = αmEp,ελm .

Then
M∑
m=1

∣∣Ep,ελm∣∣ =
n∑
i=1

ˆ
R2D

Ki(s)
∏

z∈B(x,s)

f(z) ds dx

for

Ki(s) =
M∑
m=1

αmϕ
i,1
λm

(s1) . . . ϕi,nλm(sn).

One can check that the kernels Ki satisfy the estimates (1), so we conclude

M∑
m=1

∣∣Ep,ελm∣∣� ‖f‖2n

L2n ≤ ND.
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2 Quantitative bounds in the nonlinear Roth
theorem, part II

After S. Peluse and S. Prendiville [PP 22]

A summary written by Seljon Akhmedli

Abstract

We summarize a quantitatively effective version of the polynomial
Szemerédi theorem for nonlinear Roth configurations of the form x, x+
y, x+ y2.

2.1 Introduction

One of the classical theorems in combinatorics is of Szemerédi’s which says
a set with positive density will contain arbitrarily long arithmetic progres-
sions. In a similar spirit, there are other types of configurations (besides
arithmetic progressions) which arise in dense sets such as polynomial pro-
gressions. Indeed, the polynomial Szemerédi theorem says if p1, ..., pn ∈ Z[y]
with pi(0) = 0 for all 1 ≤ i ≤ n, then any set S ⊂ N with positive upper den-
sity must contain a nontrivial progression of the form x, x+p1(y), ..., x+pn(y).
Another equivalent form of saying this is that the size of the largest subset of
{1, 2, ..., N} lacking the nontrivial polynomial progression is o(N). Gowers
[G 01] produces bounds on the density in Szemerédi’s theorem, namely, for
all k ∈ N, there exists c(k) > 0 s.t. any subset of {1, 2, ..., N} of density at
least (log logN)−c contains an arithmetic progression of length k. In [Pre 17],
quantitative bounds are given for the polynomial Szemerédi theorem but in
the homogeneous case, namely, when the polynomials pi(y), 1 ≤ i ≤ n, are
all of the same degree. The main result in [PP 22] given below is the first
quantitative version of the theorem for polynomial progressions of length
three and of differing degrees over Z.

Theorem 1. There exists c > 0 such that if A ⊂ {1, 2, ..., N} does not
contain a nontrivial progression of the form

x, x+ y, x+ y2,

then
|A| � N(log logN)−c.
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We note that having a zero constant term in the polynomial progressions
is necessary; for example, within the even numbers, we already cannot find
a configuration of the form x, x + y + 1, x + y2 by parity reasons. Bourgain
and Chang gave quantitative bounds on the nonlinear Roth configuration
x, x + y, x + y2 over Fp [BC 17]. However, there are difficulties in adapting
their method to Z. Peluse [Pel 19] shows that under certain conditions on
the characteristic of Fp, there exists c > 0 such that any subset of Fp of size
at least p1−c will contain a nontrivial polynomial progression

x, x+ p1(y), ..., x+ pm(y)

where pi(0) = 0 for all 1 ≤ i ≤ m. Peluse and Prendiville are able to utilize
an important idea from [Pel 19], that is, if one can control the nonlinear Roth
progressions by a Gowers U s norm, then we can descend in s to obtain control
by a U1-seminorm through the degree lowering method. In the setting of
finite fields, the so-called PET induction scheme of Bergelson and Leibman
controls these configurations by a global U s norm. Because of difficulties
which arise in the integer setting, the PET induction only reduces to working
with an average of constrained U1-seminorms and we instead get localized U1

norm control. The authors in [PP 22] then show these averages are controlled
by a global Gowers U s norm.

2.2 Control by a global Gowers norm

Definition 1. Let f : Z → C and ∆hf : Z → C be the difference function
of f given by

∆hf(x) = f(x)f(x+ h).

Then the Gowers U s-norm of f is given by

||f ||Us :=
( ∑
x,h1,...,hs

∆h1,...,hsf(x)
) 1

2s

.

If S ⊂ Z, then the localized Gowers U s-norm is ||f ||Us(S) := ||f1S||Us .

Definition 2. The counting operator on the functions fi : Z→ C by

Λq(f0, f1, f2) :=
∑
x∈Z

∑
y∈N

f0(x)f1(x+ y)f2(x+ qy2).
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Notice when fi = 1[N ] for i = 0, 1, 2, the counting operator Λq(f0, f1, f2)
counts the number of nonlinear Roth progressions in [N ]. The theorem below
provides control of this count by a Gowers U5-norm.

Theorem 2. Let g0, g1, f : Z→ C be 1-bounded functions, each supported in
[N ] := {1, 2, ..., N}. Suppose that∣∣∣∑
x∈Z

∑
y∈N

g0(x)g1(x+ y)f(x+ qy2)
∣∣∣ ≥ δ

∑
x∈Z

∑
y∈N

1[N ](x)1[N ](x+ y)1[N ](x+ qy2).

Then either N � q or∑
u∈[q]

||f ||25U5(u+qZ) � δO(1)
∑
u∈[q]

||1[N ]||2
5

U5(u+qZ).

In the proof of the above theorem, there are multiple technical lemmas
used. We will highlight some of those main ingredients and tools in the
following subsections.

2.3 PET Induction and van der Corput

The polynomial exhaustion technique (PET) was first developed by Bergelson
and Leibman [BL 96] in the proof of the classical polynomial van der Waerden
theorem. In [PP 22], the tool is used to replace working with univariate
polynomials like y2 in our progression to instead working with bilinear forms
such as ah. Notice the polynomial y2 has a sparse image compared to ah and
this creates difficulties in trying to obtain control by some U s norm. The van
der Corput method in some sense takes a large nonlinear average and bounds
it by a large linear average. By applying Cauchy-Schwarz, van der Corput,
and a change of variables, [PP 22, Lemma 3.2] shows how difference functions
control linear progressions like x, x+ ay, a+ by, x+ (a+ b)y, where a, b ∈ Z.
The next step is linearization where the counting operator Λq(f0, f1, f2) will
be controlled by difference functions of bilinear forms. We give this lemma
below.

Lemma 1. Let fi : Z → C be such that |fi| ≤ 1 and with support in [N ].
Then for any 1 ≤ H ≤M we have∣∣∣ 1

NM
Λq(f0, f1, f2)

∣∣∣32

�
∑
a,b,h

µM(a)µM(b)µH(h)Ex∈[N ]∆2q(a+b)h1,2qbh2,2qah3f2(x)
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where M := b
√
N/qc.

Thus the largeness of the counting operator implies the largeness of

(1)
∑

a,b∈[N
1
2 ]

∑
h1,h2,h3∈[N

1
2 ]

∑
x

∆ah1,bh2,(a+b)h3f2(x),

and with an inverse theorem and concatenation result we will be able to
further show largeness of ||f2||U5 .

2.4 An Inverse Theorem

Lemma 2. Let a, b be positive integers and coprime. Suppose that f : Z→ C
is 1-bounded with support in the interval [N ] and satisfies

(2)
∑
h,x

µH(h)∆ah1,bh2f(x) ≥ δN.

Then there exists 1-bounded functions g, h : Z→ C such that g is a-periodic,
h is almost b-periodic and furthermore∣∣∣∑

x

f(x)g(x)h(x)
∣∣∣ ≥ δbHc2 − 2

(H
a

+
Hb

N

)
bHc2.

The proof of the above reduces to relating (2) to a box norm. In fact,
understanding the largeness of (2) comes down to understanding the largeness
of two dimensional Gowers box norms in directions ‘a’ and ‘b’. Indeed, the
largeness of this norm will imply a correlation of f with a product of periodic
and almost periodic 1-bounded functions.

2.5 Quantitative Concatenation

Notice in (1), the coefficients of the hi in the difference function of f2 have
some linear dependence. The purpose of the concatenation theorems are
to work with this type of dependence. Roughly speaking, if one can un-
derstand the largeness of a function in two different directions, then one
can understand the largeness in both directions jointly. There are a few
technical lemmas in the final step to obtain control by a global U5 norm.
The essence of [PP 22, Lemma 5.3] is if

∑
a,h∈[N

1
2 ]

∑
x ∆ahf(x) is large, then
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∑
k∈(−N,N)

∑
x ∆kf(x) is large as well. So on average the behavior of these

functions is relatively the same. Similarly, the motivation behind [PP 22,
Lemma 5.4] is that ∆ahf behaves like fga on average, where ga is an a-
periodic function. The proof of Theorem 2 uses all of the above tools and
methods but there is still more work needed to obtain U5 control for the
nonlinear Roth configurations.
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3 Singular Brascamp-Lieb inequalities with cu-
bical structure

After P. Durcik and C. Thiele [DuTh]

A summary written by Michel Alexis

Abstract

In [DuTh], Durcik-Thiele show that for a collection of linear trans-
formations possessing “cubical symmetry”, the associated singular Brascamp-
Lieb inequalities hold if and only if the standard dimensional Brascamp-
Lieb criterion holds across all linear subspaces V of the ambient space.
Because this criterion is only known to be necessary for singular Brascamp-
Lieb inequalities, this result of Durcik-Thiele strengthens the conjec-
ture that a general singular Brascamp-Lieb inequality holds if and only
if the same Brascamp-Lieb criterion holds across all linear subspaces
V .

3.1 Introduction

Fix surjective linear maps Πi : Rm → Rki and exponents pi ∈ [1,∞] for
i = 1, . . . , n. One may ask whether there exists a constant C for which the
following multilinear inequality holds,∣∣∣∣∣∣

ˆ

Rm

(
n∏
i=1

Fi (Πix)

)
dx

∣∣∣∣∣∣ ≤ C
n∏
i=1

‖Fi‖pi . (1)

This sort of inequality is known as a Brascamp-Lieb inequality. In [BeCaChTa],
it was shown that inequality (1) holds if and only if for every linear subspace
V ⊂ Rm we have

dim (V ) ≤
n∑
i=1

1

pi
dim (ΠiV ) , (2)

with equality in (2) when V = Rm. To communicate to the reader why these
are inequalities of interest to analysts, consider for instance the case that Πi

equals the identity on Rm: then the Brascamp-Lieb inequality (1) reduces
to Hölder’s inequality for the n functions {Fi}1≤i≤n, and (2) reduces to the
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classical condition
n∑
i=1

1
pi

= 1. And for instance when n = 2, if we consider

the linear surjective maps Π1 : R4 → R2 and Π2 : R2 → R2 given by

Π1(x, y) = x− y , Π(y) = y , x, y ∈ R2 ,

then (1) yields a particular case of Young’s inequality∣∣∣∣ˆ ˆ F1(x− y)F2(y)dydx

∣∣∣∣ ≤ C ‖F1‖p1 ‖F2‖p2 .

and (2) reduces to the corresponding exponents 1
p2

= 1
p2

= 1.
In their paper [DuTh], Durcik-Thiele consider singular Brascamp-Lieb

inequalities, i.e. inequalities of the form∣∣∣∣∣∣
ˆ

Rm

(
n∏
i=1

Fi (Πix)

)
K (Πx) dx

∣∣∣∣∣∣ ≤ C
n∏
i=1

‖Fi‖pi , (3)

where in addition we consider Π : Rm → Rk a surjective linear map and all
Calderón-Zygmund kernels K, i.e. all kernels K satisfying a Mikhlin multi-
plier condition ∣∣∣∂αK̂ (ξ)

∣∣∣ ≤ |ξ|−|α| (4)

for all α up to a certain threshhold. Durcik-Thiele note that a necessary
condition for (3) to hold for all kernels K as above is that for every linear
subspace V ⊂ ker Π, we have

dim (V ) ≤
n∑
i=1

1

pi
dim

(
Πi

∣∣∣∣
ker Π

V

)
, (5)

with equality in (5) when V = Rm. However it is not known if (5) is sufficient
for (3) to hold; moreover, no general necessary and sufficient condition is
known for singular Brascamp-Lieb inequalities, and most work on them has
been done case-by-case (see for instance [LaTh] for a drastically approach
from Durcik-Thiele [DuTh]).

However, under the assumption of some additional symmetry, dubbed
“cubical structure,” on the linear maps Πi and particular choice of the coef-
ficient pi, Durcik-Thiele are able to verify (5) is sufficient for (3). This work
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of Durcik-Thiele lends credence to the idea that (3) if and only if (5) is the
“right theorem” one should be aiming for.

More precisely, to the cube Q ≡ [0, 1]n in Rm, we may associate each
vertex to a function j : {1, . . . ,m} → {0, 1}. In an abuse of language, we let
the cube Q denote the set of all such functions j. And finally, given x ∈ R2m,
we will write it as x = (x0

1, x
0
2, . . . , x

0
m, x

1
1, x

1
2, . . . , x

1
m).

Theorem 1 ([DuTh, Theorem 1]). Let Πi : R2m → Rm be given by Πix =

(x
j(1)
1 , x

j(2)
2 , . . . , x

j(m)
m ). Then (5) holds across all subspaces V of ker Π, with

equality if V = ker Π, if and only if (3) holds.

3.2 Broad picture of the proof: an induction using sym-
metry and Gaussians

Durcik-Thiele prove Theorem 1 using a clever induction to leverage the sym-
metry and cubical structure of their setup. First, without loss of generality
they may assume that their singular Brascamp-Lieb integral is always of the
form

Λ (K,A) ≡
ˆ

R2m

(
n∏
i=1

Fj (Πjx)

)
K ((IA)x) dx , (6)

where A is some m × m matrix satisfying some non-degeneracy condition
(see e.g. (7) below, where ε = ε(A)). Then Durcik-Thiele spend most of
their paper proving the following lemma, by induction. In what follows, let
g(x) ≡ e−π|x|

2

denote the standard Gaussian, and given a function j in the
cube Q, define the reflection j ∗ i to be the element in the cube Q such that
j ∗ i(a) = j(a) if a 6= i, and j ∗ i(i) = 1− j(i).

Lemma 2. Let m ≥ 1, 0 ≤ l ≤ m and let 0 < ε < 1. Furthermore, let A be
an m×m matrix that is such that∣∣det (I A) ΠT

j

∣∣ > ε and ‖A‖HS ≤ ε−1 , (7)

for all 1 ≤ j ≤ m, and assume the first l rows of A are equal to the first l
rows of −I. Finally, let (Fj)j∈Q be a tuple of functions with the symmetry

Fj = Fj∗i and ‖Fj‖2m = 1 .

21



1. If K is a kernel satisfying the Mihklin multiplier condition (4) for all
α up to a certain threshold, and K̂ satisfies the vanishing condition

K̂ (ξ1, . . . , ξl, 0, . . . , 0) ≡ 0 ,

then
|Λ (K,A)| .m,l,ε 1.

2. Let l < i ≤ m, let u ∈ Rm and for each t ∈ (0,∞) let ct ∈ L∞(Rm)
with |c|∞ ≤ 1. If K is the kernel defined by

K̂ (ξ) ≡
∞̂

0

ct(u)∂̂i∂i+lg
(

(I A)T (tξ)
)
e2πiuṫξ dt

t
,

then
|Λ (K,A)| .m,l,ε (1 + ‖u‖)2d(m−1) .

Lemma 2 has two statements, (1) and (2). As Durcik-Thiele note, when
l = 0, statement (1) yields Theorem 1. And when l = m, statement (1) is
trivial because the kernel K ≡ 0. As such, the authors proceed by induction
on l to get from statement (1) with l = m to statement (1) with l = 0. More
precisely, they show that statement (1) with l = m implies statement (2)
with l = m − 1, then they show that (2) with l = m − 1 implies (1) with
l = m− 1, then that (1) with l = m− 1 implies (2) with l = m− 2, and so
on . . . ; see e.g. Figure 3.2 for further details.

l = 0 1 2 . . . m-1 m
Lemma 2 part (1) Theorem 1 x x . . . x Trivial

↑ ↙ ↑ ↙ ↑ . . . ↑ ↙
Lemma 2 part (2) x x x . . . x (Ignore)

Figure 1: Implications of (1) and (2) in induction argument

The argument showing (1)⇐ (2) for the same l is more straightforward of
the two arguments, as similar ideas have been applied elsewherein harmonic
analysis. Namely the authors do a cone decomposition of the kernel K,
which will preserve all of its Mihklin multiplier conditions. They choose
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the cone small enough so that the conic decompositions will also preserve
nondegeneracy of the newly resulting A. Of course, the authors also leverage
the vanishing condition for K. While reading this part of the argument, one
might wonder though, why did the authors chose to use particular Gaussians
in their conic decomposition?

The answer lies in the argument showing

{statement (2) for l} ⇐ {statement (1) for l − 1} .

To prove this portion of the argument, the authors make use of the special
of Gaussians. Namely, they first note that in a special case of (2), the form
Λ(K,A) is simply an integral of a product of Gaussians times squares of Fj’s,
using the symmetry inherent to the problem. Thus the authors need not
worry about cancellation, and they need only show a sum of special cases of
(2) is under control. They do this using the extra symmetries resulting from
the sum, which then allow them to use general estimates involving Gaussians.
(After all, this is generally how one estimates integrals of Gaussians in the
first place, using symmetry). The authors then essentially demonstrate that
this “special” case is in fact the only case that matters, and they show one
can always reduce down to those considerations, using ubiquitously along
the way the special multiplicative properties of Gaussians and the cubical
symmetries in their setup the problem.
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4 On the polynomial Szemerédi theorem in fi-
nite fields I

After S. Peluse [Pe]

A summary written by Lars Becker

Abstract

Let P1, . . . , Pm ∈ Z[y] be any linearly independent polynomials
with zero constant term. We show that there exists γ > 0 such that
any subset of Fq of size at least q1−γ contains a nontrivial polynomial
progression x, x+ P1(y), . . . , x+ Pm(y), provided the characteristic of
Fq is large enough.

4.1 Introduction

Let P1, . . . , Pm ∈ Z[y] and let S be either [N ] = {1, . . . , N} or Fq. We denote
by rP1,...,Pm(S) the size of the largest subset of S containing no polynomial
progression x, x+ P1(y), . . . , x+ Pm(y) with y 6= 0. To avoid simple congru-
ence obstructions to the existence of polynomial progressions in large subsets,
we will always assume that P1(0) = · · · = Pm(0) = 0, and we call the space
of such polynomials Z[y]0. In this notation, Szemerédi’s theorem states that

ry,2y,...,(k−1)y([N ]) = ok(N) ,

and Gower’s proved the quantitative bound

ry,2y,...,(k−1)y([N ]) .k
N

(log logN)ck
.

For general polynomials it is known by work of Bergelson and Leibman [BL]
that

rP1,...,Pm([N ]) = oP1,...,Pm(N) .

This talk is about a quantitative version of their result, but for finite fields
Fq instead of for [N ].
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Theorem 1. Let P1, . . . , Pm ∈ Z[y]0 be linearly independent over Q. There
exist c, γ > 0 such that if the characteristic of Fq is at least c, then

rP1,...,Pm(Fq) .P1,...,Pm q1−γ ,

and, more precisely,

#{(x, y) ∈ F2
q : x, x+ P1(y), . . . , x+ Pm(y) ∈ A}

=
|A|m+1

qm−1
+OP1,...,Pm(q2−(m+1)γ) . (1)

Let m1 ≥ 1, m2 ≥ 0, P1, . . . , Pm1 , Q1, . . . , Qm2 ∈ Z[y]. For every F =
(f0, . . . , fm1), G = (g0, . . . , gm2) with fi, gi : Fq → C define

Λ
Q1,...,Qm2
P1,...,Pm1

(F ;G) := Ex,y[f0(x)

m1∏
j=1

fj(x+ Pj(y))

m2∏
j=1

gj(Qj(y))] ,

where E denotes expectation with respect to the uniform probability measure
on Fq. Theorem 1 is an easy consequence of the following theorem with
m2 = 0, m1 = m and f0 = · · · = fm = 1A.

Theorem 2. Let m1 ≥ 1, m2 ≥ 0 and let P1, . . . , Pm1 , Q1, . . . , Qm2 ∈ Z[y]0
be linearly independent over Q. There exist c, γ > 0 such that if the charac-
teristic of Fq is at least c, then

Λ
Q1,...,Qm2
P1,...,Pm1

(F,Ψ) = 1Ψ≡1

m1∏
j=0

E[fj] +OP1,...,Pm1 ,Q1,...,Qm2
(q−γ) ,

whenever F = (f0, . . . , fm1) is 1-bounded and Ψ ∈ (F̂q)m2.

4.2 Preliminaries

4.2.1 Upper bounds in terms of some U s-norm

The first ingredient in the proof of Theorem 2 is the following bound for
Λ
Q1,...,Qm2
P1,...,Pm1

in terms of some U s norm (for possibly very large s) of the fi.

Proposition 3. Let P1, . . . , Pm1, Q1, . . . , Qm2 ∈ Z[y]0. There exists 1 ≥ β >
0 and s ∈ N such that

|ΛQ1,...,Qm2
P1,...,Pm1

(F ; Ψ)| ≤ min
j
‖fj‖βUs +OP1,...,Pm1 ,Q1,...,Qm2

(q−β)

for all 1-bounded F = (f0, . . . , fm1) and Ψ ∈ (F̂q)m2.
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This proposition is a slight generalization of a bound that already occurs
in [Pr], and the proof is based on arguments from [BL].

4.2.2 Decomposing functions

Given a norm ‖·‖ on Rn, we denote by

‖φ‖∗ := sup{〈φ, x〉 : ‖x‖ ≤ 1}

the dual norm. The following proposition allow us to decompose a function
into pieces, each of which is of controlled size in a certain given norm.

Proposition 4. Let ‖·‖ be any norm on the C-vector space of complex valued
functions on Fq, and let δ1, δ2, δ3, δ4 > 0. Suppose that f : Fq → C with
‖f‖2 ≤ 1. If qδ2−δ3 + qδ4−δ1 ≤ 1/2, then there exist fa, fb, fc : Fq → C such
that

f = fa + fb + fc

and ‖fa‖∗ ≤ qδ1, ‖fb‖L1 ≤ q−δ2, ‖fc‖L∞ ≤ qδ3 and ‖fc‖ ≤ q−δ4.

The proof is based on the finite-dimensional Hahn-Banach theorem and
simple properties of ‖·‖L1 , ‖·‖L2 and ‖·‖L∞ .

4.3 The induction scheme

4.3.1 Overview of the argument

Theorem 2 is proven by induction on m1. More specifically, denote by E(s)
the statement that there exists 1 ≥ β > 0 such that the estimate

|ΛQ1,...,Qm2
P1,...,Pm1

(F ; Ψ)| ≤ min
j
‖fj‖βUs +O(q−β) (E(s))

holds for all 1-bounded F . Then the key step is to show that the case
(m1 − 1,m2 + 1) of Theorem 2 together with E(s) implies E(s − 1). Since
E(s) holds for some s by Proposition 3, we can iteratively apply this to
deduce E(1), which is

|ΛQ1,...,Qm2
P1,...,Pm1

(F ; Ψ)| ≤ min
j
‖fj‖βU1 +O(q−β) . (E(1))
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To deduce from E(1) the case (m1,m2) of Theorem 2, write f ′m1
= fm1 −

E[fm1 ]. Then

Λ
Q1,...,Qm2
P1,...,Pm1

(F,Ψ) = Λ
Q1,...,Qm2
P1,...,Pm1−1

(f0, . . . , fm1−1; Ψ)E[fm1 ]

+ 2Λ
Q1,...,Qm2
P1,...,Pm1

(f1, . . . , fm1−1,
1

2
f ′m1

; Ψ)

By the case (m1 − 1,m2) of Theorem 2 and 1-boundedness of fm1 , the first
term is

1Ψ≡1

m1∏
j=1

E[fj] +O(q−γ) .

By E(1), the second term is bounded by

2 min
j
‖fj‖βU1 +O(q−β) = O(q−β) ,

since ‖f ′m1
‖U1 = |E[f ′m1

]| = 0. This completes the induction step.

4.3.2 Base case of the induction

We need the following lemma, which is a consequence of the Weil bound.

Lemma 5. Let P1, . . . , Pm ∈ Z[y]0 be linearly independent over Q. There
exists c > 0 such that if the characteristic of Fq is at least c and ψ1, . . . , ψm ∈
F̂q are not all trivial, then

Ey
m∏
j=1

ψj(Pj(y)) .P1,...,Pm q−1/2 .

Now we can prove the m1 = 1 case of Theorem 1:

Lemma 6. Let m2 ≥ 0 and P1, Q1, . . . , Qm2 ∈ Z[y]0 be linearly independent
over Q. There exists c > 0 such that if the characteristic of Fq is at least c,
then

|ΛQ1,...,Qm2
P1

(F ; Ψ)− 1Ψ≡1

1∏
j=0

Ey[fi(y)]| .P1,Q1,...,Qm2
q−1/2 ,

whenever F = (f0, f1) is 1-bounded and Ψ ∈ (F̂q)m2.
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Proof. Write f ′1 = f1 − E[f1] and F ′ = (f0, f
′
1). Then

Λ
Q1,...,Qm2
P1

(F ; Ψ) = Λ
Q1,...,Qm2
P1

(F ′; Ψ) + E[f1]Ex,yf0(x)

m2∏
j=1

ψj(Qj(y))

= Λ
Q1,...,Qm2
P1

(F ′; Ψ) + E[f1]E[f0]Ey
m2∏
j=1

ψj(Qj(y)) .

The y-expectation term equals 1 if all ψj = 1, and else it is . q−1/2 if the
characteristic of Fq is large enough, by Lemma 5. Since f0, f1 are 1-bounded,
it follows that

Λ
Q1,...,Qm2
P1

(F ; Ψ) = Λ
Q1,...,Qm2
P1

(F ′; Ψ) + 1Ψ≡1E[f0]E[f1] +O(q−1/2) .

The first term equals, by Fourier inversion and since E[f ′1] = f̂ ′1(1) = 0:∑
η0,η1∈F̂q

f̂0(η0)f̂ ′1(η1)Ex[η0(x)η1(x)]Ey[η1(P1(y))

m2∏
j=1

ψj(Qj(y))]

=
∑
η 6=0

f̂0(η)f̂ ′1(η̄)Ey[η(P1(y))

m2∏
j=1

ψj(Qj(y))] .

By Lemma 5 the y-expectation is . q−1/2 if the characteristic of Fq is suffi-
ciently large. By Cauchy-Schwarz, Plancherel and the 1-boundedness of f0

and f1, it follows that the whole expression is . q−1/2, which completes the
proof.
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5 On the norm convergence of non-conventional
ergodic averages

After T. Austin [A]

A summary written by Noa Bihlmaier

Abstract
We show the norm convergence of ergodic averages of the form

1

2N + 1

N∑
n=−N

d∏
i=1

fi ◦ Tni ,

following the proof by Austin in [A], which proceeds by building suit-
able structured extensions of the initial system.

5.1 Statement of the theorem

Given a probability preserving transformation T on a standard measure space
(X,Σ, µ), the multiple ergodic averages

1

2N + 1

N∑
n=−N

d∏
i=1

fi ◦ T ni

are of central interest in ergodic theory. Most importantly, Host and Kra in
[HK] and independently Ziegler in [Z] showed the L2(µ)–convergence of these
averages for all fi ∈ L∞(µ). Soon after, Tao in [T] generalized this situation
to averaging d commuting transformations Ti rather than powers of a single
operator T by converting the problem into a finitary problem. We prove the
same result as Tao, with the proof of Austin [A].

Given a standard Borel measure space (X,Σ, µ) together with invertible
commuting measure preserving continuous transformations Ti : X → X (for
i = 1, . . . , d), we prove the following ergodic theorem which is a special case
of [A, Thm 1.1].

Theorem 1. For any choice of measurable functions f1, . . . , fd in L∞(µ) the
ergodic averages

1

2N + 1

N∑
n=−N

d∏
i=1

fi ◦ T ni (?)

converge in L2–norm as N tends to infinity.
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5.2 The proof

We prove this by induction on d. The induction start d = 1 is simply the von
Neumann ergodic theorem. In every step d−1→ d we prove the convergence
by finding a suitable "pleasant" extension of our initial system for which the
convergence of the multiple ergodic averages can be proven.

5.2.1 Part 1: Reduction to pleasant systems

The main idea of this part is that in order to prove the convergence of multiple
ergodic averages, it might suffice to prove convergence for an easier set of
functions which still encodes all the information of the convergence of the
averages on the original system. As we want to prove the statement by
induction, we restrict only the first function to a smaller σ-subalgebra. This
leads us to the notion of pleasant systems.

Definition 2. We denote by ΣTi the invariant factor of Ti, i.e. the subalgebra
of Σ consisting of all A ∈ Σ with µ(A∆Ti(A)) = 0. Further we denote by
ΣTi=Tj the invariant factor of Ti ◦T−1

j . Now we call a system T = (Ti)i=1,..., d

pleasant if restricting the first coordinate to the σ–subalgebra

Ξ := ΣT1 ∨
d∨
i=2

ΣTi=T1

yields a characteristic factor, i.e. for any functions f1, . . . , fd ∈ L∞(µ) we
obtain

1

2N + 1

N∑
n=−N

d∏
i=1

fi ◦ T ni −
1

2N + 1

N∑
n=−N

Eµ[f1 | Ξ] ◦ T n1 ·
d∏
i=2

fi ◦ T ni → 0

in L2(µ) as N →∞.

For such pleasant systems we are able to complete the induction step, noting
that in the induction hypothesis we do not only assume the convergence for
pleasant systems but rather for all systems.

Proposition 3. If T = (Ti)i=1,...,d is a pleasant system and Theorem 1 is true
for all systems of d−1 commuting actions, then it also holds for (X,Σ, µ, T ).
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Proof. In order to prove this, by pleasantness of the system we can first
assume f1 to be ΣT1 ∨

∨d
i=2 ΣTi=T1–measurable. Then we note that we can

replace f1 by a sequence (f
(m)
1 ) in L∞(µ) converging to f1 in L2(µ). As f1

is ΣT1 ∨
∨d
i=2 ΣTi=T1–measurable we can assume the approximating sequence

to consist of finite sums of products g1 · · · gd, where g1 ∈ L∞(µ |σT1 ) and
gi ∈ L∞(µ |ΣT1=Ti ).
Thus it suffices to prove the convergence of averages of the form

1

2N + 1

N∑
n=−N

((g1 · g2 · · · gd) ◦ T n1 ) ·
d∏
i=2

fi ◦ T ni .

Since g1 ∈ L∞(µ |ΣT1 ), we obtain g1 ◦ T n1 = g1 and similarly gi ◦ T n1 = gi ◦ T ni
for all i. This simplifies the above term to

g1 ·
1

2N + 1

N∑
n=−N

d∏
i=2

(gi · fi) ◦ T ni ,

but this converges by induction hypothesis.

5.2.2 Part 2: Constructing pleasant extensions

Knowing the convergence of (?) for all pleasant systems reduces the problem
to finding "enough" pleasant systems to obtain the convergence of (?) for all
systems, i.e. the following proposition together with the above Proposition
3 clearly imply the induction step and hence the desired statement.

Proposition 4. Every system T = (Ti)i=1,..., d has a pleasant extension, i.e.,
there exists a pleasant system (X̃, Σ̃, µ̃, T̃ ) and a factor map Ψ intertwining
the actions.

In order to construct such a pleasant extension we need to iteratively pass to
an extension which controls the previous averages better. This step is done
via the Furstenberg self-joining.

Definition 5. For any action T = (Ti)i=1,...,d on (X,Σ, µ) we define the
Furstenberg self-joining of (X,Σ, µ) corresponding to T as (Xd,Σ⊗d, µ∗d),
where µ∗d is defined via

µ∗d(A1 × · · · × Ad) := lim
N→∞

1

2N + 1

N∑
n=−N

ˆ
X

d∏
i=1

1Ai ◦ T ni dµ.
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Note that the well-definedness of the above limit follows by the induction hy-
pothesis, and that the Furstenberg self-joining is invariant under the actions
of Ti × Ti × · · · × Ti and of T1 × T2 × · · · × Td. Using these actions, we are
now ready to construct the pleasant extension starting with an initial system
(X,Σ, µ, T ).
Construction of a pleasant extension.
1) First we iteratively construct actions on Furstenberg self-joinings.
Define (X(0),Σ(0), µ(0), T (0)) = (X,Σ, µ, T ) and now build extensions

ψ(m) : (X(m),Σ(m), µ(m), T (m))→ (X(m−1),Σ(m−1), µ(m−1), T (m−1))

iteratively for all m ∈ N by setting (X(m),Σ(m), µ(m)) as the Furstenberg
self-joining of (X(m−1),Σ(m−1), µ(m−1), T (m−1)) and T (m) = (T

(m)
i )i=1,..., d via

T
(m)
1 := T

(m−1)
1 × T (m−1)

2 × · · · × T (m−1)
d

T
(m)
2 := T

(m−1)
2 × T (m−1)

2 × · · · × T (m−1)
2

...

T
(m)
d := T

(m−1)
d × T (m−1)

d × · · · × T (m−1)
d .

The projection ψ(m) is now given by the projection onto the first coordinate
of X(m).
2) Having constructed this projective system of measure preserving actions,
we want to pass to a limit as each step "controls" the previous one.
Thus we define the desired extension (X̃, Σ̃, µ̃, T̃ ) as the inverse (projective)
limit of this system of extensions, i.e.,

(X̃, Σ̃, µ̃, T̃ ) := lim←−(X(m),Σ(m), µ(m), T (m))

equipped with the corresponding factor map

Ψ: (X̃, Σ̃, µ̃, T̃ )→ (X(0),Σ(0), µ(0), T (0)) = (X,Σ, µ, T ).

Proof of pleasantness.
To see that this extension is indeed pleasant, first we show that it suffices to
prove that for any f̃1, f̃2, . . . , f̃d ∈ L∞(µ̃) and g̃ ∈ L∞(µ∗d |

(Σ⊗d)T̃1×T̃2×···×T̃d
)

we have
ˆ
X̃d

f̃1 ◦ π̃1 ·

(
d∏
i=2

f̃i ◦ π̃i

)
· g̃dµ̃∗d =

ˆ
X̃d

Eµ̃[f̃1 | Ξ] ◦ π̃1 ·

(
d∏
i=2

f̃i ◦ π̃i

)
· g̃dµ̃∗d,
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where
Ξ := Σ̃T̃1 ∨ Σ̃T̃2=T̃1 ∨ · · · ∨ Σ̃T̃d=T̃1

and the π̃i are the corresponding coordinate projections. This is done by
showing that the Furstenberg self-joinings control our averages, i.e. we prove
that if f1 ∈ L∞(µ) fulfills

ˆ d

X

f1 ◦ π1 ·

(
d∏
i=2

fi ◦ πi

)
· gdµ∗d = 0

for every f2, . . . , fd ∈ L∞(µ) and g ∈ L∞(µ∗d |(Σ⊗d)T1×T2×···×Td ), then

1

2N + 1

N∑
n=−N

d∏
i=1

fi ◦ T ni → 0

for every f2, . . . , fd ∈ L∞(µ).
Second we prove that the invariant factors behave nicely under projective
limits and hence we can obtain a good description of Ξ in terms of the σ–
algebras

Ξ(m) := (Σ(m))T
(m)
1 ∨ (Σ(m))T

(m)
2 =T

(m)
1 ∨ · · · ∨ (Σ(m))T

(m)
d =T

(m)
1 .

This allows us to translate our problem onto some finite level of the projective
system. There the statement can be proven with some calculations.

�
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6 Using Quadratic Fourier Analysis to Find
4-term Arithmetic Progressions

After B. Green [G]

A summary written by Bora Çalım and Nihan Tanısalı

Abstract

We give an inverse theorem for the Gowers U3 norm on Fn5 and
use it to prove the existence of many (proportional to the density of
the set) 4 term arithmetic progressions with the same step size in
subsets of Fn5 .

6.1 Introduction

Let 1 ≥ α > 0 be a real number. We aim to show the existence of 4 term
arithmetic progressions in subsets A ⊂ Fn5 with density α for large enough
n. Throughout the summary, G will denote Fn5 , and N = |G|.

Theorem 1. Let α, ε > 0 be real numbers. Then there is an n0 = n0(α, ε)
with the following property. Suppose that n > n0(α, ε), and that A ⊆ G is a
set with density α. Then there is some d 6= 0 such that A contains at least
(α4 − ε)N four-term arithmetic progressions with common difference d.

Instead of working with the set A ⊂ G, we will consider its characteristic
function 1A : G→ {0, 1}. The averages, the Fourier transform, and the
Gowers uniformity norm of functions carry information about the number
of arithmetic progressions in A. However, the techniques used to prove the
existence of 3-APs cannot be directly generalized to 4-APs. We summarize
these differences and introduce the required notions.

Definition 2 (Λ3,Λ4). For fi : G→ [−1, 1] we define
Λ3(f1, f2, f3) = Ex,df1(x)f2(x+ d)f3(x+ 2d), and Λ4(f1, f2, f3, f4)
analogously.

Definition 3 (Gowers norms). The Gowers uniformity norm of f : G→ R
for integer d ≥ 2 is defined as follows

‖f‖2d

Ud :=
∑

x,h1,...,hd

∏
ω1,...,ωd∈{0,1}

f(x+ h1w1 + . . .+ hdωd).
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In k = 3 case

• The operator Λ3 is controlled by the Gowers U2-norm. Specifically for
any three functions f1, f2, f3 : G→ [−1, 1] we have

|Λ3 (f1, f2, f3)| 6 inf
i=1,2,3

‖fi‖U2 .

• (Gowers inverse theorem) If the Gowers U2-norm of a function
f : G→ [−1, 1] is large, f must have a large Fourier coefficient:

‖f‖U2 > δ ⇒ ‖f̂‖∞ > δ2.

The first item is directly generalized, while the second item is not. The
following proposition and example illustrate this.

Proposition 4. Let f1, . . . , f4 : G→ [−1, 1] be any four functions. Then
we have

|Λ4 (f1, . . . , f4)| 6 inf
i=1,...,4

‖fi‖U3 .

Example 5. There is a function f : G→ C with ‖f‖∞ 6 1 such that
‖f‖U3 = 1, but such that ‖f̂‖∞ 6 N−1/2. Namely f = wx

T x.

Instead, we find that f has significant correlation with a quadratic phase:

Theorem 6. Suppose that f : G→ [−1, 1] is a function for which
‖f‖U3 > δ. Then there is a matrix M ∈Mn (F5) and a vector r ∈ Fn5 so that∣∣∣Ex∈Gf(x)ωx

TMx+rT x
∣∣∣�δ 1.

6.2 Proof of Theorem 6

There are 3 steps in proving a function f with large U3 norm correlates
with a quadratic phase wxTMx+rT x. Throughout, |G| �δ 1 whenever
needed, f : G→ [−1, 1], ‖f‖U3 > δ, M denotes an n× n matrix with
entries from F5, b denotes a vector in Fn5 , and ∆(f ;h)(x) = f(x)f(x− h) is
a "multiplicative derivative".
The first step is to show that the derivative of f obeys a "weak linearity"
property: There is a function φ : G→ Ĝ and S ⊆ G with |S| �δ |G| such
that
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1. |∆(f ;h)∧(φ(h))| �δ 1 for all h ∈ S

2. There are �δ |G|3 quadruples (s1, s2, s3, s4) ∈ S4 such that
s1 + s2 = s3 + s4 and φ (s1) + φ (s2) = φ (s3) + φ (s4).

The second step is to show that this weak linearity property implies a
stronger linearity property: If φ : G→ Ĝ, S ⊆ G satisfy the conclusions 1
and 2 of the previous step, then there is some linear function
ψ(x) = Mx+ b such that ψ(x) = φ(x) for �δ |G| values of x ∈ S. We give
a sketch of the proof of this step.
Consider Γ = {(h, φ(h)) : h ∈ S}. By conclusion 2 of the first step, we can
use the Balog-Szemerédi-Gowers theorem to find some Γ′ ⊆ Γ such that
|Γ′| �δ |Γ| �δ |G| and |Γ′ + Γ′| �δ |Γ′|. Identifying G× Ĝ with F2n

5 , by
Freiman’s theorem, we can find a subspace H ⊆ F2n

5 containing Γ′ such that
|H| �δ |Γ′| �δ |G|.
Consider the canonical projection π : H → G to the first factor, and let
S ′ = π(Γ′), so that |π(H)| ≥ |S ′| �δ |G|. By the rank-nullity theorem, it
follows that dim ker(π)�δ 1. Let H ′ = (ker(π))⊥, so that
H =

⋃
x∈ker(π)

(H ′ + x), where the union is disjoint and taken over �δ 1

elements. Observe that π is injective on each of the cosets in the union. By
the pigeonhole principle, there is some x such that
|(x+H ′) ∩ Γ′| �δ |Γ′| �δ |G|. Let Γ′′ = (x+H ′) ∩ Γ′ and S ′′ = π(Γ′′),
V = π(x+H ′). Then ψ : V → Ĝ given by the composition of π−1 and the
canonical projection to the second factor is an affine map, so
ψ(x) = Mx+ b for some M, b. It can be seen that ψ(x) = φ(x) for all
x ∈ S ′′, so the proof is complete.
Combining the two steps, we can find some M , b such that

Eh |∆(f ;h)∧(Mh+ b)|2 �δ 1.

It turns out that a Matrix M satisfying the above bound is approximately
symmetric in a precise sense: If

Eh |∆(f ;h)∧(Mh+ b)|2 �δ 1,

Then rank(M)�δ 1.
From this we can recover a fully symmetric matrix M ′, which gives theorem
6.
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6.3 Arithmetic Regularity for U 3

In this section, the main objective is to decompose a function
f : G→ [−1, 1] into three parts. The first one, E(f | B), is constant on
certain sets, the second one is the error term in the sense of having a small
L2 norm, and the third has a small U3 norm.

Definition 7 (Factors, Conditional Expectation, Rank of a Quadratic
Factor). Let φ1, . . . , φk : G→ G be any functions. The σ-algebra, B,
generated by the sets (atoms) of the form
{x ∈ G | φ1(x) = c1, . . . , φk(x) = ck} are called a factor. The conditional
expectation of f is defined as

E(f | B)(x) := Ex∈B(x)f(x)

where B(x) is the atom of B containing x. If all the functions φi(x) i ≤ k
are of the form rTi x for some ri ∈ G the factor B generated by φi, i ≤ k is
called a linear factor of complexity at most k.
Let i ≤ di, ri ∈ G and Mj, j ≤ d2 be symmetric matrices inMn(G). Let B1

be the factor generated by the linear functions φi(x) = rTi x; and B2 be the
factor generated by φi(x) = rTi x, i ≤ d1 and ψj(x) = xTMjx, j ≤ d1. B2 is a
refinement of B1. (B1,B2) is called a factor of complexity (d1, d2). We say
that (B1,B2) has rank at least r if for all nontrivial linear combinations of
M1, . . . ,Md2 has rank at least r.

With the following lemma, we write any function f : G→ [−1, 1] as a sum
of a measurable function with respect to a quadratic factor and two error
terms that are small, respectively, in L2 and U3. The strength of the lemma
is to make ‖f3‖U3 arbitrarily small by choosing a suitable growth function
ω2 with the cost of making the complexity higher.

Lemma 8. Let δ > 0 be a parameter, and let ω1, ω2 : R+ → R+ be arbitrary
growth functions (which may depend on δ ). Let n > n0 (δ, ω1, ω2) be
sufficiently large, and let f : G→ [1, 1] be a function. Let

(
B(0)

1 ,B(0)
2

)
be a

quadratic factor of complexity
(
d

(0)
1 , d

(0)
2

)
. Then there is a quadratic factor

(B1,B2) with the following properties: (B1,B2) refines
(
Ḃ(0)

1 ,B(0)
2

)
; the

complexity of (B1,B2) is at most (d1, d2), where

d1, d2 6 C
(
δ, ω1, ω2, d

(0)
1 , d

(0)
2

)
,
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for some fixed function C; the rank of (B1,B2) is at least ω1 (d1 + d2); there
is a decomposition f = f1 + f2 + f3, where

f1 := E (f | B2) ,
‖f2‖2 6 δ,

‖f3‖U3 6 1/ω2 (d1 + d2) .

6.4 Main Theorem

To understand B2 measurable functions, i.e., functions that are constant on
the atoms of B2 with complexity (d1, d2), we study functions on the
configuration space Fd15 × Fd25 . We take r1, . . . , rd1 linearly independent and
define Γ(x) := (rT1 , . . . , r

T
d1

) and Φ(x) := (xTM1x, . . . , x
T
d2
Md2x).

Proof of theorem 1. We apply theorem 8 to 1A to obtain a decomposition
1A = f1 + f2 + f3 such that the quadratic factor (B1,B2) is with complexity
(d1, d2) di ≤ d0(α, ε) and the rank r is such that

r ≥ 100(log(1/ε) + log(1/α) + d1 + d2).

The parameter δ and ω (which only depends on α and ε justifying the
bound for d0) will be specified afterwards. We define the n− d1 dimensional
space H := 〈r1, . . . , rd1〉⊥, and µH to be the normalised measure
µH : 1H/E1H . To prove the theorem, we show

Ex,d1A(x)1A(x+ d)1A(x+ 2d)1A(x+ 3d)µH(d) > (α4 − ε).

The left-hand side of the above expression splits into 81 parts after the
substitution 1A = f1 + f2 + f3.
Claim 1. The 65 terms containing f2 has contribution ≤ ε/200.
Claim 2. The 65 terms containing f3 has contribution ≤ ε/200.

Proof. Suppose that g1 = f3, the other cases are similar. We write the term
as

Ex,dg1(x)g2(x+ d)g3(x+ 2d)g4(x+ 3d)µH(d) (1)

where g2, g3, g4 are one of the f1, f2, f3. We make the observation

1H(d) =
∑
t

1t+H(x)1t+H(x+ 2d)
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where the sum is over all cosets of H in G. By proposition 4

Ex,dg1(x)g2(x+ d)1t+H(x+ d)g3(x+ 2d)1t+H(x+ 2d)g4(x+ 3d)

≤ ‖f3‖U3 ≤ 1/ω2(d1 + d2).

Hence we bound (1) by < 52d1/ω(d1 + d2). Provided that
ω(m) ≥ 5m+4/ε.

Claim 3. As f is a B2 measurable function we define f1 : Fd15 × Fd25 such that
f1(x) = f1(Γ(x), φ(x)) for all x ∈ G. Since the size of the factors are not
equal, we have

Ex,df1(x)f1(x+ d)f1(x+ 2d)f1(x+ 3d)µH(d)

= E
a∈Fd15 ,b(1),...,b(4)∈Fd25
b(1)−3b(2)+3b(3)−b(4)=0

f1(a, b(1))f1(a, b(2))f1(a, b(3))f1(a, b(4))

+O(52d1+3d2−r/2).

The constraints on a and b is a result of two facts: d ∈ H and
Φ(x)− 3Φ(x+ d) + 3Φ(x+ 2d)− Φ(x+ 3d) = 0.

(5−2d1−3d2 +O(5−r/2))
∑
a∈Fn5

∑
a∈Fd15 ,b(1),...,b(4)∈Fd25
b(1)−3b(2)+3b(3)−b(4)=0

f1(a, b(1))f1(a, b(2))

× f1(a, b(3))f1(a, b(4))

≥ (5−2d1−3d2 +O(5−r/2))(E
(a,b)∈Fd15 ×F

d2
5
f1(a, b))4.

The last line follows from two applications of Cauchy-Schwarz.
Claim 4. E

(a,b)∈Fd15 ×F
d2
5
f1(a, b) = α(1 +O(5d1+d2−r/2)). This claim is a result

of the fact that atoms are close in size. After some calculations, the
theorem follows from these four claims.
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7 Degree lowering for the polynomial
Szemerédi theorem in finite fields

After S. Peluse [Pel19]

A summary written by Jonathan Chapman

Abstract

We give an exposition of a degree lowering argument used by
Peluse to obtain quantitative bounds in the finite field polynomial
Szemerédi theorem.

7.1 Introduction

In the previous summary, an overview was given of the recent work of
Peluse on the polynomial Szemerédi theorem in finite fields. Recall that the
goal is to obtain upper bounds on the size of an arbitrary A ⊆ Fq which
does not contain a progression of the form {x, x+ P1(y), . . . , x+ Pm(y)},
where the Pi are integer polynomials with 0 constant term. Peluse’s
method involves studying properties of counting operators of the form

Λ
Q1,...,Qm2
P1,...,Pm1

(F ; Ψ) := Ex,yf0(x)

m1∏
i=1

fi(x+ Pi(y))

m2∏
j=1

ψj(Qj(y)). (1)

Specifically, Peluse’s power-saving quantitative bounds for the finite field
Szemerédi theorem [Pel19, Theorem 1.1] are a corollary of the following
result.

Theorem 1 ([Pel19, Theorem 2.1]). Let m1 ≥ 1 and m2 ≥ 0 and let
P1, . . . , Pm1 , Q1, . . . , Qm2 ∈ Z[y]0 be linearly independent over Q. There
exist c, γ > 0 such that if the characteristic of Fq is at least c, then

Λ
Q1,...,Qm2
P1,...,Pm1

(F ; Ψ) = 1Ψ=1

m1∏
i=0

Exfi(x) +OP1,...,Pm1 ,Q1,...,Qm2
(q−γ) (2)

whenever F = (f0, . . . , fm1) is 1-bounded and Ψ ∈ (F̂q)m2.

The main purpose of this summary is to give a proof of this theorem using
Peluse’s degree lowering argument [Pel19, Lemma 4.1].
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7.2 Discorrelation estimates and norm control

Our primary objective is to obtain an asymptotic formula (2) for the
counting operators (1). For fixed Ψ, these counting operators are averages
of functions fi evaluated along polynomial progressions. Compare this with
(2), where the main term is just a product of the averages of the fi. As
noted in [Kuc21], we can therefore think of (2) as demonstrating a kind of
‘discorrelation’ of the fi. This motivates the following non-standard, but
useful, definition.

Definition 2 (Discorrelation estimate). Let m1 > 1 and m2 > 0 and let
P1, . . . , Pm1 , Q1, . . . , Qm2 be integer polynomials with 0 constant term. Let q
be a prime power, and let C, γ > 0. We say that the counting operator
Λ
Q1,...,Qm2
P1,...,Pm1

defined by (1) satisfies a (C, γ)-discorrelation estimate if∣∣∣∣∣ΛQ1,...,Qm2
P1,...,Pm1

(F ; Ψ)− 1Ψ=1

m1∏
i=0

Exfi(x)

∣∣∣∣∣ 6 Cq−γ

holds for all 1-bounded F = (f0, . . . , fm1) and all Ψ ∈ (F̂q)m2.

Recall from the previous summary that the Gowers U s-norm1 is defined by
the equation

‖f‖2s

Us := Ex,h1,...,hs∈Fq∆h1,...,hsf(x).

In additive combinatorics literature, one refers to a counting operator, such
as (1), as being ‘controlled’ by the U s-norm if the counting operator is
small whenever one of the fj has a small U s-norm.2 We formalise this by
making the following (again, non-standard) definition.

Definition 3 (Norm control). Let q,m1,m2, P1, . . . , Pm1 , Q1, . . . , Qm2 be as
in the previous definition. Let b1, b2, b3 > 0. We say that the counting
operator Λ

Q1,...,Qm2
P1,...,Pm1

defined by (1) is (b1, b2, b3)-controlled by the U s-norm if∣∣∣ΛQ1,...,Qm2
P1,...,Pm1

(F ; Ψ)
∣∣∣ 6 b1 min

j
‖fj‖b2Us + b3

holds for all 1-bounded F = (f0, . . . , fm1) and all Ψ ∈ (F̂q)m2.

1Note that these are norms for all s > 2, but for s = 1 this defines only a semi-norm.
2See, for example, [Pre17].
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To demonstrate the utility of control by Gowers norms, we now prove
Theorem 1 under the assumption of U1-norm control.

Lemma 4. Let q,m1,m2, P1, . . . , Pm1 , Q1, . . . , Qm2 be as above. Suppose
that Λ

Q1,...,Qm2
P1,...,Pm1

is (a, b, q−c)-controlled by the U1-norm for some a, b, c > 0.

If Λ
Q1,...,Qm2
P1,...,Pm1−1

satisfies a (C, γ)-discorrelation estimate, then Λ
Q1,...,Qm2
P1,...,Pm1

satisfies a (C + 2,min{c, γ})-discorrelation estimate.

Proof. Let F = (f0, . . . , fm1) be 1-bounded, and let Ψ ∈ (F̂q)m2 . Write
h = fm1 − Exfm1(x), whence ‖h‖U1 = 0 and h/2 is 1-bounded. Using our
U1 control hypothesis, we observe that

|ΛQ1,...,Qm2
P1,...,Pm1

(F ; Ψ)− Exfm1(x)Λ
Q1,...,Qm2
P1,...,Pm1−1

(f0, . . . , fm1−1; Ψ)|

6 2|ΛQ1,...,Qm2
P1,...,Pm1

(f0, . . . , fm1−1, h/2; Ψ)| 6 2q−c.

The result now follows from our discorrelation estimate for Λ
Q1,...,Qm2
P1,...,Pm1−1

.

7.3 Degree lowering

In view of the previous lemma, if we can control the counting operators (1)
by the U1-norm, then we can prove Theorem 1 by induction on m1.
Unfortunately, as shown in [Pel19, Proposition 2.2] and [Pre17, §§3-5], one
can usually only obtain control of (1) by a U s-norm with s a very large
number which depends on the degrees of the Pi and Qj.
The key insight of Peluse was that it is possible to leverage discorrelation
estimates for counting operators Λ

S1,...,Sm2+1

R1,...,Rm1−1
to improve U s-control for

Λ
Q1,...,Qm2
P1,...,Pm1

to U s−1-control. This strategy is known as degree lowering and
has become a highly influential tool in additive combinatorics and beyond
(for further examples, see the other summaries in these proceedings).
The degree lowering argument employed to prove Theorem 1 is
encapsulated in the following lemma, which we have reworded using the
definitions introduced in the previous section.

Lemma 5 ([Pel19, Lemma 4.1]). Let P1, . . . , Pm1 , Q1, . . . , Qm2 ∈ Z[y]0 be
linearly independent, for some Let m1 > 2 and m2 > 0. Suppose there exist
b1, b2, b3, b4, c1, c2, γ > 0 and s ∈ N such that the following two conditions
both hold whenever Fq has characteristic at least c1.
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(I) For all linearly independent R1, . . . , Rm1−1, S1, . . . , Sm2+1 ∈ Z[y]0, the
counting operator Λ

S1,...,Sm2+1

R1,...,Rm1−1
satisfies a (c2, γ)-discorrelation

estimate.

(II) The operator Λ
Q1,...,Qm2
P1,...,Pm1

is (b1, b2, b3)-controlled by the U s-norm.

Then there exist c′1, c′2, γ′ > 0 depending only on the Pi and Qj such that, if
Fq has characteristic at least max(c′1, b4), then the following is true. For
every δ1, δ2, δ3, δ4 > 0 satisfying qδ2−δ3 + qδ4−δ1 6 1/2, the counting operator
Λ
Q1,...,Qm2
P1,...,Pm1

is a (qδ1 , 21−s, β)-controlled by the U s−1-norm, where

β = qδ1
(
c′2
qγ′

)22−2s

+ q−δ2 + q(1−b2)δ3−b2δ4b1 + qδ3b3.

Remark 6. Although the flexibility in the choice of δi is important in the
proof of [Pel19, Theorem 2.1], we will not keep track too carefully of these
parameters in our proofs. We similarly omit details regarding the bi and cj.
The interested reader should consult [Pel19] for a more thorough account.

Proof of Theorem 1. Iteratively applying Lemma 5 with an appropriate
choice of parameters δi at each step (see [Pel19, Eqn. (19)]), we can control
Λ
Q1,...,Qm2
P1,...,Pm1

by the U1-norm. The result then follows from Lemma 4.

Before concluding with the proof of Lemma 5, we require the following
lemma, which relates the U s-norm of a general counting operator with an
average of U2-norms of discrete partial derivatives. It is proved using
multiple applications of the Cauchy-Schwarz inequality; we omit the details.

Lemma 7 ([Pel19, Lemma 5.1]). Let f1, . . . , fm : F2
q → C be 1-bounded. For

every h1, . . . , ht ∈ Fq, define

Υ(x) := Ey
m∏
i=1

fi(x, y); Υh1,...,ht(x) := Ey
m∏
i=1

∆
(1)
h1,...,ht

fi(x, y).

Then ‖Υ‖22s−2

Us 6 Eh1,...,hs−2‖Υh1,...,hs−2‖4
U2 for all s > 2.

Proof of Lemma 5. Applying the regularity lemma [Pel19, Proposition 2.6],
we can decompose

f0 = fa + fb + fc
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for some fa, fb, fc : Fq → C with ‖fa‖∗Us 6 qδ1 , ‖fb‖L1 6 q−δ2 , ‖fc‖L∞ 6 qδ3 ,
and ‖fc‖Us 6 q−δ4 . Writing Fa = (fa, f1, . . . , fm1), and similarly defining Fb
and Fc, we have

Λ
Q1,...,Qm2
P1,...,Pm1

(F ; Ψ) = Λ
Q1,...,Qm2
P1,...,Pm1

(Fa; Ψ) + Λ
Q1,...,Qm2
P1,...,Pm1

(Fb; Ψ) + Λ
Q1,...,Qm2
P1,...,Pm1

(Fc; Ψ).

The triangle inequality shows that the second term is at most q−δ2 . Using
our U s-norm control assumption (II), we have

|ΛQ1,...,Qm2
P1,...,Pm1

(Fc; Ψ)| 6 q(1−b2)δ3−b2δ4b1 + qδ3b3.

Introducing the auxilliary counting operator

Υ(x) := Ey
m1∏
i=1

fi(x+ Pi(y))

m2∏
j=1

ψj(Qj(y)),

we can bound the first term:

|ΛQ1,...,Qm2
P1,...,Pm1

(Fa; Ψ)| = |〈fa,Υ〉| 6 ‖fa‖∗Us‖Υ‖Us 6 qδ1‖Υ‖Us .

It therefore remains to bound ‖Υ‖Us . Lemma 7 informs us that

‖Υ‖22s−2

Us 6 Eh1,...,hs−2‖Υh1,...,hs−2‖4
U2 . (3)

Here, Υh1,...,hs−2 is as defined in Lemma 7. In view of the well-known fact
that ‖ψ‖U2 = ‖ψ̂‖L4 for any ψ : Fq → C (see [Pel19, Eqn. (6)] or [Pre17,
Page 11]), we proceed to study the Fourier transform. For each
k ∈ {1, . . . ,m1} and φm2+1 ∈ F̂q, we observe that

̂Υh1,...,hs−2(φm2+1) = Λ
S1,...,Sm2+1

R1,...,Rm1−1
(g0;k, . . . , gm1−1;k;φ1, . . . , φm2+1),

where

Ri = Ri;k =

{
Pi − Pk i 6 k − 1

Pi+1 − Pk i > k
, Sj = Sj;k =

{
Qj j 6 m2

Pk j = m2 + 1
,

and

gi;k =


φm2+1∆h1,...,hs−2fk i = 0

∆h1,...,hs−2fi i 6 k − 1

∆h1,...,hs−2fi+1 i > k

.
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We can therefore bound the Fourier coefficient using our discorrelation
estimate assumption (I). For our choice of g(i;k)’s this gives

| ̂Υh1,...,hs−2(φm2+1)| 6 min
i>1
|Ez∆h1,...,hs−2fi(z)|+ c2q

−γ′

for some γ′ > 0. Incorporating this into (3) leads to the bound

|ΛQ1,...,Qm2
P1,...,Pm1

(F ; Ψ)| 6 qδ1 min
i>1
‖fi‖21−s

Us−1 + β.

If we decompose f1 instead of f0 and follow this same argument, then we
can extend the above minimum to cover i = 0 as well, completing the
proof.

References
[Kuc21] Kuca, B. Further bounds in the polynomial Szemerédi theorem over

finite fields, Acta Arith. 198 (2021), no. 1, 77–108.

[Pel19] Peluse, S. On the polynomial Szemerédi theorem in finite fields,
Duke Math. J. 168 (2019), no. 5, 749–774.

[Pre17] Prendiville, S. Quantitative bounds in the polynomial Szemerédi
theorem: the homogeneous case, Discrete Anal. (2017), Paper No. 5, 34
pp.

Jonathan Chapman, University of Bristol
email: jonathan.chapman@bristol.ac.uk

45



8 A mean ergodic theorem for∑N
n=1 f (T

n)g(T n
2
)

After H. Furstenberg and B. Weiss [FW]

A summary written by Yoav Cohn

Abstract

We survey Furstenberg and Weiss’s proof of L2 convergence of
non-conventional ergodic averages of the form

∑N
n=1 f(Tn)g(Tn

2
)

8.1 Introduction

Let (X,B, µ) be a measure space, with µ(X) <∞, and let T : X → X be a
measure preserving transformation of this space. Expressions of the form∑N

n=1

∏`
j=1 fj(T

pj(n)), Where {fj}`j=1 are bounded functions, and {pj}`j=1

are integer sequences are well - studied, and by now, are well understood in
many cases (see, e.g [HK]). In this paper, we present Furstenberg and
Weiss’s result, regarding the specific case ` = 2, p1(n) = n, p2(n) = n2,
that is:

Theorem 1. For any measure-preserving system (X,B, µ, T ) and
f, g ∈ L∞(X), the averages

∑N
n=1 f(T n)g(T n

2
) converge in L2(X).

A central tool in the investigation of multiple ergodic averages is the
construction of appropriate characteristic factors. This is true also for the
case we will discuss here. Through a series of reductions, the authors
reduce matters the case where the system is a group extension Z ×ρ S1 of
the Kronecker factor, where ρ : Z → S1 is a cocycle, satisfying a functional
equation to be specified (see Equation 1). Then, this functional equation is
used to conclude the proof. In more detail, the main steps of the reduction
are as follows:

topsep=0pt,1temsep=-1ex,p1rtopsep=1ex,p1rsep=1ex Showing that a
characteristic factor
for all schemes
{rn, sn, tn} where
t = r + s is a partial
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characteristic factor
for {n, n2}. (see
[FW, Chapter 4] for
the definition of a
partial characteristic
factor).

topsep=0pt,2temsep=-2ex,p2rtopsep=2ex,p2rsep=2ex Showing Ẑ is a
characteristic factor
for the schemes
{rn, sn, tn}.

topsep=0pt,3temsep=-3ex,p3rtopsep=3ex,p3rsep=3ex Reduction to the
case where the
system is normal.
That is, Ẑ is a group
extension by some
compact group G.

topsep=0pt,4temsep=-4ex,p4rtopsep=4ex,p4rsep=4ex Reduction to the
case where G is
abelian, and from
there to S1.

topsep=0pt,5temsep=-5ex,p5rtopsep=5ex,p5rsep=5ex Reduction to the
case where the
cocyle satisfies an
equation of CL -
type. (see Equation
1)

Our talk will focus on the last two steps of the reduction, and the
conclusion of the proof.

8.2 Preliminaries

In this subsection we survey some important ideas and terminology that are
used in the paper. For other, more common preliminaries, such that the
definitions of cocycles and partial characteristic factors, one can turn to
[FW].
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8.2.1 Isometric extensions

Let (X,B, µ, T ) be an ergodic measure preserving system, and let
(Y,D, ν, T ) be a factor. Observe the subspace of L2(X) spanned by finite
rank modules over L2(Y ). This subset naturally corresponds to another
factor of X, which is called the Maximal isometric extension of Y in X.
We will denote it by Ŷ . It is known that each such factor is isomorphic to a
system of the form (Y ×M, B̃, ν ×mM , T̃ ), where M := G/H is a
homogeneous space of a compact group G, mM is the invariant measure on
M , and B̃ is the appropriate σ - algebra. The action is defined by
T̃ (y, u) = (T (y), ρ(g)u), Where ρ : Y → G is some measurable map. In the
case where H = 1, this structure is called a group extension. (see [FW,
Chapter 5] for some more information). Let (Z, α) denote the Kronecker
factor of X. Then X will be called normal if Ẑ is a group extension of Z.

8.2.2 CL-cocycles AND CL-function

As noted above, we will survey a series of reductions, that will bring us to
work with characteristic factors of the form Z ×ρ S1. Going further, we will
reduce to the case where the cocycle defining the action S : Z → S1,
satisfies the following functional equation:

Definition 2. S will be called a CL - cocycle if there exist m, ` ∈ N such
that for v, z ∈ Z:

S`(z +mv)

S`(z)
= Λv(z + `Z)

Kv(z + `α)

Kv(z)
(1)

where Λ, K are measurable functions with values in S1.
Also, a function η ∈ L2(X) will be called a CL - function if there exists
some CL - cocycle such that Tη = Sη.

8.2.3 Mackey group

Let Y be an ergodic system, and let Y ×ρ G a group extension defined by a
cocyle ρ : Y → G. Note that if we have Im(ρ) ⊆ H for some H, a proper
subgroup of G, then ν ×mG is not ergodic. This means that the group
extension does not have to be ergodic by itself, but also hints us as to what
its ergodic components might be:
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Theorem 3. For any cocycle ρ : Y → G there is a closed subgroup H ⊆ G
(called the Mackey group of the extension), uniquely determined up to
conjugacy, such that:
• There is a cocycle p′(y) = φ(Ty)ρ(y)φ(y)−1 equivalent to ρ taking values
in H (for some φ : Y → G).
• The transformation T ′ : Y ×G→ Y ×G, T ′(y, g) = (Ty, ρ

′
(y)g) has

ergodic invariant measures ν ×mHβ where mHβ is the Haar measure mH

translated by β to the right.
• Any ergodic T ′- ergodic invariant measure on Y ×G has the above form,
and the T - invariant measures are obtained by re-parameterization. That
is, applying Ψ−1 to the ergodic T ′- invariant measures, where
Ψ(y, g) = (y, φ(y)g) for some measurable φ.

To prove this, for each γ ∈ G define Sγ(y, g) = (y, gγ). Then the
appropriate group is given by H := {γ|Sγµ = µ}. The proof belongs to the
theory by George Mackey. We will sketch it briefly during the talk.

8.3 Overview of the proof

We start our description with step 2. We apply the Van der Corput lemma,
and want to show that Ẑ is a characteristic factor for all schemes
{rn, sn, tn}. By the mean ergodic theorem, it can then be seen that it’s
enough to understand T r × T s × T t - invariant functions with respect to
some T r × T s × T t - invariant measure µ̃, which is also a X3 conditional
product joining relative to Z3. Such measures are closely related to
maximal isometric extensions (see [FW, Theorem 5.1]). So, it follows that
each such function comes from the maximal isometric extension of Z. That
enables us to conclude what we wanted.
For step 3, the authors investigate the way inverse limits interact with the
Kronecker factor, and with group extension. From there, for any ergodic
system, they construct a normal extension, using inverse limits.
The above arguments reduce matters to the case where X is normal. Step 4
will be a reduction to the case where G (the group by which Z is extended),
is an abelian group. Similarly to what was done in step 2, we define a
measure. Let Wr,s,t = {(z + rz′, z + sz′, z + tz′)|z, z′ ∈ Z} ⊆ Z3. Define µ̃ to
be the Haar measure on Wr,s,t ×G3. It is T r × T s × T t - invariant. We look
closely at the ergodic components of µ̃ on Wr,s,t. Those are shifts of the set
Zr,s,t = {(rz′, sz′, tz′)} by an element of the form (z, z, z). For each such z,
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denote by [Lz] its Mackey group, defined up to conjugacy class. The
function z → [Lz] will be measurable. By ergodicity, it is actually constant.
Our next goal is to show that L has some structure. That is, we want to
show that there exists some abelian group J and three homomorphisms
{ψi}3

i=1 : G→ J such that J = {(g1, g2, g3) | ψ1(g1)ψ2(g2)ψ2(g2)}. For this,
by virtue of a group - theoretic lemma (see [FW, Lemma 9.1]), it’s enough
to show the for each 1 ≤ i, j ≤ 3, πi,j(L) = Gi ×Gj. This is done by
showing the Mackey group for The action of πi,j(Wr,s,t) on G2, is G2.
From here, one can conclude that since (G

′
)3 ⊆ L, then any T r × T s × T t -

invariant function comes from an invariant function of (G/G′)3, and so- we
can reduce to the abelian case.
Next, we look at ψi defined above. Since (H0)3 :=

⋂
ψi ⊆ L, it is shown that

H can be replaced by H/H0. Then, we will have that characters of the form
χ ◦ ψi separate points, and hence, by Pontryagin duality, we will be able to
reduce to the case where H = S1, and the cocycle is of the form χ ◦ ψi ◦ ρ.
We now want to study the action by the cocycle ρ̃ := (ρs, ρr, ρt) : Wz → H3,
where Wz are the projections to Wr,s,t of the ergodic components of µ̃.
Recall that the Mackey group L characterises the ergodic components.
Namely, there exists a measurable φ : Wz → H3 such that

φ(z1, z2, z3)ρ̃(z1 + rα, z2 + sα, z3 + tα)φ(z1, z2, z3) ∈ L

From this, we get that for every character χ ∈ Ĵ , we have(
χ ◦ ψ1 ◦ ρr(z1)

)(
χ ◦ ψ2 ◦ ρr(z2)

)(
χ ◦ ψ3 ◦ ρr(z3)

)
=
Fχ((z1, z2, z3) + (rα, sα, tα))

Fχ((z1, z2, z3))
(2)

For some Fχ : ((z, z, z) + Zr,s,t)→ S1. The next step will be to study
χ ◦ ψ1 ◦ ρr. We look at Equation 2, and want to get ride of q. A main idea
here is the definition of a class of functions uδ : Wr,s → Z, for which the
following lemma is proved:

Lemma 4. Let ∆ = Z1,1 ∩ Zr,s ⊂ Z2, and let ∆
′
= {δ ∈ Z | (δ, δ) ∈ ∆}.

The map of Wr,s ×∆
′ → Wr,s,t given by (z1, z2, δ)→ (z1, z2, uδ(z1, z2)) is

onto, and measure preserving with respect to the Haar measures on the
groups.

This yields the equation (depending measurably on v):

σr(z1 + (r − t)v)

σr(z1)

σs(z2 + (s− t)v)

σs(z2)
=
Gv(z1 + rα, z2 + sα)

Gv(z1, z2)
(3)
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Next, the following lemma is proved:

Lemma 5. Let (X,B, µ, T ), (Y,D, ν, S) be ergodic systems, and let
f(x), g(y) measurable maps taking values in S1. Let H : X × Y → X × Y
not 0 a.e. Suppose it holds a.e that f(x)g(y)H(x, y) = H(T (x), S(y)). Then
there exist a constant c and a measurable K : X → S1 such that
f(x) = cK(T (x))

K(x)
(and similarly for g).

Note that the conditions of Lemma 5 are almost fulfilled in Equation 3,
except we that we don’t have ergodicity. Still, by treating ergodic
components separately, we get the functional equation:

σr(z + (r − t)v)

σr(z)
= Λv(z + rZ)

Kv(z + rα)

Kv(z)
(4)

Where the choice of Λv, Kv is shown to be measurable in v.
The above discussion motivates the definitions of CL - cocycles, and CL -
functions (see subsection 8.2.2). It can be shown directly that CL -
functions are a group, so we can use them to generate an algebra, which
then corresponds to a factor of X, to be denoted by XCL. We get that XCL

is an appropriate factor for all schemes {rn, sn, (r + s)n}. This concludes
step 5.
The next step will be to investigate some conditions (for Λv), under which
CL - functions must be degenerate. That is, defined over the Kronecker
factor of the system. Those will be:

Lemma 6. If η is a CL- function for a cocycle where Λv ≡ 1, then it is
degenerate. If η is a CL- function for a cocycle where Λv(z + `Z) takes the
same value on a subset of positive measure of Z × Z/`Z, then it is
degenerate.

Before we will be ready to prove the convergence result we were aiming for,
we need another lemma, which is basically a corollary of Wiener’s lemma,
and is proven by mean of the Van der Corput Lemma:

Lemma 7. Let X be an ergodic measure preserving system, let φ(x) be
defined over the Kronecker factor of X with values in S1, and assume that
the distribution of φ on S1 has no atoms. Let f ∈ L2(X) and let η(n) be a
bounded sequence. Then for any a, b, c with a 6= 0:
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1

N

N∑
n=1

η(n)φ(x)an
2+bnT cnf → 0

in L2(X).

By the previous discussion, and by a density argument, it’s essentially
enough to show the convergence of

∑N
n=1 f(T n)g(T n

2
) for the case g = ψ(z)

(defined on the Kronecker), and g = ψ(z), where g = ψ(z)η, where η is a
CL - function for a non - degenerate CL - cocycle. Here, the result will be
proved based on the form of Equation 8.2.2, along with Lemmas 6, 7 above.
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9 A new proof of an inequality of Bourgain
After P. Durcik and J. Roos [DR]

A summary written by Leonidas Daskalakis

Abstract

We discuss an alternative proof by Durcik and Roos of a trilinear
smoothing inequality originally due to Bourgain. This new approach
relies on techniques from additive combinatorics developed by Peluse
and Prendiville.

9.1 Introduction

Fix a compactly supported smooth function χ : R→ [0, 1] and consider the
following trilinear form

I(f0, f1, f2) =

∣∣∣∣ˆ ˆ f0(x)f1(x+ t)f2(x+ t2)χ(t)dtdx

∣∣∣∣.
In 1988 Bourgain [B] established the following trilinear smoothing
inequality.

Theorem 1. Assume K ⊆ R is compact. Then there exists CK,χ > 0 and
an absolute constant σ > 0 such that

I(f0, f1, f2) ≤ CK,χ‖f0‖∞‖f1‖2‖f2‖H−σ (1)

for any f0 ∈ L∞ supported on K, and any f1, f2 ∈ L2.

Bourgain [B] used this theorem to prove a quantitative nonlinear Roth
theorem in the real numbers. Inspired by the breakthrough work of
Peluse–Prendiville [PP] and Peluse [P] on quantitative bounds for
arithmetic sets lacking polynomial progressions, Durcik and Roos [DR] gave
an alternative proof of Theorem 1 in order to illustrate how these new
techniques from additive combinatorics can be employed to establish
smoothing inequalities in harmonic analysis. Indeed, using the Peluse and
Peluse–Prendiville theory, far-reaching generalizations of such smoothing
inequalities for multilinear polynomial averaging operators have been
established independently at the same time [KMPW].
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The trilinear form considered in Theorem 1 is the simplest non-trivial
example where one may apply the Peluse–Prendiville and Peluse theory, so
its proof should give the key ideas with the least amount of technical
complications. We discuss Durcik and Roos’ proof in the following
summary.

9.2 Preliminaries

We collect some useful notation and make some preliminary remarks. Any
measurable function f will be called 1-bounded if ‖f‖∞ ≤ 1. For any
f ∈ L1(R), we define the Fourier transform as

f̂(ξ) =

ˆ
R
f(x)e−2πiξxdx.

For any ξ ∈ R, let eξ(x) = e2πiξx. For any x, h ∈ R we define
∆hf(x) = f(x)f(x+ h), and for h ∈ Rs we define
∆hf(x) = ∆h1∆h2 · · ·∆hsf(x). For any s ∈ N we define

‖f‖2s

us+2 =

ˆ
Rs
‖∆̂hf‖∞dh and ‖f‖u2 = ‖f̂‖∞.

We remark that ‖·‖us should be understood as continuous variants of the
Gowers uniformity norms. We remind the reader that the Sobolev norm is
defined by

‖f‖H−σ =
(ˆ

R
|f̂(ξ)|2

(
1 + |ξ|2

)−σ)1/2

.

If A,B are two non-negative quantities, we write A . B to denote that
there exists a positive constant C such that A ≤ CB, we use subscripts
when C depends on parameters3.
To establish Theorem 1, it suffices to prove the following proposition.

Proposition 2. Assume K ⊆ R is compact. Then there exist two absolute
constants c, σ > 0 such that for any 1-bounded functions f0, f1, f2 with f0

supported on K, we have

I(f0, f1, f2) .K,χ ‖f2‖cH−σ .
3For example, we could write (1) more compactly using “.K,χ”.
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One may prove that Proposition 2 implies Theorem 1 by utilizing the
homogeneity of I, Littlewood-Paley theory and interpolation using the
following bound for I(f0, f1, f2)

‖f0‖∞
ˆ
|f1(x)|

∣∣∣∣ˆ f2(x+ t2 − t)χ(t)dt

∣∣∣∣dx .K,χ ‖f0‖∞‖f1‖3/2‖f2‖3/2

where we have used Hölder and Young’s convolution inequalities.
The task is now reduced to proving Proposition 2. This will be achieved
through a degree lowering argument sketched in the next section.

9.3 Degree Lowering

To establish Proposition 2, Durcik and Roos employ a degree lowering
argument, adapting the ideas of Peluse and Prendiville [P, PP]. This
argument relies on the following four key lemmata.

Lemma 3 (u3-control). Assume K ⊆ R is compact and f0, f1, f2 are
1-bounded with f0 supported on K. Then

I(f0, f1, f2) .K,χ ‖f0‖1/5

u3 .

Lemma 4 (Dual difference interchange). Let (Ft)t∈R be a family of jointly
measurable 1-bounded functions Ft : R→ C supported on a compact set K.
Let

F (x) =

ˆ
Ft(x)χ(t)dt.

Then for any s ∈ N there exists a measurable function Φ: Rs → R such that

‖F‖us+2 .K,χ

(ˆ ∣∣∣∣ ˆ ˆ ∆hFt(x)e2πixΦ(h)χ(t)dtdx

∣∣∣∣dh)2−2s

.

Lemma 5 (Bilinear case). Assume that f, g ∈ L2, and ξ ∈ R. Then

I(eξ, f, g) .χ ‖f‖H−1/2‖g‖L2 and I(f, eξ, g) .χ ‖f‖L2‖g‖H−1/2.

Lemma 6. For every s ∈ N and σ > 0, there exists c > 0 such that for any
1-bounded function f supported on a compact set K we haveˆ

Rs
‖∆hf‖2

H−σdh .K ‖f‖cus+1

One can choose c = 2sσ(1 + 2σ)−1.
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Let us see how these four intermediate results imply Proposition 2.
Without loss of generality we may assume that f1 is also supported on
compact set K1 depending only on K and χ. Consider the “dual function”

F0(x) =

ˆ
f1(x+ t)f2(x+ t2)χ(t)dt

and note that by Cauchy-Schwarz and Lemma 3 we get

I(f0, f1, f2) .K (I(F0, f1, f2))1/2 .K,χ ‖F0‖2−1/5

u3 .

Lemma 4 applied for s = 1 guarantees the existence of a function Φ making
I(f0, f1, f2) bounded by

CK,χ

( ˆ ∣∣∣∣ˆ ˆ ∆hf1(x+ t)∆hf2(x+ t2)e2πixΦ(h)χ(t)dtdx

∣∣∣∣dh)2−3/5

.

The expression in the absolute value equals I(eΦ(h),∆hf1,∆hf2), which by
Lemma 5 together with Cauchy-Schwarz yields

I(f0, f1, f2) .K,χ

( ˆ
‖∆hf1‖2

H−1/2dh

)2−4/5

. (2)

Apply Lemma 6 with σ = 1/2 to (2) to obtain I(f0, f1, f2) .K,χ ‖f1‖2−5/5

u2 .
Now consider the “dual function”

F1(x) =

ˆ
f0(x− t)f2(x+ t2 − t)χ(t)dt

and note that by Cauchy-Schwarz and the previous inequality we get

I(f0, f1, f2) .K,χ I(f0, F1, f2))1/2 .K,χ ‖F1‖2−6/5

u2 . (3)

Since ‖F1‖u2 = ‖F̂1‖∞, and

|F̂1(ξ)| =
∣∣∣∣ˆ ˆ f0(x− t)f2(x+ t2 − t)e2πiξxχ(t)dtdx

∣∣∣∣ = I(f0, eξ, f2),

we get that ‖F1‖u2 . ‖f2‖H−1/2 by Lemma 5. Combining this with (3) gives

I(f0, f1, f2) .K,χ ‖f2‖1/320

H−1/2 ,

which proves Proposition 2 with σ = 1/2 and c = 1/320.
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9.4 Remarks on the four key lemmata

The final section is devoted to a very brief discussion on the four key
lemmata.
The proof of Lemma 3 begins with the PET induction scheme of Bergelson
and Leibman [BL], which reduces our task to bounding a quadrilinear form
with linear patterns. PET is achieved here by repeated applications of
Cauchy-Schwarz, Fubini theorem, and change of variables. Finally,
appropriately bounding the resulting quadrilinear forms follows from a
standard procedure relying on Cauchy-Schwarz, called Gowers differencing.
We note that such a procedure can be applied in more general situations for
multilinear forms containing polynomials of higher degrees.
The proof of Lemma 4 follows the ideas from Lemma 6.3 from [PP]. For
simplicity, let us briefly sketch the proof only for the case s = 1, since this
case is sufficient for our degree lowering argument. By linearizing the
supremum appearing in ‖·‖u3 , it suffices to show that for any measurable
φ : R→ R, there exists a measurable function Φ: R→ R such thatˆ ∣∣∣∣ˆ ∆hF (x)e2πixφ(h)dx

∣∣∣∣dh .K,χ (4)

( ˆ ∣∣∣∣ ˆ ˆ ∆hFt(x)e2πixΦ(h)χ(t)dtdx

∣∣∣∣dh)1/2

.

One may write∣∣∣∣ˆ ∆hF (x)e2πixφ(h)dx

∣∣∣∣ = e2πiΨ(h)

ˆ
∆hF (x)e2πixφ(h)dx

for a real valued Ψ, and expand

∆hF (x) =

ˆ ˆ
Ft′(x)Ft(x+ h)χ(t′)χ(t)dtdt′.

After taking all these into consideration and applying Cauchy-Schwarz and
Fubini, one can show that the expression (4) is bounded by

CK,χ

( ˆ
I−I

ˆ ∣∣∣∣ˆ ˆ Ft(x+ h)Ft(x+ h′)e2πix(φ(h)−φ(h′))χ(t)dtdx

∣∣∣∣dhdh′)1/2

where I is an interval where χ is supported. After a change of variables and
by fixing an h′ where the integrant in h′ is close to its supremum, one may
notice that Φ(h) = φ(h+ h′)− φ(h′) has the desired properties.
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Both assertions of Lemma 5 can be established using the Fourier inversion
formula together with the following standard variant of van der Corput’s
lemma (see for example [SW, Proposition 2.1]).

Lemma 7. For all α, β ∈ R, we have∣∣∣∣ˆ e2πi(αt+βt2)χ(t)dt

∣∣∣∣ .χ max{|α|, |β|}−1/2.

Finally, Lemma 6 is a straightforward adaptation of Lemma 3.1 from
[CDR]. Similarly to Lemma 4, we apply the result only for s = 1 in the
degree lowering argument. The proof relies on basic properties of the
Fourier transform and their interactions with the operator ∆h, and once the
situation for s = 1 is understood, the general case follows easily.
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10 A new proof of Szemerédi’s theorem for
arithmetic progressions of length four;
Generalized arithmetical progressions and
sumsets.

After W.T. Gowers [2] and I. Z. Ruzsa [4]

A summary written by Dimas de Albuquerque and Gautam Neelakantan
Memana

Abstract

In this section we will be presenting the tools required for Gowers’
proof of Szemerédi’s theorem for arithmetic progressions of length
four as presented in [2]. One key tool among these is the improved
version of Freiman’s theorem on sumsets due to Ruzsa [4].

10.1 Introduction

The famous theorem of Szemerédi asserts that, for any positive integer k
and any real number δ > 0, there exists an N > 0 such that every subset of
{1, .., N} of cardinality at least δN contains an arithmetic progression of
length k. In [2], Gowers extends the proof technique of Roth in [3], where
the author proves Szemerédi’s theorem for length three using exponential
sums. This proof technique also improves the known bounds for the
theorem using combinatorial proofs.

10.2 Reformulation of Szemerédi’s theorem

Notation: Let ZN be the group of integers mod N . For any function
f : ZN → C, f̃(r) denotes the rth Fourier coefficient given by∑

s∈ZN f(s)ω−rs, where ω = exp(2πi/N).

Definition 1. 1. A function f from ZN to the closed unit disc (D) in C
is called α-uniform if

∑
k

∣∣∣∣∣∑
s

f(s)f(s− k)

∣∣∣∣∣
2

≤ αN3.
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2. A function f : ZN → D is called quadratically α-uniform if

∑
u

∑
v

∣∣∣∣∣∑
s

f(s)f(s− u)f(s− v)f(s− u− v)

∣∣∣∣∣
2

≤ αN4.

3. A set A ⊆ ZN of size δN is called α-uniform if the following function

fA(s) =

{
1− δ s ∈ A
−δ s 6∈ A

is α-uniform. Similarly, A is called quadratically α-uniform if fA is
quadratically α-uniform. fA is also called the balanced function of A.

Remark 2. A set satisfying (3) in Definition 1 should be seen as a
"pseudorandom" set as a consequence of uncertainity principle. Analysing
sets which are "pseudorandom" and not, separately, is one of the crucial
ideas in the proof of the main theorem.

Theorem 3. ([2] Corollary 8 ) Let A ⊂ ZN be a quadratically η-uniform
set of size δN , where η ≤ 2−208δ112 and N > 200δ−3. Then A contains an
arithmetic progression of length four.

The analysis of sets which are not quadratically uniform is even harder.
The next section contains the main tools that show that the sets which fail
to be quadratically uniform can be restricted to a large arithmetic
progression where its density increases noticeably.

10.3 Application of Freiman’s theorem

Definition 4. Let φ : A→ ZN . A quadruple (a, b, c, d) ∈ A4 is called
additive for φ if a+ b = c+ d and φ(a) + φ(b) = φ(c) + φ(d).

Proposition 5. ([2] Proposition 9) Let f : ZN → D and φ : B → ZN be a
function such that ∑

k∈B

∣∣∣∆̃(f ; k) (φ(k))
∣∣∣2 ≥ αN3, (1)

where ∆(f ; k)(s) = f(s)f(s− k). Then, there are at least α4N3 additive
quadruples for φ.
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Remark 6. A set A with its balanced function fA satisfying (1) should be
seen as a "non-pseudorandom" set, which is in the same vein as Definition
1. This tells us that there are many values of k for which the function
∆(fA; k) has large Fourier coefficient r. So, the above theorem says that the
set of pairs (k, r) for which ∆̃(f ; k)(r) is large is far from arbitrary (i.e we
can find many additive quadruples). Also, the function φ should be seen as
linear embedding of A ⊂ ZN into ZN .

It turns out that functions with many additive quadruples have very nice
structure as a consequence of Freiman’s theorem [1].

Definition 7. A d-dimensional (generalized) arithmetic progression on a
commutative group G is a set of the form P1 + ...+ Pd, where each Pi is an
ordinary arithmetic progression on G.

Theorem 8. (Freiman’s theorem, [1], [4] Theorem 1.1) Let A,B be finite
sets in a torsion-free commutative group satisfying |A| = |B| = n,
|A+B| ≤ αn. Then, there are numbers d, C depending on α only such that
A is contained in a generalized arithmetical progression of dimension at
most d and size at most Cn.

Remark 9. The commutative group from the above theorem will be ZD for
the proof in [2].

Proposition 10. ([2] Proposition 12) Let A be a subset of ZD of
cardinality m such that the number of quadruples (x, y, z, w) in A4 with
x− y = z − w is bigger than c0m

3 for some constant c0. Then, there are
constants c and C depending only on c0 such that there is a subset A′′ ⊂ A
of cardinality at least cm with |A′′ − A′′| ≤ Cm.

Remark 11. The above proposition says that A has a reasonable large
subset B such that |B +B| is small. Now, we can apply Freiman’s theorem
to this B.

Corollary 12. ([2] Corollary 14) Let B ⊂ ZN be a set of cardinality βN ,
and let φ : B → ZN be a function with at least c0N

3 additive quadruples.
Then there are constants γ and η depending on β and c0 only, a mod -N
arithmetic progressions P ⊂ ZN of cardinality at least Nγ and a linear
function ψ : P → ZN such that φ(s) is defined and equal to ψ(s) for ar least
η|P | values of s ∈ P .
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10.4 Ideas of Ruzsa’s proof of Theorem 8

Ruzsa’s proof of Freiman’s theorem is based on the fact that one can reduce
the search for the generalized arithmetical progression to a set of residues,
and this is done by the concept of Freiman isomorphy:

Definition 13. Let G,G′ be commutative groups and consider
A ⊂ G,A′ ⊂ G′. A function φ : A→ A′ is called an Fr - homomorphism if

a1 + . . . ar = b1 + . . . br =⇒ φ(a1) + · · ·+ φ(ar) = φ(b1) + · · ·+ φ(br) (2)

If φ is bijective and its inverse is also an Fr homomorphism, we call it an
Fr isomorphism.

With the above definition, we can indicate the steps in the proof of
Theorem 8. Here we use the notation kA = A+ · · ·+ Ak times.

(1) One constructs an F8 isomorphism between A and a subset of integers
A2.

(2) One obtains a subset A′ ⊂ A2 ⊂ Z which is F8 isomorphic to a set T
of residues modulo m, where m ∈ (16|2A− 2A|, 32|2A− 2A|) is a
prime number. This can be achieved using the Lemma below, which
is a result of Ruzsa [5].

Lemma 14. Let A be a set of integers, |A| = n, r ≥ 2 an integer and
D = rA− rA. Write |D| = N . For every m > 2r(N − 1) there exists
a set A′ ⊂ A, |A′| ≥ n/r which is Fr - isomorphic to a set T of
residues mod m.

(3) There exists a generalized arithmetical progression P ⊂ 2T − 2T .
This is obtained from the fact such difference sets contain Bohr sets,
and Bohr sets on groups of residues contain generalized arithmetical
progressions. A Bohr set on a commutative group G is a set of the
form

B(γ1, . . . , γk, ε1, . . . , εk) = {g ∈ G : |argγj(g)| ≤ 2πεj j = 1, . . . , k}

where the γj are characters of the group G.
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(4) Through the composition of Fr isomorphisms, one obtains a
generalized arithmetical progression P ∗ ⊂ 2A− 2A .

(5) At last, we are able to obtain a maximal collection {a1, . . . , as} ⊂ A
such that (P ∗ + ai) ∩ (P ∗ + aj) = ∅ if i 6= j, which in turn will give us
that A ⊂ {a1, . . . , as}+ P ∗ − P ∗, and this last set can be covered by a
generalized arithmetical progression, which concludes the Theorem.

Remark 15. In the above route, the dimensions and sizes of the
arithmetical progressions obtained are always dependent only on α.
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11 Power-type cancellation for the simplex
Hilbert transform

After Polona Durcik, Vjekoslav Kovač, Christoph Thiele [1]

A summary written by Jaume de Dios Pont

Abstract
We prove Lp bounds of the truncation simplex Hilbert transform

with a log-power less than one in the truncation range.

11.1 Introduction

Let f0, . . . , fn be n+ 1 functions of n variables. Define the simplex Hilbert
transform of these functions as

Λn(f0, . . . , fn) := p. v.

ˆ
Rn+1

n∏
k=0

fk(x0, . . . ,xk−1,xk+1, . . .xn)
1

x0 + · · ·+ xn
dx.

This multilienar form is a generalization (from the case n = 1) of the
bilinear form associated to the Hilbert transform. The Hilbert transform is
bounded from Lp to itself whenever p ∈ (0,∞), and its bilinear form is
therefore bounded on Lp0 × Lp1 whenever pi ∈ (0, 1) and p−1

0 + p−1
1 = 1.

This work makes partial progress toward a generalization of this
boundedness result: Whether an inequality of the form

|Λn(f0, . . . , fn)| .
n∏
i=0

‖fi‖pi (1)

holds for any p0, . . . , pn, or more generally, for all pi ∈ (1,∞) satisfying∑n
i=0 p

−1
i = 1.

Notation: We will write xî as the vector x with the i−th component
removed, and x≥k as the vector (xk,xk+1, . . .xn). We will define x≤k, x>k..
analogously, and combine these symbols, so that z>k,ĵ denotes the vector
(zk+1, . . . , zj−1, zj+1, . . . zn). We will denote by x̄ the sum4 of the
components of x. With this notation,

4The overline x̄ usually denotes average. Since the focus of this work is not on the
explicit constants, either definition would work.
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Λn(f0, . . . , fn) := p. v.

ˆ
Rn+1

n∏
k=0

fk(xk̂)
1

x̄
dx = p. v.

ˆ
R

ˆ
Rn+1

n∏
k=0

fj(xk̂)δx̄=tdx
dt

t

A boundedness result of the form of (1) essentially states that Holder
inequalities of the formˆ

Rn+1

n∏
k=0

fk(xk̂)(δx̄=t − δx̄=−t)dx ≤ 2
n∏
i=0

‖fi‖pi , (2)

which hold whenever pi ∈ [1,∞] satisfy
∑n

i=0 p
−1
i = 1, and which are

essentially sharp for each individual value of t, cannot be simultaneously
sharp for most values of t. If they were simultaneously sharp for all t, the
best truncated inequality one would hope for is

Λn,r,R(f0, . . . , fn) :=

ˆ
r≤|t|≤R

ˆ
Rn+1

n∏
k=0

fk(xk̂)δx̄=tdx
dt

t
≤ 2

n∏
i=0

‖fi‖pi
∣∣∣∣log

R

r

∣∣∣∣ .
(3)

The main result of this work is giving a quantitative improvement on this
log factor, of the form

Theorem 1 ([1, Theorem 1, Corollary 2]). Let p0, . . . , pn ∈ (0,∞), with∑n
i=0 p

−1
i = 1. Then there is an ε = ε(p1, . . . , pn) > 0 such that

‖Λn(f0, . . . , fn)‖ ≤ Cp0,...,pn

n∏
i=0

‖fi‖pi
∣∣∣∣log

R

r

∣∣∣∣1−ε . (4)

When p = (2−n, 2−n, 2−n+1, 2−n+2, . . . , 2−1), ε can be chosen to be 2−n+1.

The proof of the Theorem is entirely by studying this particular case, all
the other cases are seen by interpolating with (3).

11.2 Sketch of the proof

In very broad terms, the proof studies a smoothed version of Λn,r,R, which
is written as an integral over scales (parametrized by the t parameter).
This smoothed version is bounded by a delicate induction procedure, in
which variables are incorporated one by one, going from free variables to
satisfying the constraints of the Hilbert transform.
The key step of this induction procedure is an equality (equation (18)) that
allows one to do the integral in t explicitly.
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11.3 Smoothing the cutoff

Let g(x) := exp(−x2). Bounding Λn,r,R is equivalent to bounding the
smooth-cutoff versionˆ

Rn+1

n∏
k=0

fk(xk̂)
g(R−1x̄)− g(r−1x̄)

x̄
dx =

ˆ R

r

ˆ
Rn+1

n∏
k=0

fk(xk̂)ht(x̄)dx
dt

t
(5)

where ht(x) = t−1g′(t−1x). This is because 1[r,R] − g(R−1t)− g(r−1t) is in
L1(dt/t), and the crude estimate (3) suffices to bound the difference
between the smooth and non-smooth version.

11.4 Setting up the induction

Let z•>k = (z0
>k, z

1
>k) be two lists of n− k − 1 vectors. For r>k ∈ {0, 1}n−k+1

let zr>k := (zrkk , . . . , z
rn
n ) be an assignment of the variables z•>k. Define

Fk(x<k, y, z•>k) =
k∏
j=1

∏
r∈{0,1}n−k−1

Fj((x≤k, y, z
r
>k)ĵ), (6)

that is, the product over the first k functions and over all possible choices of
the free variables of index larger than k, removing the appropriate variable.
These free variables will be chosen to be close from their true value: Let
gt := t−1 exp(−x2/t2), the t−dilation of g. Given x>k and a dilation vector
α>k of positive numbers let

dγx>k,α>k(z
•
>k) :=

∏
s∈{0,1}

n∏
j=k+1

gαj(xj − zsj)dz
s
j (7)

be the Gaussian measure (up to normalization constants) with diagonal
covariance given by the vector of α2

>k.
We can now define the induction variables, which are:

Λk
α;α≥k

:=

ˆ R

r

dt

t︸ ︷︷ ︸
Scales

ˆ
Rn+1

gtα(x̄)dx︸ ︷︷ ︸
Original variables

ˆ
R2(n−k)

dγx>k,t·a>k(z
•
>k)︸ ︷︷ ︸

Free variables

{
∣∣∣∣∣∣∣
ˆ
Fk(x<k, y, z•>k)︸ ︷︷ ︸

Product of assignments

htαk(y − xk)dy

∣∣∣∣∣∣∣


(8)
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Λ̃k
α;α≥k

:=

ˆ R

r

dt

t

ˆ
Rn+1−k

dx≥k

ˆ
R2(n+1−k)

dγx>k,t·a>k(z
•
>k)

{
∣∣∣∣ˆ

Rk
dx<k

ˆ
Fk(x<k, y, z•>k)htαk(y − xk)htα(x̄)dy

∣∣∣∣} (9)

When k = n there are no free variables in Fn, and there is only one possible
assignment, which corresponds to

∏n
j=1 fj(xĵ). In this case,

Λn
α;(αn) :=

ˆ R

r

dt

t

ˆ
Rn+1

gtα(x̄)dx

∣∣∣∣∣
ˆ n∏

j=1

fj(xĵ)htαn(y − xn)dy

∣∣∣∣∣. (10)

Setting α = αn = 1√
2
and removing the absolute values one obtains exactly

the smoothed version of Λn(f0, . . . , fn), namely the right-hand side of (5).
In particular, Theorem 1 follows from the case k = n of the following
lemma:

Lemma 2 ([1, Lemma 3]). For any 2 ≤ k ≤ n and any
α, αk, . . . , αn ∈ [2−(n−k+1)/2,∞) and any R > 2r we have

Λn
α,(αk,...,αn), Λ̃

n
α,(αk,...,αn) . (α · αk . . . αn)2

(
log

R

r

)1−2−k+1

(11)

If k = 1, we have Λ̃n
α,(αk,...,αn) . 1

11.5 Showing Λ̃k . Λk

By taking the absolute value inside in (9),

Λ̃k
α;α≥k

≤
ˆ R

r

dt

t

ˆ
Rn+1

|htα(x̄)|dx
ˆ
R2(n−k)

dγx>k,t·a>k(z
•
>k)

{
∣∣∣∣ˆ Fk(x<k, y, z•>k)htαk(y − xk)dy

∣∣∣∣} (12)

where the only difference with Λk
α;α≥k

is the |htα(x̄)| term, as opposed to
gtα(x̄). The inequality Λ̃k . Λk now follows from

|htα(x̄)| . g2tα(x̄) (13)
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11.6 Going up in k

We apply Cauchy-Schwarz to the definiton (8) of Λn
α;α≥k

twice. First in t, to
get

|Λk
α;α≥k

|2 ≤ log
R

r
·
ˆ R

r

dt

t

(ˆ
Rn+1

gtα(x̄)dx

ˆ
R2(n−k)

dγ(z•>k)∣∣∣∣ˆ Fk(. . . )htαk(y − xk)dy

∣∣∣∣)2 (14)

(This step is the reason the gain in the exponent is 2−k+1: At each
induction step we only keep half the gains of the previous step.)
We then expand the product of Fk into the terms involving fj for j < k and
the terms involving fk only. These last terms do not depend on y, so we
apply Cauchy-Schwarz in all variables but y. We obtain an expression of
the form

|Λk
α;α≥k

|2 ≤
ˆ R

r

M≤k(t)Nk(t)
dt

t
(15)

The termMk(T ) only depends on the last fk and can be dealt with
(uniformly in t) by direct methods. The term

´ R
r
N≤k(t)dtt has the form

ˆ R

r

dt

t

ˆ
Rn+1

gtα(x̄)dx

ˆ
R2(n−k)

dγ(z•>k)

∣∣∣∣∣
ˆ ∏

j<k

∏
r

Fj((...)ĵ),htαk(y − xk)dy

∣∣∣∣∣
2

.

We can write a square of an integral |
´
R φ(y)dy|2 as

´
R2 φ(z0

k)φ(z1
k)dz

0
kdz

1
k.

Using this, we get an equivalent expression for N≤k, namely N≤k = Θk
≤k,

where for j ≥ k

Θj
≤k(t) :=

ˆ R

r

dt

t

ˆ
Rn+1

gtα(x̄)dx

ˆ
R2(n−k)

dγ(z•≥k,ĵ)

{
ˆ
R2

Fk−1(x<k−1,xk−1, z
•
>k−1)htαj (z

0
j − xj)htαj (z1

j − xj)dz0
jdz

1
j

}
.

(16)

Since Fk−1 does not depend on x≥k or t, one can perform those integrals
first, and define dθj≤k(x≤k, z

•
>k) as the measure witnessing the integral over

Fk−1 in (16), so that one has

Θj
≤k(t) =

ˆ
Rk×R2·(n+1−k)

Fk−1(x<k−1, xk−1, z
•
>k−1)dθj≤k(x≤k, z

•
>k). (17)
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Define, analogously, dλ̃k−1 as the measure witnessing Λ̃k
α/
√

2;αk/
√

2,αk+1...αn
in

(9) (without absolute values). The key "integration by parts" estimate,
which can be shown explicitly, where one gains some cancellation is

n∑
j=k

dθj≤k −

(
1− α−2

n∑
j=k

α2
j

)
dλ̃k−1 = dGR − dGr (18)

where dGt is the measure induced by
ˆ
Fk−1(x<k−1, xk−1, z

•
>k−1)dGt :=

ˆ
Fk−1(x<k−1, xk−1, z

•
>k−1)dγ(z•>k−1)g(x̄)dx

Now the induction step follows by integrating Fk against both sides: The
integrals against dGR and dGr are single scale, and can be controlled (. 1)
by Cauchy-Schwartz. The integrals against dθj≤k give Θj

≤k(t), which are all
nonnegative because they arose from a Cauchy-Schwarz inequality. The
integral over dλ̃ gives a term of the form Λ̃k

α;α≥k
. That gives

Θk
≤k . 1 +

(
1− α−2

n∑
j=k

α2
j

)
Λ̃k
α/
√

2;αk/
√

2,αk+1...αn
(19)

closing the induction.
The base step, corresponding to Λ̃1

α;α≥1
, is (a simpler) variation of the

induction step and can be found at the end of [1, Section 2].
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12 Detangling a Twisted Form in L4

After P. Durcik [DU]

A summary written by Jacob Denson and Jacob Fiedler

Abstract

We discuss a ‘twisted’ singular quadrilinear form introduced by
Demeter and Thiele, which relates to the almost everywhere
convergence of statistics associated with commuting ergodic
operators, and discuss the proof of the L4 boundedness of this form.

Take four functions F1, F2, F3, and F4 on R2, and ‘entangle them’, forming
the function

F(x, x′, y, y′) := F1(x, y)F2(x′, y)F3(x, y′)F4(x′, y′) (1)

We will be interested in the following quadrilinear form:

Λ(F1, F2, F3, F4) :=

ˆ
R2

F̂(ξ,−ξ, η,−η)m(ξ, η)dξdη,

where m : R2 → C obeys the symbol estimates |∂αm(ξ, η)| . (|ξ|+ |η|)−|α|
for sufficiently large α. The main result of [DU] is the following L4 bound:

Theorem 1. The quadrilinear form Λ satisfies

|Λ(F1, F2, F3, F4)| . ‖F1‖L4(R2)‖F2‖L4(R2)‖F3‖L4(R2)‖F4‖L4(R2) (2)

A special case of this quadrilinear form is the so-called ‘twisted
paraproduct’ introduced by Demeter and Thiele and defined as follows:

T (F1, F2, F3) := Λ(F1, F2, F3, 1). (3)

However, using Λ brings to light certain extra symmetries in the problem
not immediate obvious in the definition of T . The results of Kovac̆ [K] and
Bernicot [BE] show that for 1/p1 + 1/p2 + 1/p3 = 1 and p2 > 2,

|T (F1, F2, F3)| .p1,p2,p3 ‖F1‖Lp1 (R2)‖F2‖Lp2 (R2)‖F3‖Lp3 (R2). (4)

Bounding T has ramifications in ergodic theory, detailed in the next section.
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12.1 Why do paraproducts relate to ergodic theory?

Let X be a probability space and let T, S : X → X be commuting
measure-preserving transformations on X. A natural question in ergodic
theory is to study, for f, g ∈ L∞(X), the almost everywhere convergence of
the averages

1

N

N∑
n=1

f(T nx)g(S−nx) as N →∞. (5)

Using a paraproduct estimate, Demeter and Thiele [DT] showed
convergence of a related family of averages, including

1

N2

N∑
n=1

N∑
m=1

f(T nSmx)g(T−nSmx) (6)

The basic idea is that if one can bound the oscillation of a weighted version
of the ergodic averages by CJ‖f‖Lp1‖g‖Lp2 (where CJ is a term related to
the oscillation) this is sufficient to conclude pointwise convergence on a full
measure subset of X. In [DE], Demeter details this argument in the course
of reproving and extending a result of Bourgain on the convergence of (5)
when S is a power of T . In this case, the desired inequality is

∥∥∥( J−1∑
j=1

sup
k∈[uj ,uj+1)

|Wk(f, g)(x)−Wuj+1
(f, g)(x)|2

) 1
2
∥∥∥
L1,∞(X)

. J
1
4‖f‖L2(X)‖g‖L2(X),

(7)

where the bound is uniform in J and all finite sequences U1, ..., UJ , and
where

Wk(f, g)(x) :=
∑
n∈Z

wn,kf(T nx)g(T−nx).

Connecting bounds of this type to the types of estimates in this paper
requires invoking a transfer principle. Equipped with the right inequality,
one can consider functions on R2 which are constant on all the integer
lattice squares (n, n+ 1)× (m,m+ 1), essentially functions on Z2. To
complete the transfer to X, use the functions F on Z2 which are of the
form F (n,m) = f(T nSmx) for some x ∈ X. For further reference, [DLTT]
details the transfer of a bound on a maximal average to a bound on an
ergodic average.
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The salient point is that after the transfer, we have essentially the same
upper bound. So, when Demeter and Thiele obtain an oscillation bound for
a sum of integrals of the formˆ

R2

F1(x+ t, y + s)F2(x− t, y + s)Ψk(t)Φk(t)dtds

it implies the same bound for the oscillation of (6) (note the relationship
between the exponents in the ergodic average and the arguments in the
above integral), which imply the required pointwise a.e. convergence. In an
analogous manner, a better understanding of bounds forˆ

R2

F1(x+ t, y)F2(x, y + t)dtds

would improve the understanding of the more challenging average (5), and
bounding this bilinear Hilbert transform is directly related to bounding the
‘triangular’ Hilbert transform defined in (3).

12.2 The L4 estimate

Recall the statement of Theorem 1. Spending rescaling symmetries, we may
assume that ‖F1‖L4 , . . . , ‖F4‖L4 = 1, and our goal is to prove that |Λ| . 1.
The proof has a nice flavor, because the main tools are all very general, but
used in some novel clever ways:

(A) Time-Frequency Analysis, i.e. simultaneous decompositions of
functions to localize behaviour in space and frequency.

(B) Exploiting cancellation using a ‘telescoping identity’, which for
intuition’s sake behaves like a multilinear variant of an integration by
parts.

(C) Using monotonicity to replacing arbitrary functions with concrete
functions (e.g. Gaussians).

Let’s begin with Technique (A). Without loss of generality, assume supp(m)
is contained in a cone Γ = {(ξ, η) : |ξ| ≤ 1.001|η|}, since symmetry and the
triangle inequality then give the general result. Next, perform a
time-frequency decomposition of the multiplier m, writing

m(ξ, η) =

ˆ ∞
0

ˆ ∞
−∞

ˆ ∞
−∞

µ(u, v)ϕ̂t,u(tξ)
2ψ̂t,v(tη)2 dt/t du dv,
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where ϕ̂t,u, ϕt,u, ψ̂t,u, and ψt,u are concentrated on {ξ : |ξ| . 1/t},
{x : |x− tu| . t}, {η : |η| ∼ 1/t}, and {y : |y − v| . t} respectively, and ϕt,u
and ψt,u are L1 normalized. The squares in the exponent here are irrelevant
to the existence of the decomposition, but will be necessary to get a nice
convolution representation of the operator later on in equation (8). The
symbol properties of m imply that the magnitude of µ(u, v) decays rapidly
as |u|, |v| → ∞. The result will therefore follow if we can obtain bounds onˆ

ϕ̂t,u(ξ)
2ψ̂t,v(ξ)

2 F̂(ξ,−ξ, η,−η) dt/t dξ dη uniformly in u and v.

The values of u and v are not too important to the main ideas of the
problem, so we will suppress them in later notation, i.e. writing ϕt for ϕt,u,
and ψt for ψt,v. The function φt behaves like a Gaussian supported in a
neighborhood of u, and ψt like a modulated Gaussian supported in a
neighborhood of v. In fact, in our calculations we will eventually use
Technique (C) to replace these functions with Gaussians.
Writing f−(t) = f(−t) for the reflection of a function f , we can write Λ as
a ‘twisted convolution operator’, i.e.

Λ =

ˆ
Λt dt/t, . (8)

where

Λt :=

ˆ
F(x, y, x′, y′)ϕt(x̃− x)ϕ−t (x̃− x′)ψt(ỹ − y)ψ−t (ỹ − y′)

Let us write Λt as Λϕt,ϕ
−
t ,ψt,ψ

−
t

(F1, F2, F3, F4), where

Λa,b,c,d :=

ˆ
F(x, y, x′, y′)a(x̃− x)b(x̃− x′)c(ỹ − y)d(ỹ − y′).

The terms involving ψ are where the significant cancellation occurs in the
integral, with φ providing little cancellation, and so we start by applying
the triangle inequality, writing

|Λt| ≤
ˆ ∣∣∣∣ˆ F1(x, y)F2(x′, y)[ψt]t(ỹ − y) dy

∣∣∣∣∣∣∣∣ˆ F3(x′, y′)F4(x, y′)[ψt]t(y
′ − ỹ)] dy′

∣∣∣∣
|ϕt(x− x̃)| |ϕt(x̃− x′)| dx dx′ dx̃ dỹ.

(9)
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In the worst case, the two integrals in the absolute values of (9) in could be
equal to one another (e.g. if F1 = F3, F2 = F4 and |v| � 1), which means
Cauchy-Schwartz in ỹ is likely to be efficient, and expanding out the
squares that are obtained by Cauchy-Schwartz, we obtain

|Λt| ≤ Λψt,ψt,|ϕt|,|ϕ−t |
(F1, F2, F2, F1)1/2Λψ−t ,ψ

−
t ,|ϕt|,|ϕ

−
t |

(F3, F4, F4, F3)1/2. (10)

Notice that expanding out the square allows us to remove the absolute
values we introduced via the triangle inequality. In fact, reversing this
calculation shows

Λa,a,b1,b2(F1, F2, F2, F1) ≥ 0 for all a, b1, b2 if b1, b2 ≥ 0. (11)

By symmetry, we focus on bounding Λψt,ψt,|ϕt|,|ϕ−t |
(F1, F2, F2, F1), which now

calls for applying Technique (B) to exploit the oscillation of ψt.

Lemma 3 of [DU]. If −t∂t|ρ̂i|2 = |σ̂i(tτ)|2 for i ∈ {1, 2}, then
ˆ

Λσ1,σ1,ρ2,ρ2 dt/t = |ρ̂1(0)|2|ρ̂2(0)|2
ˆ
R2

F1F2F3F4−
ˆ

Λρ1,ρ1,σ2,σ2 dt/t. (12)

The proof given in [DU] is very accessible, so for purposes of brevity we
refer to reading that Lemma directly from the paper. This Lemma works
like integration by parts, in the sense that we ‘antidifferentiate’ σ, at the
cost of ’differentiating’ ρ, negating the integral (except that these
derivatives ‘preserve L1 normalization), and introducing the ‘boundary
term’

´
F1F2F3F4. Abusing notation, when applying Lemma 3 we will refer

to pairs ρi and σi in the theorem as ‘derivatives’ and ‘antiderivatives’ of one
another respectively. To given intuition, one example of a pair ρ and ψ
which satisfy

ρ(t, x) = t−1e−(x/t)2 and σ(t, x) = −(4
√
πx/t2)e−2π(x/t)2 ,

Graphs of ρ and σ for various values of t are given below, on the left and
right respectively.
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We wish to apply the Lemma to Λψt,ψt,|ϕt|,|ϕt|−(F1, F2, F1, F2), except that
|ϕt| does not equal |ϕ−t |. But we can fix this by emplying (11), which also
implies the monotonicity of Λa,a,b1,b2(F1, F2, F2, F1) with respect to b1 and
b2. This means that

Λψt,ψt,ϕt,ϕ
−
t

(F1, F2, F2, F1) . Λψt,ψt,Φt,Φt(F1, F2, F2, F1), (13)

where, roughly speaking, Φt is an L1 normalized even function, a sum of
two Gaussians centered at u and −u and supported on a t neighborhood,
chosen to dominate ϕt and ϕ−t . Thus we have applied Technique (C). If we
let DΦt denote the ‘derivative’ of Φt, and Iψt the ‘antiderivative’ of ψt,
then we obtain thatˆ

Λψt,ψt,Φt,Φt dt/t = c

ˆ
R2

F 2
1F

2
2 −
ˆ

ΛIψt,Iψt,DΦt,DΦt(F1, F2, F1, F2) dt/t.

We can choose ψt such that Iψt has support on a length O(t) interval. By
Cauchy-Schwartz,

´
F 2

1F
2
2 ≤ 1, and so it suffices to show that∣∣∣∣ˆ |ΛIψt,Iψt,DΦt,DΦt(F1, F2, F2, F1) dt/t

∣∣∣∣ . 1

But by differentiating Φt, we have juggled the oscillation from the first two
functions in Λ to the latter functions in Λ, i.e. Iψt no longer necessary
oscillation, but DΦt is now oscillating, and so we should mirror our
calculations in (10), applying Cauchy-Schwartz in x̃ instead of ỹ, which
yields

ΛIψt,Iψt,DΦt,DΦt(F1, F2, F1, F2) ≤ Λ|IΨt|,|IΨt|,DΦt,DΦt(F1, F1, F1, F1)1/2

Λ|IΨt|,|IΨt|,DΦt,DΦt(F2, F2, F2, F2)1/2.
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By symmetry, we again focus on Λ|IΨt|,|IΨt|,DΦt,DΦt(F1, F1, F1, F1). We have
now succeeded at disentangling the four functions, while maintaining
cancellation in the integrals studied. We now want to do a final application
of the telescoping identity, which, by exploiting monotonicity, allows us to
replace |IΨt| with Φt, and then the telescoping identity yields that

ˆ
ΛΦt,Φt,DΦt,DΦt(F1, F1, F1, F1)dt/t

=

ˆ
F 4

1 −
ˆ

ΛDΦt,DΦt,Φt,Φt(F1, F1, F1, F1)dt/t.

(14)

Symmetry gives ΛDΦt,DΦt,Φt,Φt(F1, F1, F1, F1) = ΛΦt,Φt,DΦt,DΦt(F1, F1, F1, F1),
and so now, rearranging the equation (14), and using the bound

´
F 4

1 = 1,
we conclude |

´
ΛDΦt,DΦt,Φt,Φt(F1, F1, F1, F1) dt/t| . 1, completing the proof.
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13 Pointwise characteristic factors for the
Wiener-Wintner double recurrence
theorem

After I. Assani, D. Duncan and R. Moore [ADM]

A summary written by Leon Duensing

Abstract

In [ADM] it is shown that for a standard ergodic system (X,Σ, µ, ϕ)
with f1, f2 ∈ L∞(X) the averages

1

N

N∑
n=1

f1(ϕan(x))f2(ϕbn(x))e2πint, a, b ∈ Z

converge as N →∞ for almost every x ∈ X, independently of t. In
the talk we prove that the Conze-Lesigne factor Z2 is characteristic
for these averages.

13.1 Introducing the statements.

Fix a standard measure-preserving system (X,Σ, µ, ϕ), meaning that X is a
compact, metrizable topological space, Σ is the borelean σ-algebra of X
and ϕ : X → X is a homeomorhpism preserving the measure µ. Assume
further, that this system is ergodic and take two functions f1, f2 ∈ L∞(X)
and a pair of integers a ≤ b. Let T : L1(X)→ L1(X) : f 7→ f ◦ ϕ be the
Koopman-Operator (or pullback) of the transformation.
In this talk, we study weighted double averages of the form

WN,t(f1, f2) :=
1

N

N∑
n=1

T anf1 · T bnf2 · e2πint, N ∈ N, t ∈ R. (1)

Assani, Duncan and Moore proved the following.

Theorem 1 (Weighted double convergence). There exists a full measure
subset X ′ ⊆ X such that the sequence WN,t(f1, f2)(x, x) converges for each
x ∈ X ′ and t ∈ R.
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The strategy of the proof goes by first finding a factor F ⊆ L2(X) of the
system, which is uniformly pointwise characteristic (or just characteristic)
for the averages WN,t, meaning that there is a full measure subset X ′ ⊆ X
such that

lim
N→∞

∣∣WN,t(f1, f2)(x, x)−WN,t

(
E(f1|F),E(f2|F)

)
(x, x)

∣∣ = 0

for all x ∈ X ′ and t ∈ R. Note, that this property is satisfied if

lim sup
N→∞

sup
t∈R
|WN,t(f1, f2)(x, x)| = 0 for a.e. x ∈ X

whenever either f1 or f2 lie in F⊥.
A promising candidate for this is the Conze-Lesigne Factor Z2.

Definition 2 (Host-Kra seminorms and factors). For f ∈ L2(X) define the
Host-Kra seminorms recursively by

|||f |||21 := lim
N→∞

1

N

N∑
n=1

ˆ
X

|T nf · f | dµ

and for each k ≥ 2

|||f |||2kk := lim sup
N→∞

1

N

N∑
n=1

|||T nf · f |||2k−1

k−1 .

In particular, for every k ≥ 0 we define the k-th Host-Kra factor as

Zk := {f ∈ L2(X) : |||f |||k+1 = 0}⊥.

In the talk we focus on proving, that Z2 is characteristic.

Theorem 3 (Double Uniform Wiener-Wintner Theorem). If f1 lies in Z⊥2 ,
then

W (x) := lim sup
N→∞

sup
t∈R

∣∣∣∣∣ 1

N

N∑
n=1

T anf1(x)T bnf2(x)e2πint

∣∣∣∣∣ = 0 (2)

for almost every x ∈ X.

Hence, in order to establish Theorem 1, it is sufficient to only consider
functions f1, f2 ∈ Z2.
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13.2 Z2 is characteristic.

We sketch the proof of Theorem 3.
In order to show that ‖W‖2 = 0 first, one uses the Van-der-Corput lemma
on the sequence (

|T anf1(x)T bnf2(x)|
)
n∈N

and Cauchy-Schwarz to deduce

W (x)2 ≤ C

H
+
C

H

(
H∑
h=1

lim sup
N→∞

1

N

N∑
n=1

∣∣T an(f1·T ahf1)(x)·T bn(f2·T bhf2)(x)
∣∣2)1/2

(3)
with C > 0 being a constant and H ∈ N a free parameter. Applying
Van-der-Corput again on the resulting sequence of correlations(

|T an(f1 · T ahf1)(x) · T bn(f2 · T bhf2)(x)|
)
n∈N

for each h ∈ N and setting

G
(1)
h,k = f1 · T ahf1 · T akf1 · T a(k+h)f1, G

(2)
h,k = f2 · T bhf2 · T bkf2 · T b(k+h)f2

yields the estimate

lim sup
N→∞

1

N

N∑
n=1

∣∣T an(f1 · T ahf1)(x) · T bn(f2 · T bhf2)(x)
∣∣2 ≤ C

K
+

C

(K + 1)2

K∑
k=1

(K + 1− k) lim sup
N→∞

1

N

N∑
n=1

T anG
(1)
h,k(x) · T bnG(2)

h,k(x)

(4)

for any K ∈ N. By a theorem of Bourgain (see [Ru] Theorem 1), the limes
superior in (4) is actually a limit and we can use the mean ergodic theorem
w.r.t T b−a to deduceˆ

X

lim
N→∞

1

N

N∑
n=1

T anG
(1)
h,k(x) · T bnG(2)

h,k(x) dx

=

ˆ
X

lim
N→∞

1

N

N∑
n=1

G
(1)
h,k(x) · T (b−a)nG

(2)
h,k(x) dx

=

ˆ
X

G
(1)
h,k(x) · E

(
G

(2)
h,k|Ib−a

)
(x) dx.

(5)

Now a key step of the proof lies in representing the conditional expectation
E(·|Ib−a) as an integral operator.
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Lemma 4. Let T be the Koopman-operator of an ergodic system
(X,Σ, µ, ϕ), m ∈ N and denote by Im ⊆ L2(X) the subspace of
Tm-invariant functions. Then for every f ∈ L2(X)

E(f |Im)(x) =

ˆ
X

f(y) ·Km(x, y) dy

with some kernel Km ∈ L2(X ×X).

Let S : L1(X ×X)→ L1(X ×X) be the Koopman-Operator of the
transformation ϕa × ϕb : X ×X → X ×X. Resuming at (5), we conclude
ˆ
X

G
(1)
h,k(x) · E

(
G

(2)
h,k|Ib−a

)
(x) dx

=

ˆ
X

ˆ
X

G
(1)
h,k(x) ·G(2)

h,k(y) ·K(x, y) dxdy

=

ˆ
X2

Kb−a · f1 ⊗ f2 ·
(
Shf1 ⊗ f2 · Skf1 ⊗ f2 · Sk+hf1 ⊗ f2

)
dµ⊗ µ.

(6)

Now set H = K for the parameters in (3) and (4), so that when H tends to
infinity
ˆ
X
|W (x)|2 dµ ≤

ˆ
X2

(Kb−a · f1 ⊗ f2)(x, y)·

lim
H→∞

1

H(H + 1)2

H−1∑
h,k=0

(H + 1− k)
(
Shf1 ⊗ f2 · Skf1 ⊗ f2 · Sk+hf1 ⊗ f2

)
(x, y)

︸ ︷︷ ︸
=:F (x,y)

dµ⊗ µ

(7)

It is left to estimate the L2-Norm of F from (7) against the third Host-Kra
seminorm of f1.

Lemma 5. Under the standing assumptions, there is a constant c > 0 such
that the inequality ˆ

X2

|F |2 dµ⊗ µ ≤ c|a|1/2|||f1|||23

yields.

Since |||f1|||3 = 0, the claim follows by applying Hölder’s inequality.
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14 A new proof of Szemerédi’s theorem for
arithmetic progressions of length four

After W. T. Gowers [G]

A summary written by Kornélia Héra

Abstract

We give a new proof of Szemerédi’s theorem for arithmetic
progressions of length four, using exponential sums.

14.1 Introduction

The famous theorem of Szemerédi states that, for any positive integer k
and any real number δ > 0, there exists N such that every subset of
{1, 2, . . . , N} of cardinality at least δN contains an arithmetic progression
of length k. The first progress toward the result was obtained by Roth [R],
who proved it for the special case k = 3 using exponential sums. Szemerédi
[SZ] found a more combinatorial proof for the k = 3 case, which he then
generalized for all k. In a very influential paper, Furstenberg [F] used
techniques from ergodic theory to prove Szemerédi’s theorem and certain
extensions.
Despite the presence of a fruitful history of the problem, a natural question
remains to be asked: can Roth’s method of proof for the k = 3 case be
generalized? In this paper, this is carried our for the k = 4 case. The
motivation to generalize Roth’s method does not only stem from the fact
that the argument is natural and nice, but also from the fact that bounds
arising from the known proofs of Szemerédi’s theorem are very weak, and in
general for similar problems the use of exponential sums tend to give strong
bounds. The bound appearing in our theorem below is a significant
improvement over the previously known bounds.
Our theorem is the following.

Theorem 1. There is an absolute constant C with the following property.
If A is a subset of {1, 2, . . . , N} with cardinality δN and
N ≥ exp exp exp((1/δ)C), then A contains an arithmetic progression of
length 4.

83



As an immediate corollary, we also obtain the following.

Corollary 2. There is an absolute constant c with the following property.
If the set {1, 2, . . . , N} is colored with at most (log log logN)c colors, then
there is a monochromatic arithmetic progression of length 4.

The rough idea of the proof of Theorem 1 is the following. We use a notion
of pseudo randomness, called quadratic uniformity, and use the fact (which
has been proved earlier) that quadratically uniform sets with the
appropriately chosen parameters contain an arithmetic progression of length
4. Then we show that if a set fails to be quadratically uniform then it can
be restricted to a large arithmetic progression where its density increases
noticeably. Using the latter in an iterative fashion, the result will follow.

14.2 Preliminaries

14.2.1 Notation and definitions

Given a positive integer N , let ZN denote the group of integers mod N .
The cardinality of a finite set A is denoted by |A|.
We write ω = exp(2πi/N). Given a function f : ZN → C, its Fourier
coefficients are defined as

f̃(r) =
∑
s∈ZN

f(s)ω−rs =
∑
s∈ZN

f(s) exp(2πi(−rs)/N), r ∈ ZN .

Moreover, for f as above and k ∈ ZN , we define

∆(f ; k)(s) = f(s)f(s− k), s ∈ ZN .

Let D denote the closed unit disk in C. Let f : ZN → D, and α > 0. We
say that f is quadratically α-uniform, if∑

u∈ZN

∑
v∈ZN

|
∑
s∈ZN

f(s)f(s− u)f(s− v)f(s− u− v)|2 ≤ αN4.

A special type of functions that we will use are balanced functions. Let
A ⊂ ZN with size δN . The balanced function of A is defined as

fA(s) =

{
1− δ s ∈ A
−δ s /∈ A
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A set A is quadratically α-uniform, if its balanced function fA is.
Our last definition is the following. Let B ⊂ ZN and let φ : B → ZN be an
arbitrary function. We say that (a, b, c, d) ∈ B4 is an additive quadruple of
φ, if a+ b = c+ d and φ(a) + φ(b) = φ(c) + φ(d).

14.2.2 Theorems that have been proved previously

We take the following results for granted.

Theorem 3. [G, Corollary 8] If A ⊂ ZN is a quadratically η-uniform set
with |A| = δN where η ≤ 2−208δ112 and N > 200δ−3, then A contains an
arithmetic progression of length four.

Theorem 4. [G, Proposition 9] Let α > 0, let f : ZN → D, let B ⊂ ZN ,
and let φ : B → ZN be a function such that∑

k∈B

|∆(f ; k)̃ (φ(k))|2 ≥ αN3.

Then φ has at least α4N3 additive quadruples.

Theorem 5. [G, Corollary 14] Let B ⊂ ZN with |B| = βN , and let
φ : B → ZN be a function with at least c0N

3 additive quadruples. Then
there are constants γ and η depending only on β and c0, a mod-N
arithmetic progression P ⊂ ZN with |P | ≥ Nγ and a linear function
ψ : P → ZN such that φ(s) is defined and equal to ψ(s) for at least η|P |
values of s ∈ P .
Moreover, there is an absolute constant K such that we can take γ = cK0
and η = exp(−(1/c0)K).

14.3 Sketch of the proof of Theorem 1

Let N ≥ exp exp exp((1/δ)C), A ⊂ ZN with |A| = δN , and suppose that A
does not contain an arithmetic progression of length 4.
By Theorem 3, A is not quadratically 2−208δ112-uniform. Let α = 2−208δ112,
and let f denote the balanced function of A. An equivalent formulation of
the notion of quadratic uniformity (see [G, Lemma 2]) can be used to check
the following. Since A is not quadratically α-uniform, there is a set B ⊂ ZN
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with |B| ≥ αN/2 and a function φ : B → ZN such that
|∆(f ; k)̃ (φ(k))| ≥ (α/2)1/2N for every k ∈ B. In particular,∑

k∈B

|∆(f ; k)̃ (φ(k))|2 ≥ (α/2)2N3.

By Theorem 4, the above implies that φ has at least (α/2)8N3 additive
quadruples. Therefore, the conditions of Theorem 5 are satisfied. We derive
that there is an arithmetic progression P ⊂ ZN and a linear function
ψ : P → ZN such that∑

k∈P

|∆(f ; k)̃ (ψ(k))|2 ≥ α/2N2|B ∩ P | ≥ αη/2N2|P |

We now use the following theorem.

Theorem 6. [G, Proposition 15] Let f be the balanced function of a set
A ⊂ ZN . Let P ⊂ ZN be an arithmetic progression with |P | = T . Suppose
that there exist λ and µ such that∑

k∈P

|∆(f ; k)̃ (λk + µ)|2 ≥ βN2T.

Then there exist quadratic polynomials ψ0, . . . , ψN−1 such that

∑
s

∣∣∣∣∣ ∑
z∈P+s

f(z)ω−ψs(z)

∣∣∣∣∣ ≥ βNT/
√

2.

In fact, the following slightly different inequality is also proved. There exist
quadratic polynomials ψ0, . . . , ψN−1 such that for each s,∣∣∣∣∣ ∑

z∈P+s

f(z)ω−ψs(z)

∣∣∣∣∣ ≥ γ(s)T/
√

2

for some γ(s) with
∑

s γ(s) ≥ βN .
Lastly, we will use the following statement.

Theorem 7. [G, Corollary 19] Let ψ : ZN → ZN be a quadratic polynomial
and let r ≤ N . There exists m ≤ Cr1−1/128 (where C is an absolute
constant) and a partition P1, . . . , Pm of {0, 1, . . . , r− 1} such that each Pj is
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an arithmetic progression, the sizes of the Pj differ by at most 1, and if
f : ZN → D is any function such that∣∣∣∣∣

r−1∑
x=0

f(x)ω−ψ(x)

∣∣∣∣∣ ≥ αr,

then
m∑
j=1

∣∣∣∣∣∣
∑
x∈Pj

f(x)

∣∣∣∣∣∣ ≥ αr/2.

Using Theorem 7 for each of the above P + s and ψs as well as summing
over s, we obtain the following. We can partition each P + s into further
progressions Ps1, . . . , Psm of cardinalities differing by at most 1 and all at
least cT 1/128, such that

∑
s

m∑
j=1

∣∣∣∣∣∣
∑
x∈Pj

f(x)

∣∣∣∣∣∣ ≥ βNT/(2
√

2),

where β = exp(−(1/δ)K) for some absolute constant K.
Using the definition of the balanced function f , one can then derive that
there exist s and j such that |Psj| ≥ cβT 1/256 and |A∩ Psj| ≥ (δ + c2β)|Psj|.
We now repeat the argument, replacing A and {0, 1, . . . , N − 1} by A ∩ Psj
and Psj, and iterate this process. Since the density of the restriction of A
goes up by a multiplicative factor of at least (1 + c2β), one can compute
that the process can be repeated at most r = exp((1/δ)K) times. In the
replacement process, N is replaced by N θ, where θ = δK . Therefore, we get
that the theorem is proved if N θr is sufficiently large. By Theorem 3, we
need N θr ≥ 200δ−3. A small calculation shows that the theorem follows
since N ≥ exp exp exp((1/δ)C).
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15 Quantitative bounds in the nonlinear Roth
theorem, part I

After S. Peluse and S. Prendiville [PP22]

A summary written by Guo-Dong Hong

Abstract

We present the quantitative bound for the nonlinear Roth
configuration, which is after Bourgain and Chang [BC17], over Z in
[PP22]. In part I, we will highlight an important technique: the
degree lowering method, to implement the density increment
argument.

15.1 Introduction

Bergelson and Leibman [BL96] studied the polynomial progression over Z
for sets with positive upper density, while it leaves the question of obtaining
the quantitative bound for such polynomial progression. Bourgain and
Chang [BC17] studied one specific polynomial progression, or nonlinear
Roth configuration, over the finite field. However, it seems their method
cannot be easily generalized to the integer setting.
The goal in this paper [PP22] is to obtain the first quantitative bound for
this specific configuration over Z:

Theorem 1. If A ⊂ [N ] does not contain the following nonlinear Roth
configuration

x, x+ y, x+ y2 (y 6= 0),

then |A| � N(log logN)−c for some constant c > 0.

The approach in [PP22] is the density increment argument. However, there
are certain difficulties to be overcome when one considers the nonlinear
configuration over Z, and we will discuss more in the subsequent sections.
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15.2 Density increment argument

The main idea in the density argument is that if a subset A ⊂ [N ] is large,
then one can find a sub-progression P ⊂ [N ] in which A has an increased
density. After the proper affine transformation, we can run the argument
again if P is still large. However, this process can only proceed within a
finite time since the density cannot exceed 1. Therefore, this means up to a
certain step, the subset we are considering is no longer large, and this gives
us the information on the size of the original set A.

Lemma 2. If A ⊂ [N ] has the density at least δ and does not contain the
following general nonlinear Roth configuration

x, x+ y, x+ qy2 (y 6= 0),

then at least one of the following situations happens:

• N � q3δ−O(1)

• there exists q′ � δ−O(1) and N ′ � δO(1)q−3/2N1/2 such that A has the
increased density δ + Ω(δO(1)) when restricted in the progression
{a+ qq′ · [N ′]} for some a ∈ [N ].

Once we have this density increment lemma, the main theorem then follows
immediately.

15.3 Inverse theorem for nonlinear Roth

In order to obtain the needed density increment lemma, we need the
following strong inverse theorem for the nonlinear Roth configuration:

Theorem 3. Let {fi : Z→ C}2
i=0 be 1-bounded functions with

supp(fi) ⊂ [N ]. If∣∣∣∣∣∑
x∈Z

∑
y∈N

f0(x)f1(x+ y)f2(x+ qy2)

∣∣∣∣∣ ≥ δ
∑
x∈Z

∑
y∈N

1[N ](x)1[N ](x+y)1[N ](x+qy2),

then at least one of the following situations happens:

• N � q3δ−O(1)
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• there exists q′ � δ−O(1) and N ′ � δO(1)q−3/2N1/2 such that for any
i = 0, 1, 2 we have

∑
x∈Z

∣∣∣∣∣∑
y∈N′

fi(x+ q′qy)

∣∣∣∣∣� δO(1)NN ′

Motivated by Gowers’s work in [G98] and [G01], Prendiville in [P17]
showed that the following two ingredients are enough to deduce the density
increment lemma:

• Local von Neumann theorem

• Modified Gowers’s local inverse theorem

The first ingredient is how to use Gowers norm to control the counting
operator, and Prendiville was able to use ideas from [BL96] to control the
homogeneous polynomial progressions, even for the nonlinear Roth
configuration. However, the inverse theorem for Gowers norm is only able
to deal with the homogeneous polynomial progressions case. Therefore, the
degree lowering method is developed to substitute the use of the inverse
theorem for higher-order Gowers norm.
When we use the degree lowering method, some difficulties occur in
adapting Prendiville’s local von Neumann theorem. Hence, we need another
variant of this local von Neumann theorem, which will be discussed more in
part II.
For the sake of completeness, we include the result below:

Theorem 4. Let {fi : Z→ C}2
i=0 be 1-bounded functions with

supp(fi) ⊂ [N ]. If∣∣∣∣∣∑
x∈Z

∑
y∈N

f0(x)f1(x+ y)f2(x+ qy2)

∣∣∣∣∣ ≥ δ
∑
x∈Z

∑
y∈N

1[N ](x)1[N ](x+y)1[N ](x+qy2)

then at least one of the following situations happens:

• N � q

•
∑

u∈[q]‖F‖25

U5(u+q·Z) � δO(1)
∑

u∈[q]‖1[N ]‖25

U5(u+q·Z)
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15.4 Degree lowering method

Degree lowering method was originated from [P19] in order to study the
polynomial progression in the finite field. As we mentioned in the previous
section, degree lowering method can be regarded as a substitution for the
inverse theorem of higher-order Gowers’s norm.
To be more precise, one can control the U s-Gowers norm by the
U s−1-Gowers norm with the unerstanding of the two-term progression and
the only inverse theorem used in this approach is the U2-inverse theorem,
which is comparatively easier to understand.
However, unlike the finite field case in [P17], in order to generalize the
degree lowering method to the integer setting, we had to pass to the "dual"
formulation with the help of Cauchy-Schwarz inequality.

Lemma 5. Let {fi : Z→ C}2
i=0 be 1-bounded functions with

supp(fi) ⊂ [N ]. Define the dual function

F (x) := Ey∈[M ]f0(x− qy2)f1(x+ y − qy2),

where M =
√
N/q.

If for s ≥ 3, we have∑
u∈[q]

‖F‖2s

Us(u+q·Z) ≥ δ
∑
u∈[q]

‖1[N ]‖2s

Us(u+q·Z),

then at least one of the following situations happens:

• N �s q
3δ−Os(1)

•
∑

u∈[q]‖F‖2s−1

Us−1(u+q·Z) �s δ
Os(1)

∑
u∈[q]‖1[N ]‖2s−1

Us−1(u+q·Z),

Repeating this process, with the control for the U5-Gowers norm from the
variant of the local von Neumann theorem, will give us the control for the
U1-Gowers norm in the end, and this is the desired inverse theorem for the
nonlinear Roth configuration.
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16 Norm-variation of ergodic averages with
respect to two commuting transformations

After P. Durcik, V. Kovač, K.A. Škreb, and C. Thiele[1]

A summary written by Martin Hsu, Fred Lin

Abstract
We present a quantitative result on the norm convergence of

double ergodic averages with respect to two commuting
transformations. In [1], the authors first reduce the estimate of a
discrete model to the estimate of a continuous model. Then the
estimate of the continuous model can be done with the aid of the
twisted technology, a method which first developed to estimate some
multilinear singular integrals with entangled structure.

16.1 Introduction

Let (X,F , µ) be a σ-finite measure space and let S, T : X → X, be two
commuting measure-preserving transformations. For two measurable
functions f, g on X and a positive integer n we define the double ergodic
average:

Mn(f, g)(x) :=
1

n

n−1∑
i=0

f(Six)g(T ix). (1)

In [2], Conze and Lesigne show the L2 convergence of the sequence of
double ergodic averages {Mn(f, g)}n∈N on a probability space (X,F , µ) for
functions f, g ∈ L∞(X). The main result in this paper [1] is to quantify
such convergence through a norm-variation estimate on {Mn(f, g)}n∈N.
Theorem 1. For every choice of increasing sequence
n0 < n1 < · · · < nj < · · ·, we have the following bound

m∑
j=1

∥∥Mnj (f, g)−Mnj−1
(f, g)

∥∥2

L2(X)
. ‖f‖2

L4(X) ‖g‖
2
L4(X) (2)

with the implicit constant independent of m and the choice of the sequence.
The proof of Theorem 1. can be summarized as follow:

• Three main reduction steps to a continuous model

• Two key estimates on the continuous model via twisted technology
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16.2 Reduction to Continuous Model

The series of reduction steps go through several models, including the
following: for F̃ , G̃ ∈ `4 (Z2), F,G ∈ L4 (R2), and ϕ ∈ L1 (R), we define

• Discrete Bilinear Average:

Ãn

(
F̃ , G̃

)
(k, l) :=

1

n

n−1∑
i=0

F̃ (k + i, l) G̃ (k, l + i) (3)

• Continuous Bilinear ϕ-Average:

Aϕt (F,G) (x, y) :=

ˆ
R
F (x+ s, y)G (x, y + s) t−1ϕ

(
t−1s

)
ds (4)

We provide a sketch of the reduction process among the four different
models:

Mn (f, g)
I
 Ãn

(
F̃ , G̃

)
II
 A

1[0,1)

t (F,G)
III
 Aϕt (F,G) with ϕ ∈ S (R) . (5)

• Step I: We reinterpret the action of T, S on a fixed reference point
x ∈ X as two independent shifts on the integer grid Z2 by considering
the following two double sequences:

F̃x (k, l) ≈ f
(
T kSlx

)
and G̃x (k, l) ≈ g

(
T kSlx

)
. (6)

This allows us to pass the norm-variation estimate on {Mn (f, g)}n∈N
to the corresponding estimate on

{
Ãn

(
F̃x, G̃x

)}
n∈N

.

• Step II: We perform two parallel changes of variables:
Ãn

(
F̃ , G̃

)
(k, l) =

1

n

k+l+n−1∑
i=k+l

F̃ (i− l, l) G̃ (k, i− k)

A
1[0,1)

t (F,G) (x, y) =
1

t

ˆ x+y+t

x+y

F (s− y, y)G (x, s− x) ds

(7)

The two similar formulations suggest that we set:
F (s− y, y) :=

∑
i,l∈Z

F̃ (i− l, l)1[i,i+1)×[l,l+1)(s, y)

G (x, s− x) :=
∑
i,k∈Z

G̃ (k, i− k)1[i,i+1)×[k,k+1)(s, x)
(8)
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to derive the following approximation.

A
1[0,1)
n (F,G) (x, y) ≈

∑
k,l∈Z

Ãn

(
F̃ , G̃

)
(k, l) · 1[k,k+1)×[l,l+1)(x, y) (9)

This allows us to pass the norm-variation estimate on{
Ãn

(
F̃ , G̃

)}
n∈N

to the corresponding estimate on{
A
1[0,1)

t (F,G)
}
t∈R+

.

• Step III: This step causes all the technicality regarding the decay
control on ϕ. In short, we perform a Littlewood-Paley
decomposition on 1[0,1) to separate information with different
regularity control:

1[0,1) = 1[0,1) ∗ χ+
∑
k<0

1[0,1) ∗ θ2k . (10)

With careful book-keeping on the dependency of the norm-variation
of {Aϕt (F,G)}t∈R+

on ϕ = 1[0,1) ∗ χ and ϕ = 1[0,1) ∗ θ2k , we derive
bounds that are summable over k. Via triangle inequality, we have
the desired estimate on the norm-variation of

{
A
1[0,1)

t (F,G)
}
t∈R+

and

thus, complete the reduction step.

16.3 Key Estimates: Long and Short Variation

We aim to derive the analogous statement of Theorem 1. for
{Aϕt (F,G)}t∈R+

:

Theorem 2. For a fixed Schwartz function ϕ ∈ S (R) and an arbitrary
chosen increasing sequence t0 < t1 < · · · < tj < · · · in R+, we have

m∑
j=1

∥∥∥Aϕtj (F,G)− Aϕtj−1
(F,G)

∥∥∥2

L2(R2)
.
ϕ
‖F‖2

L4(R2) ‖G‖
2
L4(R2) (11)

with the implicit constant independent of m and the choice of the sequence
but dependent on ϕ in a controlled manner.
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A standard procedure for norm-variation estimates is to divide the analysis
into two parts: Long variation and Short variation. Roughly speaking,
one can decompose the sequence into dyadic segments:

2ki−1 < · · · < tj−1 < tj < · · · ≤ 2ki . (12)

• Long variation controls the long jumps across dyadic segments by
measuring the jumps in the lacunary sequence

{
2ki
}∞
i=0

:

Lemma 3. For a fixed Schwartz function ϕ ∈ S (R) and an arbitrary
chosen increasing sequence k0 < k1 < · · · < ki < · · · in Z, we have

m∑
i=1

∥∥∥Aϕ
2ki

(F,G)− Aϕ
2ki−1

(F,G)
∥∥∥2

L2(R2)
.
ϕ
‖F‖2

L4(R2) ‖G‖
2
L4(R2) (13)

with the implicit constant independent of m and the choice of the
sequence but dependent on ϕ in a controlled manner.

• Short variation controls the overall effect of the short jumps within
the dyadic segments by summing over all norm-variation estimates
within the dyadic segments:

Lemma 4. For a fixed Schwartz function ϕ ∈ S (R) and a collection
of increasing sequence

2k−1 < t
(k)
0 < · · · < t

(k)
j−1 < t

(k)
j < · · · < t(k)

mk
≤ 2k for k ∈ Z, (14)

we have the following estimate:∥∥∥∥∥
∥∥∥∥Aϕt(k)j

(F,G)− Aϕ
t
(k)
j−1

(F,G)

∥∥∥∥
`2(k,j)

∥∥∥∥∥
L2(R2)

.
ϕ
‖F‖2

L4(R2) ‖G‖
2
L4(R2) (15)

with the implicit constant independent of m and the choice of the
sequence but dependent on ϕ in a controlled manner.

The proof of the above-mentioned estimates mainly relies on the Twisted
Technology. The rest of the technicality arises from all the bookkeeping
on the dependency of the estimates on the Schwartz function ϕ.
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17 Nonconventional ergodic averages and
nilmanifolds

After B. Host and B. Kra [HK]

A summary written by Henrik Kreidler

Abstract

We discuss a proof for the convergence of nonconventional ergodic
averages via a structure theorem for certain factors of a
measure-preserving system.

Motivated by Furstenberg’s seminal work [F] on an ergodic theoretic
approach to Szemerédi’s theorem on arithmetic progressions, the authors
study, for a measure-preserving automorphism ϕX : X → X of a probability
space X and k ∈ N, the asymptotic behavior of the nonconventional ergodic
averages

1

N

N−1∑
n=0

T nϕXf1 · · ·T knϕXfk

for f1, . . . , fk ∈ L∞(X) as N →∞, where TϕXf = f ◦ ϕX for f ∈ L∞(X).
To prove convergence of these means for every measure-preserving system
X = (X,ϕX), they use the classical idea to orthogonally decompose L2(X)
into a structured part, which can be identified with the L2-space of a
well-understood factor Zk of X, and a stable part, for which an application
of the so-called van der Corput inequality (see [HK, Appendix D]) shows
convergence to zero. In this case, Zk is called a characteristic factor.
Earlier results (see, e.g., [L]) show convergence for a nilsystem X, i.e., X is
given as the homogeneuous space X = G/H of a nilpotent Lie group G
modulo a discrete cocompact subgroup H with the (normalized) Haar
measure, and ϕX : G/H → G/H, xH 7→ axH is the rotation by a fixed
element a ∈ G. Using ergodic decomposition and approximation, it is
therefore enough to show that every ergodic measure-preserving system X
admits a characteristic factor Zk which is an inverse limit of nilsystems.
In their article [HK] (and their book [HK2]), Host and Kra construct such
factors (these even govern the asymptotic behavior of other ergodic
averages).
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To explain their construction, start from a dynamical system X and
consider its invariant factor Xinv, i.e., the largest factor5 of X on which the
dynamics are trivial. We then form the relatively independent joining6

X[1] := X×Xinv
X with respect to the invariant factor. One can then apply

the same construction to the system X[1]. By iterating, we arrive at the
Host-Kra cubes

X[k] := X[k−1] ×
X

[k−1]
inv

X[k−1] for k ∈ N and X[0] := X.

The coordinates of its elements are indexed over the set {0, 1}k. Note that
the construction is functorial: Every factor map π : X→ Y of
measure-preserving systems gives rise to a factor map π[k] : X[k] → Y[k].
A short definition of the kth Host-Kra factor Zk of an ergodic system X
for k ∈ N0 is now the following: It is the smallest factor Y of X for which
the factor map π[k] is relatively ergodic meaning that on the level of
invariant factors π[k] defines an isomorphism from (X[k])inv to (Y[k])inv.7
Note that, by ergodicity of X, the factor Z0 is trivial.
A further short, but equivalent definition uses the Host-Kra-seminorms,
inspired by seminorms introduced earlier by Gowers in [G]: For f ∈ L∞(X)
we form the product f [k] :=

⊗
ε∈{0,1}k C

|ε|(f) ∈ L∞(X [k]) where C(f) := f

and |ε| =
∑k

j=1 εj for ε ∈ {0, 1}k. We then set

‖f‖k :=

(ˆ
X[k]

f [k] dµ[k]

) 1

2k

where µ[k] denotes the measure of the kth cube X[k]. One can check that
‖f‖k > 0 holds precisely when the conditional expectation EZk−1

f to the
factor Zk−1 is non-zero (see [HK, Lemma 4.3]).
The Host-Kra factors form an increasing sequence

Z0 ← Z1 ← Z2 ← Z3 ← · · · ← X,

see [HK, Corollary 4.4], and the system X is said to have order k if it
agrees with its kth Host-Kra factor Zk. The first major structural result

5Strictly speaking this is only determined up to isomorphism, but there is a canonical
choice.

6One can think of this as the measure-theoretic replacement for a fiber product.
7It is a priori not clear that such a factor exists. In fact, Host and Kra use a different

definition for their factors which is equivalent by [HK, Proposition 4.7].
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now provides a representation of a factor from this sequence with respect to
its predecessor (see [HK, Subsection 2.1 and remarks after Definition 4.1]
for k = 1 and [HK, Proposition 6.3] for k ≥ 2).

Proposition 1. For every k ∈ N the factor map Zk → Zk−1 is an abelian
group extension: There is a compact abelian group U and a measurable map
% : Zk−1 → U such that Zk is a skew-product
Zk−1 o% U = (Zk−1 × U,ϕZk−1

o %) where
(ϕZk−1

o %)(z, u) = (ϕZk−1
(z), %(z)u) for (z, u) ∈ Zk−1 × U .

In particular, Z1 is given by a rotation of a compact abelian group. Since
every such group can be writen as a projective limit of factors which are
compact abelian Lie groups, Z1 is an inductive limit of nilsystems of 1-step
nilpotent Lie groups.
The idea is now to prove the structure theorem inductively where the order
of the involved nilpotent Lie groups is allowed to grow by one in each step.
To do so, we have to make further progress on the structure of the factor
maps Zk → Zk−1 between consecutive factors. For this we need some
cohomological considerations.
For a measure-preserving system X and a compact abelian group U we
write C(X, U) for the equivalence classes of measurable maps % : X → U
(with two such maps being equivalent if they agree almost everywhere).
The elements % ∈ C(X, U) are called cocycles. Given % ∈ C(X, U) we can
form the associated coboundary ∂% := (% ◦ ϕX) · %−1 ∈ C(X, U) and we
write ∂C(X, U) for the subgroup of C(X, U) of all coboundaries arising in
this way. The quotient group

H1(X, U) := C(X, U)/∂C(X, U)

is the first cohomology group of X with respect to the group U .8 Two
cocycles %1, %2 : X → U with [%1] = [%2] in H1(X, U) define isomorphic
skew-products Xo%1 U and Xo%2 U.
From a cocycle % ∈ C(X, U) we can construct a cocycle ∆% ∈ C(X[1], U) via
∆%(x0, x1) = %(x0)%(x1)−1 for (x0, x1) ∈ X [1]. We can apply the same
procedure to cocycles of X[k] for k ∈ N0 and then obtain a chain of group

8We remark that Host and Kra in [HK] do not explicitly introduce the cohomology
group, but it will be convenient to do so in this summary. Also, in the article, abelian
groups are usally written additively, whereas here multiplicative notation is used.
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homomorphisms

H1(X, U)→ H1(X[1], U)→ H1(X[2], U)→ H1(X[3], U)→ · · ·

For k ∈ N the composition of the first k of these maps is explicitly given by

∆k : H1(X, U)→ H1(X[k], U), [%] 7→

 ∏
ε∈{0,1}k

(% ◦ prε)
(−1)|ε|


where prε : X

[k] → X is the projection onto the component of ε ∈ {0, 1}k. A
cocycle % ∈ C(X, U) which is trivialized by this homomorphism, i.e.,
∆k[%] = [1], is of type k (see [HK, Definition 7.1]). The following is a
consequence of [HK, Proposition 6.4].

Proposition 2. For every k ∈ N the factor map Zk → Zk−1 is an abelian
group extension by a cocycle of type k.

Proposition 2 is a crucial observation for the structure theorem representing
the Host-Kra factors Zk. We will sketch the proof of this representation
theorem in the case k = 2 which is also discussed in [HK4, Section 4.5], see
also [JST] (the result for a general k ∈ N requires much more work, but its
proof follows similar steps). The idea is to first approximate a system of
order 2 by the following particularly nice ones (see [HK, Definition 8.5]).

Definition 3. A system X of type 2 is toral if Z1 is a compact abelian Lie
group and Z is a group extension of Z1 by a torus and a cocycle of type 2.

To obtain the desired approximation, one first proves the following
additional result on the structure group (see [HK4, Corollary 8.4]).

Proposition 4. The factor map Z2 → Z1 is an extension by a connected
compact abelian group and a cocycle of type 2.

As a consequence the extending group U can be represented as a projective
limit of tori. However, in order to obtain toral systems, we also have to find
an approximation for the Kronecker factor Z1. This is done via [HK,
Lemma 8.3]:

Lemma 5. Let Z be an ergodic rotation on a compact abelian group, U a
torus and % ∈ C(Z, U) a cocycle of type 2. Then there is a closed subgroup
Z0 ⊆ Z such that Z/Z0 is a Lie group, and a cocycle %′ ∈ C(Z/Z0, U) such
that [%′ ◦ prZ/Z0

] = [%] in H1(Z, U).
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With Proposition 4 and Lemma 5 one readily obtains the following
approximation result (see [HK, Proposition 8.6]).

Proposition 6. Every system of order 2 is an inverse limit of toral
systems of order 2.

The proof of Lemma 5 rests on a number of cohomological considerations.
We highlight one of particular interest (see [HK, Lemma 8.1]). Observe
here that for an ergodic rotation Z on a compact abelian group every s ∈ Z
induces a map

Ls : H1(Z, U)→ H1(Z, U), [%] 7→ [Ls%]

where Ls%(x) = %(sx) for x ∈ Z and % ∈ C(Z, U).

Proposition 7 (Conze-Lesigne equation). Consider an ergodic rotation Z
on a compact abelian group, a torus U and a cocycle % : Z → U of type 2.
Then for every s ∈ Z there is c ∈ U with Ls[%] = [c%].

The equation had already been studied earlier in work of Conze and
Lesigne (see [CL]) as well as Furstenberg and Weiss (see [FW]). It
motivates the following definition of a group associated with a toral system.

Definition 8. For a toral system Zo% U we let G be the group of all
skew-rotations so ϑ : Z × U → Z × U with Ls% = c% · ∂ϑ for some c ∈ U .9

Thus, the group consists of those skew-rotations which yield coboundaries
“implementing the Conze-Lesigne equation”. We now represent toral
systems (see [HK, Lemma 8.8] and [HK3], as well as [JST, Section 4.2]).

Proposition 9. For a toral system X the group G, equipped with the
topology of convergence in probability, is a 2-step nilpotent Lie group.
Moreover, X is isomorphic to a nilsystem induced by G.

The combination of Propositions 6 and 9 finally yields the structure
theorem for k = 2.

Theorem 10. Every ergodic system of order 2 is an inverse limit of 2-step
nilsystems.

9For general k ∈ N the group is constructed more abstractly by using transformations
of X which give rise to measure-preserving transformations of the cube X[k] respecting
the invariant factor (X[k])inv, see [HK, Section 5].
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18 Quantitative bounds in the polynomial
Szemerédi theorem: the homogeneous case

After S. Prendiville [5]

A summary written by Borys Kuca

Abstract

We give an exposition of the result of Prendiville that all subsets
of {1, . . . , N} lacking `-term arithmetic progressions with differences
of the form nk have at most O(N/(log logN)c) elements.

18.1 Introduction

The celebrated theorem of Szemerédi on arithmetic progressions has
inspired numerous far-reaching generalisations. Among its most famous
extensions is the following result of Bergelson and Leibman.

Theorem 1 (Polynomial Szemerédi theorem [1]). Let p1, . . . , p` ∈ Z[n] be
polynomials with zero constant terms. Then each subset of N of positive
upper density contains a progression

x, x+ p1(n), . . . , x+ p`(n) for some n 6= 0.

After Gowers gave his quantitative proof of the Szemerédi theorem [3], the
question of quantifying Theorem 1 has come onto the agenda. For a long
time, no bounds were known for even the simplest polynomial
configurations, as the only existing proofs of Theorem 1 relied on infinitary
methods of ergodic theory. The first such bounds were obtained by
Prendiville about 15 years after Gowers, and the exposition of his result is
the primary goal of this chapter.

Theorem 2 (Bounds for arithmetic progressions with higher power
differences [5]). Let k, ` ∈ N. There exist C, c > 0 such that for each
sufficiently large N ∈ N, every subset of [N ] := {1, . . . , N} with at least
CN/(log logN)c elements contains

x, x+ nk, . . . , x+ `nk with n 6= 0. (1)
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Prendiville’s argument broadly follows Gowers’ strategy with several
adjustments necessary for the polynomial case. As such, it comprises three
steps that consist in proving the following three statements:

1. (Gowers norm control) For all 1-bounded functions f0, . . . , f` : Z→ C
supported on [N ], we have∣∣∣∣∣∣

∑
x∈Z

∑
n∈[N ]

f0(x)f1(x+ n) · · · f`(x+ `n)

∣∣∣∣∣∣� min
j
‖fj‖U`[N ]

(here, ‖·‖U` is the unnormalised degree ` Gowers norm,
‖f‖U`(A) = ‖f · 1A‖U` is its localisation to a set A, and � is the
Vinogradov notation10);

2. (Local inverse theorem for Gowers norms) If f : Z→ C is 1-bounded
and supported on [N ], and ‖f‖U`[N ] ≥ δN (d+1)/2d , then one can
partition [N ] into arithmetic progressions Pi of average length at least
cδCN cδC such that

∑
i

∣∣∣∣∣∑
x∈Pi

f(x)

∣∣∣∣∣ ≥ cδCN.

3. (Density increment) Let δ > 0 and N ≥ exp exp(Cδ−C). If A ⊂ [N ] of
size |A| ≥ δN contains no (`+ 1)-term arithmetic progression with
n 6= 0, then there exists an arithmetic progression P of length
|P | ≥ N exp(−Cδ−C) such that

|A ∩ P |
|P |

≥ δ + cδC ,

i.e. A has an increased density on P .

Letting M1 = |P | ≥ N exp(−1/cδC), P = {q1n+ r1 : n ∈ [M1]} and
B1 = {n ∈ [M1] : q1n+ r1 ∈ A}, the density increment allows Gowers to
pass to a set B1 ⊂ [M1] of increased density |B1|/M1 ≥ δ + cδC . Iterating
this step d times and noting that density cannot exceed 1, Gowers

10Meaning that f � g if there exists C > 0 such that |f(x)| ≤ C|g(x)| for sufficiently
large x.
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eventually arrives at a set Bd ⊂ [Md] whose density on [Md] is so close to 1
that it has to contain an (`+ 1)-term arithmetic progression, as the density
increment step can no longer be performed. Since the set Bd obtained this
way takes the form Bd = {n ∈ [Md] : qdn+ rd ∈ A} for some qd, rd, and the
family of (`+ 1)-term arithmetic progressions is invariant under the affine
maps n 7→ qdn+ rd, it follows that A contains an (`+ 1)-term arithmetic
progression as well. The bound on the size of A follows from carefully
estimating the size of |Pd| from below.
Prendiville’s modifications of steps (ii) and (iii) are straightforward, so we
briefly discuss them first before moving to his more involved adaptation of
step (i). By a Diophantine approximation argument, Prendiville ensures
that the common differences of the progressions appearing in the local
inverse theorem for Gowers norm can be taken to be k-th powers, and so
can be the common difference of the progression obtained in the density
increment step. Thus, the set Bd obtained in the last iteration of density
increment takes the form Bd = {n ∈ [Md] : qkdn+ rd ∈ A} for some qd, rd,
and if (1) is the arithmetic progression with k-th power difference lying
inside Bd, then

qkdx+ rd, q
k
dx+ rd + (qdn)k, . . . , qkdx+ rd + `(qdn)k

is the arithmetic progression with k-th power difference inside A.
Prendiville’s adaptation of step (i) is the following Gowers norm estimate.

Theorem 3. Let k, ` ∈ N. There exist s, d ∈ N and C > 0 such that for
every δ > 0, integer N � δ−C and 1-bounded functions f0, . . . , f` : Z→ C
supported on [N ], the lower bound∣∣∣∣∣∣

∑
x∈Z

∑
n∈[N1/k]

f0(x)f1(x+ nk) · · · f`(x+ `nk)

∣∣∣∣∣∣� δN1+1/k (2)

implies ∑
x∈Z

‖fj‖Us(x+[M ]) � δCNM (s+1)/2s

for every j ∈ {0, . . . , `} and some δCN1/k �M � δ−CN1/k.

The crucial difference between Theorem 3 and the analogous result of
Gowers is that Prendiville has only managed to control the counting
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operator for (1) by an average of Gowers norms localised to intervals of size
∼ N1/k.
The proof of Theorem 3 follows from a variant of the classical PET
induction argument which is the main tool used to control the counting
operators of polynomial progressions by Gowers norms and relies on the
following standard lemma of van der Corput.

Lemma 4 (van der Corput lemma [4, Lemma 4.1]). Let f : Z→ C be
1-bounded. Then for any H,M ∈ N, we have∣∣∣∣∣∣ 1

M

∑
n∈[M ]

f(n)

∣∣∣∣∣∣
2

� M +H

M2

∑
h∈Z

µH(h)
∑

n∈[M ]∩([M ]−h)

f(n)f(n+ h),

where µH(h) =
(

1− |h|
H

)
+
and [M ]− h := {m− h : m ∈ [M ]}.

The PET argument consists of a number of steps in which one replaces the
counting operator for the original polynomial progression by the
progression which is somehow “less complex”. Each of these steps involves
an application of the Cauchy-Schwarz inequality and Lemma 4 followed by
a change of variables. Repeating this procedure finitely many times11, one
eventually arrives at a counting operator for a linear configuration that can
be directly controlled using Gowers’ estimates. We illustrate the technically
involved proof of Theorem 3 in the simple case k = ` = 2. Starting with (2)
and letting M = bN1/2c, we apply the Cauchy-Schwarz inequality and
Lemma 4 to conclude that∑

x∈Z

|f0(x)|2·
∑
x∈Z

(M+H)
∑
h1∈Z

µH(h1)
∑

n∈[M ]∩([M ]−h)

f1(x+n2)f1(x+ (n+ h1)2)

f2(x+ 2n2)f2(x+ 2(n+ h1)2) ≥ δ2N3

for some H ∈ N to be chosen later. The 1-boundedness of f0 and the fact
that it is supported on [N ] imply

∑
x∈Z|f0(x)|2 ≤ N . For the second term,

we shift x 7→ x− n2, and assume H ≤ δ2N1/2/8 so that the condition
11The number of steps, and hence also the degree of the Gowers norm obtained this

way, can be bounded purely in terms of the length and degree of the original polynomial
progression.
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n ∈ [M ] ∩ ([M ]− h) can be replaced by n ∈ [M ], obtaining∑
x∈Z

∑
h1∈Z

µH(h1)
∑
n∈[M ]

f1(x)f1(x+ 2h1n+ h2
1)

f2(x+ n2)f2(x+ n2 + 4h1n+ 2h2
1) ≥ δ2N3/2/4.

We repeat the same procedure (the Cauchy-Schwarz inequality, Lemma 4
and the change of variables x 7→ x− 2h1n) to remove the first f1, getting∑

x∈Z

∑
h1,h2∈Z

µH(h1, h2)
∑
n∈[M ]

f1(x+ h2
1)f1(x+ 2h1h2 + h2

1)f2(x+ n2 − 2h1n)

f2(x+ (n+ h2)2 − 2h1n)f2(x+ n2 + 2h1n+ 2h2
1)

f2(x+ (n+ h2)2 + 2h1n+ 4h1h2 + 2h2
1) ≥ δ4N3/2/64

as long as H ≤ δ4N1/2/128 (here, µH(h1, . . . hs) = µH(h1) · · ·µH(hs)). Since
f1’s do not depend on n, we remove them through one more iteration of the
argument, obtaining∑

h1,h2,h3∈Z

µH(h1, h2, h3)
∑
x∈Z

∑
n∈[M ]

∏
ε∈{0,1}3

f̃ε,h(x+ 2(ε · h)n) ≥ δ8N3/2/214

for various functions f̃ε,h(x) = C|ε|f2(x+ pε(h)) with pε ∈ Z[h], where Cz = z
and |ε| = ε1 + · · ·+ εs. The polynomials appearing in this new expression
are linear in n, and an argument similar to Gowers’ from [3] gives the
claimed estimate∑

x∈Z

‖f2‖U7(x+[M ′]) � δCNM ′8/27 for some M ′ � δ−CN1/2.
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19 Norm convergence of commutative ergodic
averages

After T. Tao [T1]

A summary written by James Leng

Abstract

We give a brief summary of Tao’s proof of norm convergence of
commutative ergodic averages.

19.1 Introduction

Theorem 1 (Tao). Let (X,µ,B) be a probability space and let
T1, . . . , T` : X → X be measure preserving. Then for f1, . . . , f` ∈ L∞(X),

lim
N→∞

En∈[N ]T
n
1 f1 · · ·T n` f`

converges.

For the purposes of this note, we shall work on the first non-classical case of
case of ` = 2 in [T1], as the argument for that nearly captures the entire
argument. There is a striking similarity between the argument given in [A],
which will also be presented in the summer school, and the argument in
[T1], and this is no coincidence. According to Tao (private communication),
[A] is very much inspired by [T1], which is inspired by more combinatorial
contexts such as cut norms and hypergraph regularity. Tao’s proof is a
“finitary" proof, with many quantifiers whereas Austin’s proof is infinitary,
which has the advantage of removing many of the quantifiers. One striking
thing about both proofs [A, T1] is that they avoid the heavy machinary of
nilsystems as previous works of [HK, Z] did. This illustrates that merely
proving norm convergence is much weaker than having a good
understanding of the structure of measure preserving systems as the deep
works of [HK, Z] try to do.
On the way to proving 1, Tao proves a finitary version. In order to state
the theorem, we need some terminology.
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Definition 2. Let `, P ≥ 1, and let e1, . . . , e` be the standard generators for
Z`P . For any functions f1, . . . , f` : Z`P → R, we define

AN(f1, . . . , f`)(x) := En∈[N ]

∏̀
i=1

fi(x+ ein).

For the case we will be considering, we have

AN(f1, f2)(x) = En∈[N ]f1(x+ e1n)f2(x+ e2n).

Theorem 3. Let ` ≥ 1 and F : N→ N any function, and ε > 0. Then
there exists an integer M∗ > 0 with the following property: if P ≥ 1 and
f1, . . . , f` : Z`P → [−1, 1] functions, then there exists an integer
1 ≤M ≤M∗ such that we have the “L2-metastability"

‖AN(f1, . . . , f`)− AN ′(f1, . . . , f`)‖L2(Z`P ) ≤ ε

for all M ≤ N,N ′ ≤ F (M).

Via a simple argument, one can deduce Theorem 1 from Theorem 3.

19.2 Measurability

In the proof, it is convenient to work with a measure space X = (X,X , µ).
Given a finite index set I and for each i ∈ I, measure spaces
Yi = (Yi,Yi, νi), we define the measure space X×YI as the space

X ×
∏
i∈I

Yi

equipped with the obvious (I-fold) tensor product sigma algebra and
(I-fold) tensor product measure. An integral notion of the proof is the
following:

Definition 4. Given a measurable function g : YI ×X → [−1, 1], we say g
is a primitive function of complexity at most d if g is Ye ⊗X -measurable,
or simply e-measurable for some e ⊆ I is of size d. We say that g is of
complexity at most (J, d) if it can be expressed as a sum of at most J many
primitive functions of complexity at most d.
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The proof of Theorem 3 will involve an induction on ` and on the
complexity of a function.
Given an additive group (G,+), let GI =

∏
i∈I G and given v ∈ GI , we

define Σ(v) :=
∑

i∈I vi. Recall our setup

AN(f1, f2)(v1, v2) = En∈[N ]f1(v1 + n, v2)f2(v1, v2 + n)

= En∈[N ]f1(−v2 − (n− v1 − v2), v2)f2(v1,−v1 − (n− v1 − v2)).

We see here that f1 depends only on v2 and −v1 − v2 − n and f2 depends
only on v1 and −v1 − v2 − n. We define the {2, 3} and {1, 3} measurable
functions

g{2,3}(v1, v2, v3) := f1(−v2 − v3, v2)

g{1,3}(v1, v2, v3) := f2(v1,−v1 − v3).

Thus
AN(f1, f2) = En∈[N ]g{1,3}g{2,3}(v1, v2,−v1 − v2 − n).

Thus, AN is an average of a product of a {2, 3} and a {1, 3}-measurable
function along {(v1, v2, v3) : v3 ∈ −v1 − v2 − [N ]}. For the sake of this
exposition, the definition above is sufficient, but for the general case, we
give the following definition:

Definition 5. We define the diagonally averaged projection

∆Nf(v, x) := En∈[N ]f((v,−Σ(v)− n), x).

We observe that if g{1,...,`} is {1, . . . , `}-measurable, it follows that

∆N(g{1,...,`}h) = g{1,...,`}∆N(h).

Under this notation, we have

AN(f1, . . . , f`) = ∆N(
∏̀
i=1

g{1,...,`+1}\{i})

where

g{1,...,`}\{i}(v1, . . . , v`+1) = fi(v1, . . . , vi−1,−
∑
j 6=i

vj, vi+1, . . . , v`+1).
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Remark 6. According to [T1], these operations are morally equivalent to
the hypergraph approaches of Szemerédi’s theorem.

Under this notation, [T1] proves the following theorem:

Theorem 7. Let 1 ≤ d ≤ `, M∗ ≥ 1, J ≥ 1 be integers, F : N→ N a
function, and ε > 0 real. Then there exists an integer M∗ ≥M∗ with the
following property: if P ≥ 1 and (X,X , µ) is a probability space, and
g : Z`+1 ×X → R is an elementary function of complexity at most (d, J),
then there exists an integer M∗ ≤M ≤M∗ such that

‖∆N(g)−∆N ′(g
′)‖L2(Z`+1

P ×X) ≤ ε

whenever M ≤ N,N ′ ≤ F (N).

19.3 A Sketch of the proof of Theorem 7

We shall prove this via induction on d, J , and `. Since we are only treating
the case of ` = 2, we will make some notational simplifications from [T1].

19.3.1 Base case: d = 1

In the base case of d = 1, we make reductions to ` = 1, M∗ = 1, and J = 1.
Since g has complexity (1, J), we may write g = g1 + · · ·+ gJ where gi are
basic. We now define X̃ = X × {1, . . . , J} and g̃ : Z3

P × X̃ → [−1, 1] by
g̃(v, (x, k)) = gk(v, x). Thus,

‖∆N(g̃)−∆N ′(g̃)||L2(X̃×ZP3 ) = J1/2‖∆N(g)−∆N ′(g)‖L2(X×Z3
P ).

Hence, we can reduce to the J = 1 case since g̃ is primitive of complexity d.
Thus, we may write g = g{1}g{2}g{3} where g{i} is {i} ×X-measurable, it
follows that we may discard g{i} for i 6= 3, since they don’t change under
any terms of the averaging operator ∆N . Thus, we may just focus on a
single function g{3}. Since

∆N(g{3})(v1, v2, v3, x) = En∈[N ]g{3}(−v1 − v2 − v3 − n, x)

which only depends on v1 + v2 + v3, we may quotient by v1 + v2 + v3 = 0 so
that g{3} only depends on ZP . We have thus reduced to the case of ` = 1.
Thus it remains to prove the following:
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Theorem 8. Let F : N→ N a function, and ε > 0 real. Then there exists
an integer M∗ ≥ 1 with the following property: if P ≥ 1 and (X,X , µ) is a
probability space, and g : Z×X → R, then there exists an integer
1 ≤M ≤M∗ such that

‖SN(g)− SN ′(g′)‖L2(Z`+1
P ×X) ≤ ε

whenever M ≤ N,N ′ ≤ F (N) where SN(f)(x, v) = En∈[N ]f(v + n, x)

This can be deduced via some quantitative Lebesgue dominated
convergence theorem [T1, Theorem A.2] from the following (using the
function fN,N ′(x) = ‖SNg(·, x)− SN ′(·, x)‖L2(ZP )):

Theorem 9. Quantitative convergence of a single ergodic average Let
F : N→ N a function, and ε > 0 real. Then there exists an integer M∗ ≥ 1
with the following property: if P ≥ 1 and (X,X , µ) is a probability space,
and g : ZP → R, then there exists an integer 1 ≤M ≤M∗ such that

‖SN(g)− SN ′(g′)‖L2(Z`+1
P ×X) ≤ ε

whenever M ≤ N,N ′ ≤ F (N) where SN(f)(x, v) = En∈[N ]f(v + n).

The proof of this theorem proceeds via an energy increment argument. To
see a similar argument, see [T2, Chapter 1.2]. To save space, we only
provide a sketch. We encourage the reader to compare this proof with the
proof of the von Neumann ergodic theorem. First, a definition:

Definition 10. Basic {1}-anti-uniform function Let M ≥ 1. A basic
{1}-anti-uniform function on scale M is any function ϕ : ZP → R of the
form

ϕ(v) = En∈[M ]b(v − n)

for some function b : ZP → [−1, 1].

These anti-uniform functions satisfy a Lipschitz bound of
|ϕ(v + n)− ϕ(v)| ≤ |n|

M
. The point is that if g is {1}-anti-uniform on scale

M1, then expressing
g(v) = En∈[M1]b(v − n)

SNg−SN ′g = En∈[N ]Em∈[M1]g(n−m)−En∈[N ′]Em∈[M1]g(n−m) = O

(
F (M)

M1

)
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so choosing M1 sufficiently large, we obtain the desired inequality. One can
then use the energy increment argument to prove that each g can be
decomposed as a sum of {1}-anti-uniform-measurable function gU⊥ and a
“uniform part" gU , for which

‖SNgU − SNgU‖L2

is small anyways.

19.3.2 Induction Step (i.e., ` = 2 and d = 2)

For the ` = 2 case, we can once again reduce to M∗ = 1 and J = 1, so we
may assume that f takes the form

f(v1, v2, v3, x) = g{1,2}(v1, v2, x)g{2,3}(v2, v3, x)g{1,3}(v1, v3, x).

Under this identification, we see that

∆N(f) = En∈[N ]g{1,2}(v1, v2)g{2,3}(v2,−v1 − v2 − n)g{1,3}(v1,−v1 − v2 − n).

As before, we can pull out the g{1,2} term so we may assume it is constant.
If g{2,3} and g{1,3} can be written as a tensor products

g{2,3}(v2, v3) = h{2}(v2)h{3}(v3), g{1,3}(v1, v3) = k{1}(v1)k{3}(v3)

then the average simplifies to

g{1,2}h{2}(v2)k{1}(v1)En∈[N ]h{3}k{3}(−v1 − v2 − n)

which can be taken care of by the base case.
If, however, g{2,3} is “orthogonal" to these tensor products, i.e., for “most"
w2, w3, we have

Ev2∈w2+[N ′]Ev3∈w3+[N ′]g{2,3}(v2, v3)h2(v2)h3(v3)

are small, then we are analogous to the “weakly mixing case" in the ergodic
theoretic proofs, and so

‖∆N(f)‖2
L2 = Ev1,v2∆N(f)(v1, v2)Eng{2,3}(v2,−v1−v2−n)g{1,3}(v1,−v1−v2−n)

is small since we may rewrite the above as

Ev1,v2,v3:−Σ(v)∈[N ]g{2,3}(v2, v3)∆N(f)(v1, v2)g{3,1}(v3, v1).
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Similarly to the base case, one may also decompose g{2,3} as of tensor
products of {2}-measurable and {3}-measurable functions (i.e., a
“structured" piece), and an “orthogonal" piece (i.e., a “random" piece). By
treating the tensor piece similarly as the anti-uniform case in the above
base case, and the “orthogonal" piece similarly with the “uniform part," we
may conclude the case for ` = 2 and d = 2. The general case follows a
similar procedure.
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20 Bourgain’s return time theorem
After D. Rudolph [R]

A summary written by Zi Li Lim

Abstract

Bourgain’s return time theorem investigates the correlation of the
time average of two dynamical systems. Rudolph had given a
simplified proof of the return time theorem based on the machinery
of joinings. This is a sketch of Rudolph’s proof.

20.1 Introduction

Let (X,F , µ, T ) be a dynamical system, i.e., (X,F , µ) is a Lebesgue
probability space and T is a measure preserving transformation on X.
Bourgain’s return time thoerem states that the correlation of time average
of (X,F , µ, T ) and any other dynamical systems is well-defined. More
precisely, we have the following theorem.

Theorem 1. Let (X,F , µ, T ) be a dynamical system and f ∈ Lp(µ) for
some 1 ≤ p ≤ ∞. There exists a subset X(f) ⊂ X of full measure such that
for any dynamical system (Y,G, ν, S) and g ∈ Lq(ν) with 1/p+ 1/q = 1, for
any x ∈ X(f) and for ν-a.e. y,

1

n

n−1∑
i=0

f(T i(x))g(Si(y))

converges as n→∞.

Recall the Birkhoff pointwise ergodic theorem says that the time average
along the orbit of a typical point is well-defined. Intuitively, Bourgain’s
return time theorem tells us that the correlation of the time average of two
dynamical systems is also well-defined to a great extent. In fact, it is
well-defined in a universal sense, the subset X(f) does not depend on the
other dynamical system (Y,G, ν, S).
Bourgain’s return time theorem was first proved by Bourgain in [B1].
Furstenberg, Katznelson and Ornstein gave a different proof in the
appendix to [B2]. Later, Rudolph found a proof based on the machinery of
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joinings in [R]. We were hoping to present a sketch of Rudolph’s proof in
these expository notes.
The proof consists of three ingredients: the construction of the measures to
keep track of the orbits, the reduction to the good enough dynamical
system, and building the measures inductively that lead to a contradiction.

20.2 Construction of the measures

Instead of working with the orbits of the typical points, working with
measures is much more flexible. In this section, we will explain the
dictionary that allows us to pass from the orbits to the measures on certain
spaces.
Let D = {z ∈ C : |z| ≤ 1} be the closed unit disk in the complex plane.
Define Z = DZ≥0 be the countable product of the unit disk and
Z(k) = Z0 × Z1 × · · · × Zk−1, where each Zi is a copy of Z, that is, Z(k) is
the k-fold product of Z. The space of all Borel probability measures on Z(k)

could be regarded as a weak∗ compact subset of the dual space of the space
of all continuous functions on Z(k).
Let (X,F , µ, T ) be a dynamical system and f0, f1, ..., fk−1 be complex
functions on X with |fi| ≤ 1, the dynamic of X could be kept track by
considering the map F : X −→ Z(k)

F (x) = ((f0(T i(x))), (f1(T i(x))), ..., (fk−1(T i(x))))

and we would denote the push-forward of the measure µ with respect to F
by m((X,F , µ, T ), f0, f1, ..., fk−1).
Given an element (d0, d1, ..., dn−1) in (D(k))(n), let m(d0, d1, ..., dn−1) be the
atomic measure on Z(k), uniformly supported on the subset

{z(t) ∈ Z(k) : z(t)i = dt+i mod n}

Informally speaking, these measures could keep track of the orbits. For
example, assume the dynamical system (X,F , µ, T ) is ergodic, by Birkhoff
pointwise ergodic theorem, for a.e. x ∈ X, the measures
m(f(x), f(T (x)), ..., f(T n−1(x))) converges to m((X,F , µ, T ), f0, f1, ..., fk−1)
in weak∗ topology as n→∞.
To summarise, if we are interested in the asymptotic behaviour of f(T i(x)),
we shall investigate the weak∗ limit of the associated measures
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m(f(x), f(T (x)), ..., f(T n−1(x))). These measures can ‘detect’ the orbits,
and we could recover the information about orbits by integrations:

ˆ
Z(k)

zi,0dm ,

ˆ
Z(k)

zi,0zj,0dm

where zi,0 is the zero-th coordinate of the i-component function.

20.3 Reduction to the best case

Fix a dynamical system (X,F , µ, T ) and f ∈ Lp(µ), given any other
arbitrary dynamical system (Y,G, ν, S) and g ∈ Lq(ν), we were hoping to
reduce the proof to the ‘best’ case. What is the best scenario that the
dynamical systems are sufficiently good enough?
First, we can assume the dynamical systems (X,F , µ, T ) and (Y,G, ν, S)
are ergodic just like many other proofs in ergodic theory. This is reasonable
since ergodic dynamical systems are the building blocks of the general
systems, thanks to ergodic decomposition.
Next, we shall assume the test functions f and g are good enough, that is,
they decay sufficiently fast. Let’s assume that f and g are in L∞(µ) and
L∞(ν) respectively. In fact, we could even normalize the functions such
that |f |, |g| ≤ 1.
What are some other reasonable assumptions that could simplify the
situation? Through normalization, we might assume the space average´
X
fdµ = 0 as well. In order to consider the correlation of time average

with arbitrary systems, we should pretend that we understand the self
correlation of the function f well enough, say

1

n

n−1∑
i=0

f(T i(x1))f(T i(x2))→ 0

as n→∞ for µ× µ-a.e. (x1, x2) ∈ X ×X. In this ideal case, we have a
suitable canditate for X(f), let G(f) consists of the points x1 ∈ X such that

1

n

n−1∑
i=0

f(T i(x1))→ 0

as n→ 0 and
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1

n

n−1∑
i=0

f(T i(x1))f(T i(x2))→ 0

as n→ 0 for µ-a.e. x2. Now, we have reduced the proof to the following
proposition.

Proposition 2. Suppose the Bourgain’s return time theorem is false, then
there exist ergodic dynamical systems (X,F , µ, T ) and (Y,G, ν, S), the
functions f and g as above, a point x′ in G(f), a positive measure subset
B ⊂ Y and a positive real number a such that

lim sup
n→∞

| 1
n

n−1∑
i=0

f(T i(x′))g(Si(y))| > a

for all y ∈ B.

20.4 The key step

Suppose the Bourgain’s return time theorem is false, we could construct a
sequence of measures inductively based on the machinery introduced in
previous sections. For any integer k ≥ 2, there exists a measure m(k) on
Z(k) such that

1. The projection of m(k) to Z0 is some fixed measure, say m0.

2. The projection of m(k) to other coordinate Zi is another fixed
measure, say m1, for all 1 ≤ i ≤ k − 1.

3.
´
Z(k) zi,0zj,0dm

(k)=0 for all 1 ≤ i, j ≤ k − 1, i 6= j.

4. |
´
Z(k) z0,0zi,0dm

(k)| > a for all 1 ≤ i ≤ k − 1.

Heuristically, the condition
´
Z(k) zi,0zj,0dm

(k)=0 holds since the self
correlation of f is zero and the condition |

´
Z(k) z0,0zi,0dm

(k)| > a holds due
to the reduction to the best case in last section. Choose constants ci with
|ci| = 1 such that

´
Z(k) ciz0,0zi,0dm

(k) > a. Note that

||
k∑
i=1

cizi,0||L2(m(k+1)) =
√
k||z0||L2(m1)
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and

〈
k∑
i=1

cizi,0, z0,0〉L2(m(k+1)) > ka

However, by Cauchy-Schwartz inequality, we have

〈
k∑
i=1

cizi,0, z0,0〉L2(m(k+1)) ≤
√
k||z0||L2(m1)||z0||L2(m0)

this leads to a contradiction when k is sufficiently large.

References
[R] Rudolph, D., A joinings proof of Bourgain’s return time theorem.

Ergodic Theory Dynam. Systems, 14 (1994), no.1, 197–203.

[B1] Bourgain, J., Return time sequences of dynamical systems. IHES
Preprint (3/1988).

[B2] Bourgain, J., Pointwise ergodic theorems for arithmetic sets. Inst.
Hautes Études Sci. Publ. Math.(1989), no.69, 5–45.

ZI LI LIM, UCLA
email: zililim@math.ucla.edu

122



21 On the convergence of multiple Ergodic
averages

After G. Karagulyan, M. Lacey and V. Martirosyan [KLM]

A summary written by Gevorg Mnatsakanyan

Abstract

Let U := {Uj : j = 1, . . . , n} be a sequence of invertible,
commuting measure preserving transformation on a measureable
space (X, dµ). We prove the almost everywhere convergence of
averages

1

s1 . . . sn

s1−1∑
j1=0

· · ·
sn−1∑
jn=0

f(U j11 · · ·U
jn
n x),

as min sj →∞, for f in L logd−1 L where d ≤ n is the rank of U .

21.1 Introduction

Let (X,B, dµ) be a probability space and T be a measure-preserving
transformation. The famous ergodic theorem of Birkoff states that for
f ∈ L1(X) the averages

1

n

n−1∑
j=0

f(T jx) (1)

converge almost everywhere to a T invariant function. A generalization of
this result for multiple transformations goes back to Dunford [D] and
Zygmund [Z]. Let us first introduce the spaces L logn L. For a
non-decreasing function Φ : R+ → R+ we define the class LΦ(X) of B
measurable functions f on X so that Φ(|f |) ∈ L1(X). The class
corresponding to the function Lognt := t(1 + max(0, logn t)) will be denoted
by L logn L, for n ≥ 1.
Henceforth, U := {Uj : j = 1, . . . , n} will be a sequence of invertible
measure-preserving transformations on X. Then, Dunford and Zymgund
independently proved that for f ∈ L logLn−1 the averages

1

s1 . . . sn

s1−1∑
j1=0

· · ·
sn−1∑
jn=0

f(U j1
1 · · ·U jn

n x) (2)
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converge almost everywhere as minj sj → +∞. Hagelstein and Stokolos
[HS] proved that the class of functions above is sharp in the following sense.
If U is additionally commuting and non-periodic, i.e. for any non-trivial
collection of integers pk, k = 1, . . . , n,

µ{Up1
1 ◦ U

p2
2 ◦ · · · ◦ Upn

n x = x} = 0, (3)

then, for any non-decreasing function Φ : R+ → R+ such that
Φ = o(t logn−1 t) as t→ +∞, there exists a function f ∈ LΦ(X) so that the
averages (2) unboundedly diverge at almost every point.
It turns out that if the transformations U are not independent, then the
class L logn−1 L can be improved.

Definition 1. A set of commuting transformations U is called independent,
if for any non-trivial collection of integers pk, k = 1, . . . , n we have

µ{Up1
1 ◦ U

p2
2 ◦ · · · ◦ Upn

n x = x} < 1. (4)

The rank of U , denoted rank(U), is the largest integer r ≤ n so that there is
an independent subset of U of cardinality r.

Note, that non-periodicity implies independence. Let us also introduce the
following maximal function

MUf(x) := sup
sj∈N

1

s1 . . . sn

s1−1∑
j1=0

· · ·
sn−1∑
jn=0

|f(U j1
1 · · ·U jn

n x)|. (5)

The following theorem is the main result of [KLM].

Theorem 2. Let U be also commuting and of rank d. Then, for any
function f ∈ L logd−1 L(X) and λ > 0, we have

µ{x ∈ X : MUf(x) > λ} .U
ˆ
X

Logd−1

( |f |
λ

)
. (6)

The convergence (2) follows from the above maximal estimate by a
standard density argument.
We will reduce Theorem 2 to a bound for a strong maximal function in the
Euclidean setting. Let A : Rn → Rd be a linear operator. We consider

MAf(x) := sup
R

1

|R|

ˆ
R

f(x+ At)dt, x ∈ Rd, (7)

124



where the sup is taken over all symmetric intervals

R = {t = (t1, . . . , tn) : tj ∈ [−rj, rj] for j = 1, . . . , n} ⊂ Rn. (8)

Theorem 3. If rank(A) = r, then for any f ∈ L logr−1 L(Rd) and λ > 0

|{x ∈ Rd : MAf(x) > λ}| .A
ˆ
Rd
Logr−1

( |f |
λ

)
. (9)

.

When n = d = r and A = In, the identity matrix, this is a well-known
theorem of Guzmán [G]. The general case will be reduced to the latter.

21.2 Sketch of proof of Theorem 2 assuming Theorem
3

The maximal inequality (9) has a discrete analog, that is easily deduced
from it. Let φ : Zd → R and let A = {akj, 1 ≤ j ≤ n, 1 ≤ k ≤ d} be an
integer matrix. We consider the maximal operator

DAφ(n) = sup
sj∈N

1

s1 . . . sn

s1−1∑
k1=0

· · ·
sn−1∑
kn=0

φ(n+ Ak), n ∈ Zd, (10)

then
#{n ∈ Zd : DAφ(n) > λ} .A

∑
n∈Zd

Logr−1

(
|φ(n)|
λ

)
. (11)

As rank of U is d, let us assume U1, . . . , Ud are independent, and

U lk
k = U

a1,k
1 ◦ · · · ◦ Uad,k

d , d < k ≤ n. (12)

Assume lk = 1. The general case can be deduced from this. We write

f(Uk1
1 ◦ · · · ◦ Ukn

n x)

=f
(
U
k1+a1,d+1kd+1+···+a1,nkn
1 ◦ · · · ◦ Ukd+ad,d+1kd+1+···+ad,nkn

d

)
= φ(x,A · k),

where
φ(x, n) = f(Un1

1 ◦ · · · ◦ U
nd
d x), x ∈ X, n ∈ Zd, (13)
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and

A =


1 0 · · · 0 a1,d+1 · · · a1,n

0 1 · · · 0 a2,d+1 · · · a2,n

· · · · · · · . . . ·
0 0 . . . 1 ad,d+1 . . . ad,n

 . (14)

We consider the truncated and translated maximal function

f ∗M(x, n) := max
1≤sj≤M

s−1∑
k=0

|φ(x, n+ Ak)|. (15)

Then,MUf(x) = limM→∞ f
∗
M(x, 0). Now let

Eλ(x) = {n : 1 ≤ nj ≤ N and f ∗M(x, n) > λ},
Fλ(n) = {x : f ∗M(x, n) > λ}, n ∈ Zd.

So the inequality (6) would following from

µ(Fλ(0)) .U

ˆ
X

Logd−1

( |f |
λ

)
, (16)

where the implicit constant is independent of M .
In (15), the coordinates of Ak may vary in [−R,R] where R = R(A,M). So
by the discrete inequality (11), we have

#Eλ(x) .A
∑

1≤nj≤N+R

Logr−1

(
|φ(x, n)|

λ

)
. (17)

Since Uj are measure preserving Fλ(n) have the same measure for all n,
hence

µ(Fλ(0)) =
1

Nd

∑
1≤nj≤N

µ(Fλ(n)) =
1

Nd

ˆ
X

#Eλ(x)

.A
1

Nd

∑
1≤nj≤N+R

ˆ
X

Logr−1

(
|φ(x, n)|

λ

)
=

(N +R)d

Nd

ˆ
X

Logr−1

(
|f |
λ

)
.

In the last line we again used that Uj are measure preserving. Fixing M
and letting N → +∞ we get the desired bound (16).
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21.3 Reducing Theorem 3 to the case n = d = r

Let U = {uj : j = 1, . . . , n} be a set of vectors in Rd and
RU := span(U) ⊂ Rd. We call a parallelipiped in Rd a set of the form
R = {x ∈ Rd : x = t1u1 + · · ·+ tnun, tj ∈ [−rj, rj]}. The family of such
paralleipipeds is denoted by PU. Further, let us associate a probability
measure µR with R. Let µj be the uniform probability measure on
one-dimensional parallelipiped {tuj : t ∈ [−rj, rj]}. Then, we define µR by
a convolution, namely,

µR(E) =

ˆ
RU
. . .

ˆ
RU

1E(v1 + · · ·+ vn)dµ1(v1) . . . dµn(vn). (18)

Let fR be the density of µR. Observe, that if U is indepedent, then

fR(x) =

{
1/|R|, if x ∈ R
0, otherwise.

(19)

The following lemma can be proved by some not very difficult geometric
considerations and is somewhat intuitive.

Lemma 4. Let U be arbitrary and R ∈ PU. Then, there exists an
independent subset V ⊂ U of maximal rank and a parallelipiped R′ ∈ PV

such that
µR .U µR′ . (20)

Let uj be the jth column of the matrix A and U = {uj : 1 ≤ j ≤ n}, so
rank(A) = rank(U). We abuse the notation and write MU for MA. The
integral in (7) can be rewritten through the measure µR, namely, we have

1

|R|

ˆ
R

|f(x+At)|dt =

ˆ
Rd
|f(x+v)|dµR(v) .U

ˆ
Rd
|f(x+v)|dµR′ .U MVf(x),

(21)
wherethe first inequality follows from the lemma above. So we conclude

MUf(x) . sup
V
MVf(x). (22)

If we assume the theorem in the case n = d = r, then MV satisfies the
bound (9) in RV and there are finitely many independent subset V of U, so
we are done.
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21.4 The Theorem of Guzman

We call R ⊂ 2Rn a differentiation basis if for each x ∈ Rn there is an
arbitrarily small R ∈ R that contains x. The maximal function with
respect to R is defined by

MRf(x) := sup
R3x

1

mn(R)

ˆ
R

|f(x)|dmn(x). (23)

For a strictly increasing continuous function φ : R+ → R+ with φ(0) = 0,
we say that MR has type φ if it satisfies the following weak type bound

mn({MRf > λ}) .
ˆ
φ

(
|f(x)|
λ

)
dmn(x). (24)

Theorem 5. Let Ri, i = 1, 2, be two differentiation bases in Rni with
maximal operators Mi. Let Mi have type φi. Consider in Rn = Rn1 × Rn2

the differentiation bases R = R1 ×R2. Then, the corresponding maximal
operator M satisfies the following inequality

mn({x : Mf(x) > λ} ≤ φ2(1)

ˆ

Rn

φ1

(
2|f(x)|
λ

)
dmn(x)

+

ˆ

Rn


4|f(x)|
λˆ

1

φ1

(
4|f(x)|
λσ

dφ2(σ)

) .
Applying the above inequality with Ri, i = 1, . . . , n, the family of bounded
intervals in R, and using the weak-L1 bounded of the one-dimensional
Hardy-Littlewood maximal function we arrive at Theorem 3 with n = d = r
and A = In. Then, the equivalence of the paralleipiped and rectangular
bases imply the result for general invertible A.
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22 Joint ergodicity of sequences
After N. Frantzikinakis [Fr1]

A summary written by Andreas Mountakis

Abstract

A collection of integer sequences is jointly ergodic if for every
ergodic measure preserving system the multiple ergodic averages,
with iterates given by this collection of sequences, converge in the
mean to the product of the integrals. We give necessary and
sufficient conditions for joint ergodicity that are flexible enough to
recover the known examples of jointly ergodic sequences and also
allow us to answer some related open problems. An interesting
feature of our arguments is that they avoid deep tools from ergodic
theory that were previously used to establish similar results. Our
approach is primarily based on an ergodic variant of a technique
pioneered by Peluse and Prendiville in order to give quantitative
variants for the finitary version of the polynomial Szemerédi theorem.

22.1 Introduction

The study of multiple ergodic averages was initiated in the seminal work of
Furstenberg [Fu1], where an ergodic theoretic proof of Szemerédi’s theorem
on arithmetic progressions was given. Since then, the study of different
types of multiple ergodic averages has been a central object in ergodic
theory, resulting in many more combinatorial consequences. A rather
general family of problems is as follows: We are given a collection of integer
sequences a1, . . . , a` : N→ Z and an invertible measure preserving system
(X,µ, T ). We would like to understand the behaviour, as N →∞, of the
ergodic averages

En∈[N ] T
a1(n)f1 · . . . · T a`(n)f` (1)

for all functions f1, . . . , f` ∈ L∞(µ).
The question the author tries to answer in [Fr1] is under what conditions,
the iterates T a1(n), . . . , T a`(n) behave independently enough, so that the
averages in (1) converge in L2(µ) to the product of the integrals of the fi’s.
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22.2 Definitions and results

Notation. Whenever we say that (X,X , µ, T ) is a system, we mean that
(X,X , µ) is a probability space and T : X → X is an invertible, measurable
and measure preserving transformation. From now on, we will usually omit
writing the σ-algebra X . For n ∈ Z and f ∈ L∞(µ), we denote f ◦ T n by
T nf . In addition, for N ∈ N, [N ] denotes {1, . . . , N} and En∈[N ] denotes
the average 1

N

∑N
n=1. Lastly, for t ∈ R, e(t) denotes e2πit and btc denotes

the integer part of t.
Let us start by defining joint ergodicity, which is one of the central notions
in the paper.

Definition 1. A collection of sequences a1, . . . , a` : N→ Z is called

• jointly ergodic for the system (X,µ, T ) if for all f1, . . . , f` ∈ L∞(µ) we
have

lim
N→∞

En∈[N ]T
a1(n)f1 · . . . · T a`(n)f` =

ˆ
X

f1 dµ · . . . ·
ˆ
X

f` dµ (2)

where convergence takes place in L2(µ).

• jointly ergodic, if it is jointly ergodic for every ergodic system.

Examples. For ` ∈ N, and c1, . . . c` ∈ (0,+∞) \ N, it was proved in [Fr2]
that the collection of sequences bnc1c, . . . , bnc`c is jointly ergodic. In
addition, a collection of polynomial sequences p1, . . . , p` ∈ Z[t] is jointly
ergodic for all totally ergodic systems if and only if the polynomials are
rationally independent (see [FK]).

Definition 2. If (X,µ, T ) is a system, then

• Spec(T ) := {t ∈ [0, 1) : Tf = e(t)f for some non-zero f ∈ L2(µ)} =
the set of eigenvalues of T .

• E(T ) := {f ∈ L∞(µ) : Tf = e(t)f for some t ∈ [0, 1) and |f | = 1}.

Now, let us define what it means for a collection of sequences to be good for
equidistribution and good for seminorm estimates.

Definition 3. A collection of sequences a1, . . . , a` : N→ Z is called
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• good for seminorm estimates for the system (X,µ, T ), if there is
s ∈ N such that whenever f1, . . . , f` ∈ L∞(µ) satisfy |||fm|||s = 0 for
some m ∈ {1, . . . , `} and fm+1, . . . , f` ∈ E(T ), then

lim
N→∞

En∈[N ]T
a1(n)f1 · . . . · T a`(n)f` = 0 in L2(µ).

It is called good for seminorm estimates, if it is good for seminorm
estimates for every ergodic system. In the previous, |||·|||s denotes the
s-th Gowers-Host-Kra seminorm.

• good for equidistribution for the system (X,µ, T ), if for all
t1, . . . , t` ∈ Spec(T ), not all of them 0, we have

lim
N→∞

En∈[N ]e(a1(n)t1 + . . .+ a`(n)t`) = 0. (3)

It is called good for equidistribution, if it is good for equidistribution
for every ergodic system, or equivalently if (3) holds for all
t1, . . . , t` ∈ [0, 1), not all of them 0.

It turns out that the notions of joint ergodicity, good for seminorm
estimates and good for equidistribution are closely connected, as shown by
the main theorem of the paper:

Theorem 4. Let (X,µ, T ) be an ergodic system and a1, . . . , a` : N→ Z be a
collection of sequences. Then the following conditions are equivalent:

(i) a1, . . . , a` are jointly ergodic for (X,µ, T )

(ii) a1, . . . , a` are good for seminorm estimates and equidistribution for
(X,µ, T ).

If a1, . . . , a` : N→ Z are jointly ergodic for the ergodic system (X,µ, T ),
then by applying (2) for eigenfunctions of they system, we get that (3)
holds for all t1, . . . , t` ∈ Spec(T ), not all 0. Hence a1, . . . , a` are good for
equidistribution for (X,µ, T ). In addition, since |||f |||1 = 0 implies´
X
fdµ = 0, again using (2) we get that a1, . . . , a` is good for seminorm

estimates for (X,µ, T ). This proves the implication (i) =⇒ (ii).
It is the converse implication that is a rather surprising fact, and this is
really the context of Theorem 4.
As an application of Theorem 4, one gets the following strong multiple
recurrence property, which is not shared for example by linear sequences:

132



Corollary 5. Let a1, . . . , a` : N→ Z be sequences that are good for
equidistribution and good for seminorm estimates for the system (X,µ, T ).
Then for every set A ∈ X we have

lim
N→∞

En∈[N ]µ
(
A ∩ T−a1(n)A ∩ . . . ∩ T−a`(n)A

)
≥ (µ (A))`+1 .

Invoking Furstenberg’s correspondence principle, (see [Fu2], Lemma 3.17),
and using Corollary 5, one gets that for every Λ ⊂ N,

lim inf
N→∞

En∈[N ]d (Λ ∩ (Λ− a1(n)) ∩ . . . ∩ (Λ− a`(n))) ≥
(
d (Λ)

)`+1
,

where for a set E ⊂ N, d (E) denotes its upper density and is defined by
d (E) := lim supN→∞|Λ ∩ [1, N ]|/N .
We will now state another application of Theorem 4, which is about
nilsystems. Before stating it, let us first remind the reader of what a
nilsystem is: A k-step nilsystem is a system of the form (X,mX , Ta), where
X = G/Γ is a k-step nilmanifold (i.e. G is a k-step nilpotent Lie group and
Γ is a discrete cocompact subgroup of G), a ∈ G, Ta : X → X is defined by
Ta(gΓ) = (ag)Γ, for every g ∈ G, and mX is the normalised Haar measure
on X.
If (X,µ, T ) is an ergodic k-step nilsystem, then |||·|||k+1 is a norm on L∞(µ).
Therefore, if f ∈ L∞(µ) has |||f |||k+1 = 0, then f = 0 µ-almost everywhere
on X. Hence, any collection of sequences is good for seminorm estimates
for the system (X,µ, T ). Combining the previous with Theorem 4, we
obtain the following:

Corollary 6. Let (X,µ, T ) be an ergodic nilsystem, and let
a1, . . . , a` : N→ Z be a collection of sequences. Then the following are
equivalent:

(i) a1, . . . , a` are jointly ergodic for (X,µ, T ).

(ii) a1, . . . , a` are good for equidistribution for (X,µ, T ).
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23 Norm convergence of nilpotent ergodic
averages

After M. N. Walsh [W]

A summary written by Lars Niedorf and Chiara Paulsen

Abstract

We prove L2-convergence for multiple polynomial ergodic
averages associated with a sequence of measure preserving
transformations possessing a nilpotent group structure.

The main result of [W] is the following:

Theorem 1. Let G be a nilpotent group of measure preserving
transformations on a probability space (X,X , µ). Then, for every
T1, . . . , Tl ∈ G, the averages

1

N

N∑
n=1

d∏
j=1

(
T
p1,j(n)
1 · · ·T pl,j(n)

l

)
fj

always converge in L2(X,X , µ) for every f1, . . . , fd ∈ L∞(X,X , µ) and
every set of integer valued polynomials pi,j.

We write the action of T p1,j(n)
1 · · ·T pl,j(n)

l on fj as the (componentwise)
action of a system g = (g1, . . . , gj) of G-sequences gi : Z→ G on the vector
of functions (f1, . . . , fj). We set [N ] = {1, . . . , N} and use the notations

Ag
N [f1, . . . , fj] = En∈[N ]

j∏
i=1

gi(n)fi =
1

N

N∑
n=1

j∏
i=1

gi(n)fi and

Ag
N,N ′ [f1, . . . , fj] = Ag

N ′ [f1, . . . , fj]−Ag
N [f1, . . . , fj].

To explain the idea of the proof, we start with some manipulations. Given
some functions f1, . . . , fj−1, u ∈ L∞(X), we observe that

‖Ag
N [f1, . . . , fj−1, u]‖2

2 = 〈u, σ〉,
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where

σ = En∈[N ]gj(n)−1Ag
N [f1, . . . , fj−1, u]

j−1∏
i=1

gj(n)−1gi(n)fi.

Replacing [N ] by [N ] + l in the summation, we see that the right-hand side
changes only by a small magnitude if l/N � 1, meaning that∥∥∥∥∥σ − En∈[N ]gj(l + n)−1Ag

N [f1, . . . , fj−1, u]

j−1∏
i=1

gj(l + n)−1gi(l + n)fi

∥∥∥∥∥
∞

is small. Applying gj(l), this equals∥∥∥∥∥gj(l)σ − Em∈[M ] (〈gj|1G〉m(l)) b0

j−1∏
i=1

(〈gj|gi〉m(l)) bi

∥∥∥∥∥
∞

(1)

where b0 := Ag
N [f1, . . . , fj−1, u] and bi := fi, and where we use for a given

pair g, h : Z→ G of G-sequences the notation

〈g|h〉m(n) := g(n)g(n+m)−1h(n+m), m ∈ Z.

In (1), we see that, up to some small error, we may recover the action of gj
on σ in terms of the system

g∗m = (g1, . . . , gj−1, 〈gj|1G〉m, 〈gj|g1〉m, . . . , 〈gj|gj−1〉m) ,

which is called the m-reduction of g.

23.1 Convergence holds for systems of finite
complexity

In the following, C∗ > 0 is a constant depending only on some ε > 0. Given
an integer L > 0, we say that σ ∈ L∞(X) with ‖σ‖∞ ≤ 1 is L-reducible
(with respect to g) if there exists some integer M > 0 and
b0, b1, . . . , bj−1 ∈ L∞(X) with ‖bi‖∞ ≤ 1 such that for every positive integer
l ≤ L the quantity (1) is smaller than ε/(16C∗).
By similar arguments as above, one can show the following:

Theorem 2 (Weak inverse result for ergodic averages). Let u ∈ L∞(X),
ε > 0, 1 ≤ C ≤ C∗ and f1, . . . , fj−1 with ‖fi‖∞ < 1 such that ‖u‖∞ < 3C
and ‖Ag

N [f1, . . . , fj−1, u]‖2 > ε/6. Then there exists 0 < c1 < 1 such that for
every L < c1N there exists an L-reducible function σ with
〈u, σ〉 > ε2/(2233C).
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We say a system g = (g1, . . . , gj) has complexity 0 if {g1, . . . , gj} = {1G}.
Moreover, we say that g has complexity d ∈ N if it is not of complexity d′
for any d′ ∈ {0, . . . , d− 1} and if it is equivalent to a system
h = (h1, . . . , hk) (i.e. {g1, . . . , gj} = {h1, . . . , hk}) for which the m-reduction
h∗m is of complexity ≤ d− 1 for every m ≥ 0.

Theorem 3. Let F : N→ N non-decreasing with F (N) ≥ N for all N ∈ N,
ε > 0 and d,M ∈ N. Then there exist M ε,F,d, Kε,d ∈ N and a sequence of
integers

M ≤M ε,F,d
1 ≤ · · · ≤M ε,F,d

Kε,d
≤M ε,F,d (2)

such that for any system g = (g1, . . . , gj) of complexity ≤ d and
f1, . . . , fj ∈ L∞(X) with ‖f1‖∞, . . . , ‖fj‖∞ ≤ 1, there exists some
1 ≤ i ≤ Kε,d such that

‖Ag
N,N ′ [f1, . . . , fj]‖2 ≤ ε

for every M ε,F,d
i ≤ N,N ′ ≤ F (M ε,F,d

i ).

Sketch of proof. For sufficiently large L, one can show that fj can be
decomposed into a ‘structured part’

∑k−1
t=0 λtσt of L-reducible functions σt

with
∑k−1

t=0 |λt| < C∗ and a well-behaved part, called ‘random part’ (which is
a similar approach to that of [T]). We first assume that fj consists only of
the structured part and prove the statement by induction over the
complexity d of the system g.
For systems of complexity 0, the statement is trivially true. For the
inductive step, let M0 ∈ N. For every t ∈ {0, . . . , k − 1}, let
b

(t)
0 , . . . , b

(t)
j−1 ∈ L∞(X) and M (t) ∈ N be the objects from the definition of

L-reducibility corresponding to σt. If we replace every instance of gj(l)σt in
Ag
N [f1, . . . , fj−1, σt] with

Em∈[M(t)] (〈gj|1G〉m(l)) b
(t)
0

j−1∏
i=1

(〈gj|gi〉m(l)) b
(t)
i ,

we get by the definition of L-reducibility that

‖Ag
N,N ′ [f1, . . . , fj]‖2

≤
k−1∑
t=0

|λt|Em∈[M(t)]‖A
g∗m
N,N ′ [f1, . . . , fj−1, b

(t)
0 , . . . , b

(t)
j−1]‖2 + ε/8. (3)
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Since g∗m is a system of complexity ≤ d− 1, the induction hypothesis yields
for every summand in (3) a sequence of integers i 7→Mγ,F,d−1

i as in (2)
starting at M0 such that the contribution by the averages is smaller than
γ = ε/(16C∗) for all N,N ′ ∈ [Mγ,F,d−1

i , F (Mγ,F,d−1
i )] and for some

1 ≤ i ≤ Kγ,d−1 =: K. However, the index i of the interval depends on t and
therefore one has to construct a finer sequence of integers to gain control
over every average simultaneously. Roughly speaking, this is done by
selecting r ∈ N large enough and suitable non-decreasing functions
F1, ..., Fr : N→ N with Fr = F . Via the pigeonhole principle, there is an
interval [Mγ,F1,d−1

i1
, F1(Mγ,F1,d−1

i1
)] where the averages on the right-hand side

of (3) that aren’t bounded by γ sum up to at most (K − 1)C∗/K. Set
M (i1) := Mγ,F1,d−1

i1
. Repeating this process for the sequence in (2) that

starts at M (i1) and corresponds to the parameters γ, d− 1 and F2 yields an
integer M (i1,i2) := (M (i1))γ,d−1,F2

(i2) such that
[M (i1,i2), F2(M (i1,i2))] ⊆ [M (i1), F1(M (i1))] and the averages in (3) that aren’t
bounded by γ sum up to at most C∗(K − 1)2/K2. After r repetitions, one
obtains an integer M (i1,...,1r) such that the left-hand side of (3) is bounded
by (K − 1)r/Kr + ε/8 for all N,N ′ ∈ [M (i1,...,1r), F (M (i1,...,1r))].
Let now fj ∈ L∞(X). For L ∈ N, let Σ+

L be the set of L-reducible functions
with L2-norm smaller than ε/(253C∗). It can be shown that (‖·‖L)L∈N with

‖f‖L := inf

{ k−1∑
t=0

|λt| : f =
k−1∑
t=0

λtσt, σ0, . . . , σk−1 ∈ Σ+
L

}
defines an equivalent family of norms on L2(X) and its dual norms satisfy
‖f‖∗L = supσ∈Σ+

L
|〈f, σ〉|. Furthermore, there exists 0 < c1 < 1 and integers

M ≥M0, 1 ≤ Ci ≤ C∗ such that fj decomposes into

fj = f̃ + u+ v

where ‖f̃‖B < Ci, ‖u‖∗A < ε2/(2333Ci), ‖v‖2 < ε/(253) for
1 ≤ A < c1M < M ≤ B. This follows from a general result about families
of equivalent norms on Hilbert spaces whose dual norms are decreasing,
which is proven by a version of the Hahn-Banach separation theorem [W,
Proposition 2.3]. We obtain f̃ =

∑k−1
t=0 λtσt with σ0, . . . , σk−1 ∈ Σ+

B and∑k−1
t=0 |λt| ≤ Ci, and |〈σ, u〉| < ε2/(2333Ci) for every σ ∈ ΣA. For u and v,

we get

‖Ag
N,N ′ [f1, . . . , fj−1, v]‖2 ≤ ε/(243) and ‖Ag

N,N ′ [f1, . . . , fj−1, u]‖2 ≤ 2ε/3,
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where the second estimate follows from the weak inverse result above. The
‘structured part’ f̃ may now be treated as in the beginning of the proof.

23.2 Every polynomial system has finite complexity

Given m ∈ Z, we consider the operator Dm acting on G-sequences given by

(Dmg)(n) = g(n)g(n+m)−1.

We say that a G-sequence g is polynomial if there is some integer d > 0 such
that Dm1 . . . Dmdg = 1G for every choice of integers mi > 0. Accordingly, we
call a system g = (g1, . . . , gj) polynomial if every entry is polynomial.
Now suppose that G is nilpotent of order s with lower central series
G = G1 ⊃ · · · ⊃ Gs ⊃ Gs+1 = {1G}. We say that a polynomial sequence g
has degree ≤ d = (d1, . . . , ds) if Dm1 . . . Dmdk+1

g(n) ∈ Gk+1 for every n ∈ Z,
1 ≤ k < s and mi ∈ Z. Accordingly, we say that system g = (g1, . . . , gj) has
degree ≤ d if every entry has degree ≤ d.

Theorem 4. If g = (g1, . . . , gj) is a polynomial system of size |g| := j ≤ C1

and degree ≤ d, then it has finite complexity of order OC1,d
(1).

Proof. The proof works by induction on the degree d by showing
simultaneously the following two statements:

(i) one can go from g to the trivial system in OC1,d
(1) steps,

(ii) one can go from g to a system consisting of a single sequence of
degree ≤ d in OC1,d

(1) complete steps,

where ???going from one system to another??? is performed by appropriate
m-reductions g∗m, while ???going from one system to another in complete
steps??? has to performed by the so-called complete reductions g∗∗m given by
g∗∗m = g∗m \ {〈gj|1G〉}. Now, for the inductive step from d− 1 to d, we write

g = h0 ∪
l⋃

i=1

sihi (4)

where si has degree d and each hi has degree ≤ d− 1. (For instance, one
may choose h0 = ∅, si = gi, and hi = (1G) being the system containing only
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the constant sequence 1G.) For passing from g to its m-reduction g∗m, we
observe that 〈shj|shi〉 = s〈hj|hi〉, as well as

〈sjhj|sihi〉m = Dm(sjhj)(Dm(sihi))
−1sihi

= siDm(sjhj)(D(sihi))
−1[Dm(sjhj)(Dm(sihi))

−1, si]hi = sih
j,i,

where [·, ·] denotes the commutator of two group elements. One can show
that the degree of a polynomial sequence gets lowered by 1 when applying
Dm, is closed under multiplication, and behaves additive under the
commutator relation [·, ·], see [W, Lemma 4.1], which implies in particular
that the polynomial sequence hj,i has degree d− 1. We obtain that the
reduction g∗m of g is equivalent to

h(1)
0 ∪

( l−1⋃
i=1

sih
(1)
i

)
∪ slh∗∗l ,

where h∗∗l = (hl,1, . . . , hl,jl−1, 〈hl,jl |hl,1〉, . . . , 〈hl,jl |hl,jl−1〉). As h∗∗l has degree
≤ d− 1, we may apply the induction hypothesis (ii) to pass to the system

h(2)
0 ∪

( l−1⋃
i=1

sih
(2)
i

)
∪ slh, (5)

where h(2)
i has degree ≤ d− 1 and h is a system consisting of a single

sequence of degree ≤ d− 1. Because of that, the reduction of (5) will be of
the form

h(3)
0 ∪

( l−1⋃
i=1

sih
(3)
i

)
. (6)

Comparing (4) with (6), we see that we have ultimately discarded the
sequence sl in (4). Iterating this argument, we may thus also discard the
sequences sl−1, sl−2, etc. until we end up with a system h(k)

0 , where
k = OC1,d

(1), to which we can apply the induction hypothesis (i). The
inductive step for showing (ii) for polynomial sequences of degree d follows
similar.
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24 Cancellation for the multilinear Hilbert
transform

After T. Tao [T]

A summary written by Wojciech Słomian

Abstract

We obtain some improvement over the trivial upper bound for the
k-linear truncated Hilbert transform. We obtain the bound of order
o(log R

r ) as R
r →∞ instead of the trivial O(log R

r ). This shows that
we may expect some cancellation properties in the k-linear Hilbert
transform Hk.

24.1 Introduction

Let k ≥ 1 be a fixed natural number. For any sequence of the Schwartz
functions f1, . . . , fk : R→ C we define the k-linear Hilbert transform by
setting

Hk(f1, . . . , fk)(x) := p.v.

ˆ
R
f1(x+ t) . . . fk(x+ kt)

dt

t
, x ∈ R.

In the case k = 1 we get that H1 the standard Hilbert transform. It is
well-known that it maps Lp(R) to itself for any p > 1. For k = 2 we obtain
the bilinear Hilbert transform given by

H2(f, g)(x) := p.v.

ˆ
R
f(x+ t)g(x+ 2t)

dt

t
, x ∈ R.

In their groundbreaking work Lacey and Thiele [LT] have shown that H2

maps Lp1(R)× Lp2(R) to Lp(R) whenever 1 < p, p1, p2 <∞12 and
1
p1

+ 1
p2

= 1
p
. The question about boundedness of Hk for k > 3 remains open.

One way to approach the problem of the boundedness of the k-linear
Hilbert transform is to study its truncated form defined by

Hk,r,R(f1, . . . , fk)(x) :=

ˆ
r≤|t|≤R

f1(x+ t) . . . fk(x+ kt)
dt

t
, x ∈ R. (1)

12Actually they have shown that we may take p > 2/3 instead of p > 1.

142



Then one has

Hk(f1, . . . , fk)(x) = lim
r→0,R→∞

Hk,r,R(f1, . . . , fk)(x), x ∈ R,

which allows to study the operator Hk,r,R instead of Hk. Namely, the Lp(R)
boundedness of Hk may be deduced from the uniform inequality

‖Hk,r,R(f1, . . . , fk)‖Lp(R) ≤ Ck,p,p1,...,pk‖f1‖Lp1 (R) . . . ‖fk‖Lpk (R), (2)

where 1 < p1, . . . , pk, p <∞ are such that 1
p

= 1
p1

+ · · · 1
pk

and the constant
Ck,p,p1,...,pk is independent of R and r. Clearly, by Minkowski’s integral
inequality and Hölder’s inequality we may get the trivial bound, that is

‖Hk,r,R(f1, . . . , fk)‖Lp(R)

‖f1‖Lp1 (R) . . . ‖fk‖Lpk (R)

≤
ˆ
r≤|t|≤R

dt

|t|
= 2 log(R/r).

Obviously, this does not proves the inequality (2) since this bound depends
on R and r. The following theorem is a non-trivial improvement of the
above estimate.

Theorem 1. Let k ≥ 1 be fixed and let 1 < p1, . . . , pk, p <∞ be such that
1
p

= 1
p1

+ · · ·+ 1
pk
, and let ε > 0. Then, if R/r is sufficiently large depending

on ε, k, p1, . . . , pk, p, one has

‖Hk,r,R(f1, . . . , fk)‖Lp(R) ≤ ε log
R

r

k∏
i=1

‖fi‖Lpi (R)

for all fi ∈ Lpi(R), i = 1, . . . , k.

24.2 Basic reductions

By using the standard transference arguments it is enough to prove the
discrete counterpart of Theorem 1. Namely, we prove the following result.

Theorem 2. Let k ≥ 1 be fixed and let 1 < p1, . . . , pk, p <∞ be such that
1
p

= 1
p1

+ · · ·+ 1
pk
, and let ε > 0. Then, if R ≥ r ≥ 1 and R/r is sufficiently

large depending on ε, k, p1, . . . , pk, p, one has∥∥∥∥∥∥∥∥
∑
t∈Z

r≤|t|≤R

f1(x+ t) . . . fk(x+ kt)

t

∥∥∥∥∥∥∥∥
`p(Z,dx)

≤ ε log
R

r

k∏
i=1

‖fi‖`pi (Z)

for all fi ∈ `pi(Z), i = 1, . . . , k.
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The advantage of the discrete setting is the possibility of using arithmetic
regularities and counting lemmas which are not available in the continuous
setting. Next, by duality and multilinear interpolation we are reduced to
show that for any collection of finite subsets E0, E1, . . . Ek ⊂ Z which
satisfy13

|Ei| hε |E0|, for each i = 1, . . . , k (3)

we have ∣∣∣∣∣∑
x∈Z

∑
t∈Z

r≤|t|≤R

1E0(x)1E1(x+ t) . . .1Ek(x+ kt)

t

∣∣∣∣∣ . ε log
R

r
|E0| (4)

with the implicit constant being independent of ε > 0.
In the first step we localize the quantity on the left hand side of (4) in the t
variable. Let ψ : R→ R be a fixed smooth odd function supported on
[−2,−1/2] ∪ [1/2, 2] which satisfies∑

n∈Z

2−nψ(2−nt) =
1

t
, t 6= 0.

Then in order to prove (4) it is enough to establish∑
n:r≤2n≤R

2−n

∣∣∣∣∣ ∑
x,t∈Z

1E0(x)1E1(x+ t) . . .1Ek(x+ kt)ψ(t/2n)

∣∣∣∣∣ . ε log
R

r
|E0|.

In the next step we localize the x variable by using dyadic intervals. Let
ϕ : R→ R be a smooth function supported on [−1, 1] such that∑

j∈Z ϕ(x− j) = 1 for each x ∈ R. For any dyadic interval
I := {x ∈ Z : j2n < x ≤ (j + 1)2n} with n ≥ 0 we set

aI := 2−2n

∣∣∣∣∣ ∑
x,t∈Z

1E0(x)1E1(x+ t) . . .1Ek(x+ kt)ψ(t/2n)ϕ(2−nx− j)

∣∣∣∣∣
so by triangle’s inequality in order to prove (4) it suffices to show that∑

I−dyadic
r≤|I|≤R

aI |I| . ε log
R

r
|E0| (5)

where the sum taken over dyadic intervals I of length between r and R.
13We write A hε B if there exist constants cε, Cε such that cεA ≤ B ≤ CεA.
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24.3 Arithmetic regularity

Now our aim is to show (5). For this purpose we make use of the following
result.

Lemma 3. Let R ≥ r ≥ 1. Then for any θ ∈ (1,∞) we have∑
I−dyadic
r≤|I|≤R

a
θ/2
I |I| ≤ Cε,θ log

R

r
|E0|,

for some constant Cε,θ > 0.

Proof. For any I we have aI .ϕ,ψ infy∈IMHL1E0(y)MHL1E1(y) where
MHLf is the discrete Hardy–Littlewood maximal function. Consequently,
we may write

a
θ/2
I |I| .

∑
x∈I

MHL1E0(x)θ/2MHL1E1(x)θ/2.

Now since every x ∈ Z is an element of O(log R
r
) dyadic intervals we

estimate ∑
I−dyadic
r≤|I|≤R

a
θ/2
I |I| . log

R

r

∑
x∈I

MHL1E0(x)θ/2MHL1E1(x)θ/2.

Now the desired result follows by the Cauchy–Schwarz inequality, the
Hardy–Littlewood maximal estimate, and by condition (3).

We use the above result with θ = 3/2 to get that for any δ > 0 we have∑
I−dyadic

r≤|I|≤R,aI≤δ

a
θ/2
I |I| .ε δ

1/4 log
R

r
|E0|

so it is enough to prove that for any δ > 0 one has∑
I−dyadic

r≤|I|≤R,aI>δ

a
θ/2
I |I| . ε log

R

r
|E0|, (6)

whenever R/r is sufficiently large depending on ε, δ.
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In order to establish (6) we make use of the arithmetic regularity lemma
proven by Green and Tao [GT]. Before we state it we need to introduce the
notion of the Gowers uniformity norms. Let f : Z/NZ→ C be a function
on the cyclic group Z/NZ. We define the Gowers norm of order j ≥ 1 of
the function f as

‖f‖Uj(Z/NZ) :=
( 1

N j+1

∑
h1,...,hj ,x∈Z/NZ

∆h1 . . .∆hjf(x)
)2j

where ∆hf(x) := f(x+ h)f(x). If the function f : {1, 2, . . . , N} → C is
defined on the set {1, 2, . . . , N} we define the Gowers norm of f as

‖f‖Uj(N) :=
‖f‖Uj(Z/N ′Z)

‖1{1,2,...,N}‖ Uj(Z/N ′Z)

, for any N ′ ≥ 2jN,

where we have embed the set {1, 2, . . . , N} into Z/NZ and extent f by zero
outside. Let us note that the above definition does not depend on the
choice of N ′.

Theorem 4. Let d ≥ 1 and let f : {1, 2, . . . , N} → [0, 1]d. Let s ≥ 1 be an
integer, let ε > 0, and let F : R+ → R+ be a monotone increasing function
with F(M) ≥M for all M > 0. Then there exists a quantity
M = Os,ε,F ,d(1) and a decomposition

f = fnil + fsml + funf

of function f into functions fnil, fsml, funf : {1, 2, . . . , N} → [−1, 1]d which
satisfy the following conditions:

1. The function fnil is of the following form
fnil(n) := F

(
g(n), nmod q, n

N

)
, where F : X × Z/q/Z× R→ Cd is a

function of the Lipschnitz norm14 at most M , q ∈ {1, 2, . . . ,M} and
g : Z→ X is a ”well behaved” function into some filtered manifold X;

14For function F : X → C defined on a metric space (X, d) the Lipschnitz norm of F is
defined as

‖f‖Lip(X) := ‖f‖L∞(X) + sup
x,y∈X
x6=y

|F (x)− F (y)|
d(x, y)

.
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2. For each coordinate of the function fsml we have

‖(fsml)j‖`2({1,2,...,N}) ≤ εN1/2, j = 1, . . . , d,

where (fsml)j denotes the j-th coordinate of fsml;

3. For each coordinate of the function fsml we have

‖(funf)j‖Us+1(N) ≤
1

F(M)
, j = 1, . . . , d,

where ‖·‖Us+1(N) is the Gowers norm of order s+ 1;

4. The functions fnil and fnil + fsml take values in [0, 1]d.

We apply the above theorem to the function

f(n) := (1E0(n), . . . ,1Ek(n)), for n ∈ {1, 2, . . . , N}

for some large N ∈ N. Then we obtain that for each set Ei we have the
following decomposition 1Ei = fnil,i + fsml,i + funf,i. We replace each 1Ei in
the definition of aI by the above decomposition. Any term which contains
fsml,i or funf,i can be estimated by using the properties (2) and (3) from
Theorem 4. Consequently, we are left to estimate the left hand side of (6)
with a′I defined by

a′I := 2−2n

∣∣∣∣∣ ∑
x,t∈Z

fnil,0(x)fnil,1(x+ t) . . . fnil,k(x+ kt)ψ(t/2n)ϕ(2−nx− j)

∣∣∣∣∣.
Since each function fnil,i has a ”good structure” we may use the counting
lemma of Green and Tao [GT, Theorem 1.11] to, roughly speaking, replace
the sum by integrals (with some error terms). Since ψ is odd the one
integral is zero while the other one turns out to be a constant. Then after
appropriate selection of constants in Theorem 4 we get the desired result.
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25 A variational proof of the ergodic theorem
After R. L. Jones, A. Seeger, and J. Wright [JSW]

A summary written by Joe Trate

Abstract

We give a simple proof of Birkhoff’s ergodic theorem which is
based on Lépingle’s inequality and Calderón’s transference principle.

25.1 Introduction

Let (Ω,F ,P, T ) denote a dynamical system. For a function f : Ω→ R, let

ANf (x) =
1

n

N∑
j=1

f
(
T jx

)
. (1)

Birkhoff’s ergodic theorem states that if f ∈ L1 (Ω) , then the sequence of
ergodic averages (ANf)N∈N converges almost surely. The goal of this talk is
to give a proof of this theorem based on variational inequalities. We begin
by giving an overview of our proof strategy. First we will use Lépingle’s
inequality to obtain variational estimates on Lp (Z) for the averaging
operators AN = 1

N

∑N
k=1 f(m+ k). We will then use Calderón’s transference

principle to translate these estimates to the setting of a general dynamical
system to obtain the same types of bounds for the strong r−variations of
the corresponding ergodic averaging operators in that context. Doing so
gives a proof of Birkhoff’s ergodic theorem, as given any x ∈ Ω, if
Vr (Af) (x) is finite for some r, then the limit of the ergodic averages will
exist as N →∞.

25.2 Ingredient 1: Lépingle’s Inequality

Perhaps the most important tool used to prove variational inequalities is a
result due to Lépingle which gives a moment estimate for the pathwise
r−variation of a martingale. We give a generalization of this result, which
we derived by simplifying the proof from, [ZK], utilizing the lack of any
weights in our context. Let

(
Ω, (Fn)n∈N ,P

)
be a filtered probability space
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and F∞ = σ
(⋃

n∈NFn
)
. For 0 < r <∞, a sequence of random variables

X = (Xn) , and ω ∈ Ω, the r−variation of X at ω is defined by:

V rX (ω) = sup
u1<u2<...

(∑
j

∣∣∣Xuj −X2
uj−1

∣∣∣)1/r

(2)

where the supremum is taken over all increasing sequences. Given any
integrable F∞−measurable function X : Ω→ R, we define an associated
martingale as follows. Let (En)n∈N be the sequence of conditional
expectation operators with respect to the filtration of the probability space.
Then, letting Xn = EnX gives a martingale sequence which converges to X.
For r > 2, we have:

‖V rX‖Lp ≤ Cp

√
r

r − 2
‖X‖Lp (3)

Like many results in the theory of martingales, an efficient proof of this
result can be obtained from a judicious choice of stopping times. Then, we
estimate the r−variation pathwise with a linear combination of square
functions. these stopping times are:

Definition 1. Let Mt = supt′′≤t′≤t|Xt′ −Xt′′|. For each m ∈ N, letting
τ

(m)
0 (ω) = 0, and

τ
(m)
j+1(ω) = inf{t ≥ t

(m)
j (ω) :

∣∣Xt (ω)−Xτj(ω)(ω)
∣∣ ≥ 2−mMt(ω)} (4)

gives an increasing sequence of stopping times.

25.3 Ingredient 2: Variational Estimates of Averaging
Operators:

The second ingredient in our proof are the weak and strong type
inequalities for the ergodic averaging operators on Z. To derive them, we
follow the structure of [JKR], whose work is based on [Bou89] We deal first
with inequalities in L2. To do so we connect differentiation to martingales
by proving the L2−boundedness of several ergodic square functions. Then
we prove that these square functions are of weak type (1, 1), and finally,
that several of them map L∞ to BMO, and are type (p, p) for 1 < p <∞.
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Letting our dynamical system be as above, and given an increasing
sequence (nk)k∈N we can define the operator:

Of(x) = O(Anf(x)) =

(
∞∑
k=1

sup
nk−1≤n≤m<nk

|Anf(x)− Amf(x)|2
)1/2

(5)

Post transference, the main results of this paper can be stated as:

Theorem 1. In any dynamical system, the operator O is weak type (1,1),
type (p, p) for 1 < p <∞ and maps L∞ into BMO. The constants in the
inequality do not depend on the sequence (nk)k∈N .

and letting V r be a above, we have

Theorem 2. Let r > 2. Then in any dynamical system the operator V r is
weak type (1, 1), type (p, p) for 1 < p <∞, and maps L∞ to BMO.

In the proofs of these theorems, Lépingle’s inequality plays a critical role.

25.4 Ingredient 3: Calderón’s Transference Principle:

The final ingredient in our proof, is the Calderón tranference principle,
which allows us to lift a strong or weak-type inequality from a family of
operators on the locally integrable functions on R to a far more general
dynamical system. Doing so allows us to, for example, reduce the maximal
ergodic theorem to Hardy-Littlewood’s maximal theorem. We follow [C],
here is the setup: Let X be a σ−finite measure space and U t be a
one-parameter group of measure-preserving transformations of X. Suppose
that for every measurable function f : X → R the function F : R×X → R
defined by the equation F (t, x) = f (U tx) is measurable. We denote by T
an operator defined on L1

loc (R) which satisfies the following four properties:

1. T takes values in the space of continuous functions on the real line.

2. T is sublinear.

3. T commutes with translations.

4. T is semilocal, in the sense that there exists an ε > 0, such that for
every f ∈ L1

loc (R) , the support of Tf lies within an ε−neighborhood
of the support of f.
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We define an operator T ] on the space of functions on X as follows. Given
a function f defined on X, let F (x, t) = f (U tx) . When f is the sum of two
bounded integrable functions, F (x, t) is locally integrable in t for almost
every x, thus the function G(t, x) = T (F (t, x)) is a well-defined,
t−continuous function at almost every x. Thus g(x) = G(0, x) is
well-defined and we define T ]f = g(x), then the following theorem holds:

Theorem 3. Let Tn be a sequence of operators that satisfy the four
properties above and suppose that the operator Sf = sup|Tnf | is of strong
or weak type (p, p) , 1 ≤ p ≤ ∞. Then the same holds for the operator
S]f = sup|T ]nf | and ‖]‖ ≤ ‖S‖.

Notice that when

(Sf) (t) = sup
s

∣∣∣∣1s
ˆ s

0

f(t+ u)du

∣∣∣∣
S] is the maximal ergodic operator, and so, by Hardy-Littlewood’s maximal
theorem, this operator is of weak type (p, p) for all p ≥ 1, and strong type
(p, p) for p > 1. To obtain almost sure convergence results we utilize the
following theorem.

Theorem 4. Let Tnf = kn ∗ f, where kn is bounded and has bounded
support. Suppose that Sf = supn|Tnf | is of weak type (p, p) , 1 < p <∞,
and that

´
kn (t) dt converges and kn ∗ φ converges in L1, as n→∞, for

every infinitely differentiable φ with compact support and vanishing integral.
Then T ]nf converges almost everywhere in Ω for every f in Lp (Ω) . If, in
addition, the operator S is of weak type (1, 1), then T ]nf converges almost
everwhere in Ω, for every integrable f.

Setting kn = 1
n
(−n, 0) in the preceding theorem reduces proving the ergodic

theorem to verifying that the conditions of the above theorem are satisfied,
i.e.

1. Observing that that
´
kn(t)dt converges and that kn ∗ φ converges in

L1 as n→∞ for every infinitely differentiable φ with compact
support and vanishing integral.

2. Proving that the operator S defined by Sf = supn| 1n
∑n

k=1 f(T k)f | is
of weak type (p, p) for 1 < p <∞.
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3. Proving that the operator S is of weak type (1, 1).

We note that the lion’s share of the work toward this goal (corresponding
to the second and third items on our list) was completed in the second
section of our talk.
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26 Pointwise convergence of ergodic averages
for polynomial sequences of translations on
a nilmanifold

After A. Leibman [Le]

A summary written by Kostas Tsinas

Abstract

We examine the pointwise convergence of the ergodic averages of
a continuous function on a nilmanifold, evaluated along a polynomial
sequence. Central to this topic is an equidistribution property of
polynomial sequences on nilmanifolds.

26.1 Introduction

Let G be a nilpotent Lie group of degree s and let Γ be a discrete cocompact
subgroup. Then, the space X = G/Γ is called an s-step nilmanifold. The
group G acts on the space X by left multiplication, so that for any g ∈ G
and point x = bΓ, we have gx = gbΓ. The natural projection of the Haar
measure mG of G on X will be denoted by mX . For this presentation, a
polynomial sequence on the group G is a sequence of the form

v(n) = g
p1(n)
1 . . . g

pk(n)
k , (1)

where g1, . . . , gk are elements in G and p1, . . . , pk are polynomials taking
integer values on the integers. Our main problem is to investigate the
limiting behavior of the ergodic averages 1

2N+1

∑N
n=−N F (g(n)x), where

F : X → C is a continuous function and x ∈ X. This is the content of the
first theorem.

Theorem 1. Let g(n) be a polynomial sequence in G. For any continuous
function F : X → C and any point x ∈ X, the averages

1
2N+1

∑N
n=−N F (g(n)x) converge.

The previous theorem is an immediate corollary of the following theorem,
which asserts that (the projection of) any polynomial sequence on
X = G/Γ is equidistributed on a subspace of X, as long as we restrict n to

154



appropriate arithmetic progressions. A closed subset Y of X of the form
Hx, where H is a closed subgroup of G will be called a sub-nilmanifold of
X. A sequence xn in a nilmanifold X is equidistributed on X (with respect
to mX) if for any continuous function F : X → C, we have

lim
N→+∞

1

2N + 1

N∑
n=−N

F (xn) =

ˆ
F dmX .

Furthermore, we will say that the action of an element g ∈ G is ergodic or
that g is ergodic (with respect to mX), if the sequence (gnx)n∈N is
equidistributed (with respect to mX) for all x ∈ X.

Theorem 2. Let g(n) be a polynomial sequence on a nilpotent Lie group F
and and let x ∈ G/Γ. There exists a connected closed subgroup H of G and
points x0, . . . , xQ−1 ∈ G/Γ (not necessarily distinct), such that the sets
Yj = Hxj, j ∈ {0, . . . , Q− 1} are closed sub-nilmanifolds of G/Γ,
{g(n)x : n ∈ N} =

⋃Q−1
j=0 Yj, the sequence g(n)x visits the sets Y0, . . . , YQ−1

cyclically and the sequence g(Qn+ j) is equidistributed in Yj for every
j ∈ {0, . . . Q− 1}.

In the case that X is connected, we can write X = G0/(Γ ∩G0), where G0

denotes the connected component of the identity on G. In this case, the
equidistribution of a polynomial sequence on X is controlled by its
projection on the maximal factor torus
Z = [G0, G0]/X = G0/

(
[G0, G0](Γ ∩G0)

)
. Observe that Z is a compact,

connected, and abelian Lie group, thus a finite-dimensional torus.

Theorem 3. Assume that X = G/Γ is a connected nilmanifold and let
x ∈ X and g(n) be a polynomial sequence. Let Z be the maximal factor
torus of X and let π : X → Z denote the projection map. The following are
equivalent:
i) the sequence

(
g(n)x

)
n∈Z is dense on X,

ii) the sequence
(
g(n)x

)
n∈Z is equidistributed on X,

iii) the sequence {g(n)π(x)}n∈Z is dense on Z.

The proof of Theorem 2 contains two main ingredients. Firstly, we need to
investigate the linear case (when the polynomials pi have degree 1). This is
essentially the study of the ergodicity properties of the map x→ gx. This
argument was carried out originally by Parry in [Pa] in the case where the
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group G is connected and simply connected. Following that, a lifting
argument due to Furstenberg allows one to express a polynomial orbit as a
linear orbit on an extension of the original system. In the abelian setting
where the nilmanifold is a finite-dimensional torus, the argument is
well-known. Suppose we are given a real number a and the polynomial
orbit n(n−1)

2
a on the torus T equipped with the transformation x→ x+ a.

Considering the affine system on the torus T2 with the map
S : (x, y)→ (x+ a, y + x), we readily notice that n2a = F (Sn(0, 0)), where
F is the projection on the second coordinate. In particular, the sequence
n2a is expressed as linear orbit on the system (T2.S). This lifting trick is
adapted to the nilpotent setting to deduce the general case of Theorem 2
from the linear one. A generalization of the affine system (T2, S) is
prominent in these arguments.

26.2 Deducing the general case from the linear one

In this section, we show that the general case follows from the linear one.
We will assume that the following proposition holds and then deduce the
general case in the case that the Lie group G has some nice connectedness
assumptions.

Proposition 4. Let X = G/Γ be an s-step nilmanifold. Then, for any
g ∈ G, there exists a closed subgroup H of G, such that {gnx : n ∈ Z} = Hx
for any x ∈ X. In particular, the orbit {gnx : n ∈ Z} is a sub-nilmanifold of
X.

We say that an automorphism φ of a group G is unipotent of degree r if the
map ξr is the identity, where ξ(g) = φ(g) · g−1. Using induction on the
nilpotency degree of a nilpotent group G, it is easy to check that an
automorphism is unipotent if and only if the induced automorphism on
G/[G,G] is unipotent. The first step is to establish the result for
transformations on a nilmanifold induced by a unipotent automorphism
using the previous proposition. The general case will then follow by
showing that polynomial orbits can be realized as orbits of unipotent
transformations.

Lemma 5. Let X = G/Γ be a nilmanifold and let φ be a unipotent
measure-preserving automorphism on G such that φ(Γ) = Γ. For any
x ∈ X, there exists a connected, closed subgroup H of G and points
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x0, . . . , xQ−1 ∈ X, such that Hxj are subnilmanifolds of X and for each
j ∈ {0, . . . , Q− 1}, the sequence

(
φj+Qnx

)
n∈Z is equidistributed on Hxj.

Proof of Lemma 5. Firstly, observe that since φ(Γ) = Γ, φ induces a
homeomorphism S of X onto itself, so that the notation φnx in the
statement is always well-defined (it denotes the point Snx). We consider
the semi-direct product G̃ = G×φ Z, that is we have the set G×Z with the
operation (g1, n1) ∗ (g2, n2) = (g1φ

n1(g2), n1 + n2). The group G̃ is
nilpotent15. Furthermore, the semi-direct product Γ̃ = Γ×φ Z is a discrete
subgroup of G̃ and G̃ acts on X through the map (g, n) ∗ x = g · Snx. This
action is transitive and the stabilizer of the base point Γ in X is the group
Γ̃. Therefore, Γ̃ is also co-compact in G̃ and X can be identified with G̃/Γ̃.
Then, the action of S on X is represented by the action of the element
(eG, 1) ∈ G̃ on X. Now, we apply Proposition 4 to deduce that there exists
a closed, connected subgroup H of G̃, such that Hx is a subnilmanifold of
X and the sequence

(
Snx

)
n∈Z is equidistributed on Hx. Let H0 denote the

connected component of the identity in H. The group H0 is a normal
subgroup of H and is also open in H. Since G is open in G̃, we get H0 ⊂ G.
In addition, since H0x is a connected component of Hx and Hx is compact,
we have that Hx is comprised out of finitely many translates of H0x and,
thus, the stabilizer of H0x has finite index in H. We let b0, . . . , bQ−1 ∈ H be
representatives of H/Stab(H0x) and let xj = bjx for all j ∈ {0, . . . , Q− 1}.
Since H0 is normal in H, we easily deduce that bjH0x = H0bjx = H0xj. We
set Yj = H0xj, which are connected sub-nilmanifolds of X, whose union is
Hx. Observe that S acts transitively on the set {Y0, . . . YQ−1}, so that the
sequence Snx visits the sub-nilmanifolds cyclically. Reordering the Yj
appropriately, we conclude that Sj+Qn ∈ Yj for all j ∈ {0, . . . , Q− 1} and
the sequence

(
φj+Qnx

)
n∈Z =

(
Sj+Qnx

)
n∈Z is equidistributed on Yj.

We proceed towards the proof of Theorem 2. In this exposition, we shall
work under the assumption that the Lie group G is connected and simply
connected. The assumption of simple connectedness is not restrictive, since
any nilpotent Lie group G is a factor of a simply connected nilpotent Lie
group G̃ by considering the universal cover. In addition, one can show that
there exists a connected simply connected Lie group G′ with a discrete

15It can be shown through calculations with commutators and induction on s that if
G is s-step nilpotent and the unipotent automorphism φ has degree r, then G̃ is sr-step
nilpotent.
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co-compact subgroup Γ′, such that X = G/Γ is a sub-nilmanifold of
X ′ = G′/Γ′ and every translation on X is represented in X ′. For more
details, we also refer the reader to [Le, Subsection 1.11] or [HK, Chapter 10,
Corollary 26].
In any connected, simply connected nilpotent Lie group G, the map exp
from G to its Lie algebra B is a diffeomorphism. In particular, it is a
bijection between G and B. For g ∈ G and t ∈ R we can then define the
element gt as the unique element of G satisfying gt = exp(tY ), where
exp(Y ) = g.
Any connected, simply connected nilpotent Lie group possesses a Mal’cev
basis so that every element g can be written uniquely in the form at11 . . . a

tm
m ,

where t1, . . . , tm ∈ R. The numbers (t1, . . . , tm) will be called the
coordinates of g. Furthermore, elements Γ are precisely those whose
coordinates consist of integers. It can be shown that multiplication in G is
given by polynomial mappings of the coordinates. In particular, we readily
deduce that any polynomial sequence of the form (1) can be written in the
form a

q1(n)
1 · . . . · aqm(n)

m , where qi are polynomials with real coefficients.
Let F denote the free group on the continuous generators a1, . . . , am and let
Fi be its commutator subgroups. Given s ∈ N, the nilpotent Lie group
Fs = F/Fs+1 will be called the free s-step nilpotent Lie group with
continuous generators a1, . . . , am. The discrete subgroup of Fs generated by
a1, . . . , am will be denoted by Γ(Fs) (it can be shown that it is cocompact
in Fs). It is standard to deduce that Fs possesses a universal property: a
connected, simply connected, s-step nilpotent Lie group with a Mal’cev
basis (a1, . . . , am) is a factor of Fs with continuous generators a1, . . . , am.

Proof of Theorem 2. Let s and (a1, . . . , am) be the nilpotency degree and
the Mal’cev basis of G respectively, so that the polynomial sequence g(n)

can be written in the form a
q1(n)
1 · . . . · aqm(n)

m , where qi are polynomials with
real coefficients. We also denote θ : G→ X the natural projection. We may
assume that x = θ(eG) = Γ because otherwise, we can replace the sequence
g(n) with the sequence g(n)α, where α ∈ G is any element for which
θ(α) = x and reduce to the aforementioned case.
Let Fs be the free Lie group of degree s on the continuous generators
a1, . . . , am and let π1 : Fs → G denote the associated epimorphism. It is
immediate that π1(Γ(Fs)) ⊆ Γ since the elements of Γ are those whose
coordinates in the basis are integers. We consider the free Lie group G̃ with
generators {bi,0 = ai, bi,1 . . . , bi,deg(qi)}i=1,...,m and let B be the normal closure
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in G̃ of the group generated by {bti,1, . . . , bti,deg(qi)
}i=1,...,m,t∈R. Observe that

Fs = G̃/B. If π2 denotes the corresponding projection from G̃ to Fs, then
π = π1 ◦ π2 is an epimorphism from G̃ to G. Additionally, the group Γ(G̃)

satisfies π(Γ(G̃)) ⊆ Γ.
We define the automorphism φ on G̃ by φ(ai) = ai and φ(bi,k) = bi,k · bi,k−1

for k = 1, . . . , deg(qi). Thus, φ is a unipotent automorphism on G̃/[G̃, G̃],
so that it is also a unipotent automorphism on G̃. If we write the
polynomial qi in the form

qi(x) = ci,0 + ci,1

(
n

1

)
+ · · ·+ ci,deg(qi)

(
n

deg(qi)

)
, ci,0, ci,1, . . . , ci,deg(qi) ∈ R,

and set ui = a
ci,0
i · b

ci,1
i,1 · . . . · b

ci,deg(qi)

i,deg(qi)
, then it follows that

φn(ui) = a
ci,0+ci,1(n1)+···+ci,deg(qi)(

n
deg(qi)

)
i wi(n) = a

qi(n)
i wi(n)

for every n ∈ Z, where wi(n) ∈ B. Thus, if u = u1 . . . um, we conclude that
g(n) = π(φn(u)). Thus, we have expressed the polynomial sequence as the
orbit of a unipotent transformation on the Lie group G̃.
Let X̃ = G̃/Γ(G̃). The epimorphism π : G̃→ G induces a factor map from
X̃ to X = G/Γ, which we denote by π̃. Thus, we deduce that
π(φn(uΓ(G̃))) = g(n)Γ for all n ∈ Z. Applying Lemma 5, we deduce that
there exists a closed, connected subgroup H̃ of G̃ and points
x̃0, . . . , x̃Q−1 ∈ X̃, such that φj+Qn(uΓ(G̃)) is equidistributed on H̃x̃j for all
admissible values of j. Thus, if we naturally define H = π(H̃) and
xj = π̃(x̃j), we have that Yj = Hxj is a connected sub-nilmanifold of X and
the H-invariant measure of Yj is the image under π̃ of the H̃-invariant
measure of H̃x̃j. Consequently, the sequence(
π̃(φj+QnΓ(G̃))

)
n∈Z =

(
g(j +Qn)

)
n∈Z is equidistributed on Hxj for every

j = 0, . . . , Q− 1, which is the desired result.
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27 Cancellation for the simplex Hilbert
transform

After P. Zorin-Kranich [ZK]

A summary written by Jianghao Zhang

Abstract
The regularity lemma from additive combinatorics [G] is also

useful in Euclidean harmonic analysis. We discuss how to attack the
simplex Hilbert transform by using the regularity lemma inductively.

27.1 Introduction

Consider the (d+ 1)-linear operator

ΛK(f0, · · · , fd) :=

ˆ
Rd+1

d∏
j=0

fj(xjc)K(
d∑
j=0

xj)dx,

where jc := {0, · · · , d}\{j}, xjc := (x0, · · · , xj−1, xj+1, · · · , xd) ∈ Rd. It’s of
a long-standing interest in harmonic analysis to study the boundedness of
such operators when K is a one-dimensional Calderón-Zygmund kernel.
The d ≥ 3 cases are still widely open.
Take an even, smooth function ψ supported on

[
1
2
, 2
]
such that∑

k∈Z ψ( t
2k

) = 1, ∀t 6= 0. Truncate K into

ψk(t) := ψ(
t

2k
)K(t).

For any interval S of k ∈ Z, let ψS :=
∑

k∈S ψk. We have the trivial bound

|ΛψS(f0, · · · , fd)| . (#S)
d∏
j=0

‖fj‖pj

for any Hölder tuple of exponents 1 ≤ pj ≤ ∞. Our theorem is the
first-step nontrivial improvement of this bound.

Theorem 1. Let d ≥ 1. For any Hölder tuple of exponents 1 < pj <∞ we
have

|ΛψS(f0, · · · , fd)| ≤ od,p0,··· ,pd(#S)
d∏
j=0

‖fj‖pj .
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27.2 An outline of the argument

It suffices to tackle the case when fj = 1Ej and pj > d. The argument itself
doesn’t give a new method to directly attack this operator. Instead, we
keep reducing it to the lower dimensional cases and finally use the known
result of d = 1 (i.e. induction on d).

27.2.1 The regularity lemma

To go back to the d− 1 case, fd should be like∏
A${0,··· .d−1}

fA(x|A) (1)

so that
∏d−1

j=0 fj can absorb it. This is where the regularity lemma comes
into play. Denotes the set of Functions like (1) by Σ. We can write
fd = fstr + funi in the Hilbert space L2. Here morally fstr ∼ Σ, funi ∼ Σ⊥.
(∼ means the element is somehow near the set but not necessary to lie in
it.) Write x = (x

′
, xd). Then

ˆ
Rd

(
d−1∏
j=0

fj)fstrψSdx
′

(2)

can be handled by the induction hypothesis. On the other hand,

ˆ
Rd+1

(
d−1∏
j=0

fj)funiψSdx

looks like 〈
∏

A${0,··· .d−1} fA, funi〉. It also has a good bound since funi ∼ Σ⊥.
Turns out the bound of funi is not satisfying, and we need a more flexible
version of the decomposition

fd = fstr + funi + fer, (3)

where we allow an error term for better control on funi.

27.2.2 Trees

We’ve seen how the induction process goes. But there are still obstacles.
We only integrate the first d coordinates in (2). The induction hypothesis
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gives a bound independent with xd, so a further integration w.r.t. xd will
become +∞. Moreover, the error term fer of (3) is small in the L2 sense,
but we will encounter ‖fer‖1 when estimating |ΛψS(f0, · · · , fer)|.
To settle these problems, we do everything locally. Consider

ΛQ(f0, · · · , fd) :=

ˆ
Q

d∏
j=0

fj(xjc)ψk(
d∑
j=0

xj)dx, (4)

where Q = Q
′ ×Qd is a dyadic cube in Rd+1 such that s(Q) = k. (s(Q)

means the scale of Q.) To get some cancellation from the induction
hypothesis, we sum k over an interval and restrict x′ inside Q′ . We will call
such patterns trees. This definition is designed to facilitate our induction
argument, quite different from the trees in time-frequency analysis [LT].
Fix Q′ = 2k(m0, · · · ,md−1) +

[
0, 2k

)d. If x′ ∈ Q′ , then xd must lie near
2kmd := 2k(−

∑d−1
j=0 mj) to make the integrand of (4) nonzero. Thus we

only need to consider Q = 2k(m0, · · · ,md) +
[
0, 2k

)d+1 such that∑d
j=0mj = 0. All cubes mentioned below are of this type. If redefine

ΛQ(f0, · · · , fd) :=

ˆ
Q′

(
d∏
j=0

fj)ψkdx =

ˆ
Q′×10Qd

(
d∏
j=0

fj)ψkdx, (5)

we get
ΛψS(f0, · · · , fd) =

∑
k∈S

∑
s(Q)=k

ΛQ(f0, · · · , fd).

Definition 2. Call a collection of cubes T a tree with the top Qtop if there
exists an interval Υ such that s(Qtop) ≥ max Υ and
T = {Q : s(Q) ∈ Υ, Q

′ ⊂ Q
′
top}.

For each tree T we have∑
Q∈T

ΛQ(f0, · · · , fd) =
∑
k∈Υ

ˆ
Q
′
top

d∏
j=0

fj(xjc)ψk(
d∑
j=0

xj)dx

=

ˆ
Q
′
top

d∏
j=0

fj(xjc)ψΥ(
d∑
j=0

xj)dx

=

ˆ
Q
′
top×10(Qtop)d

d∏
j=0

fj(xjc)ψΥ(
d∑
j=0

xj)dx.
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Then we can do the procedure in 27.2.1 to each tree.

Theorem 3. Given δ > 0, there exists Cd(δ) such that for any tree with
#Υ = Cd(δ), the following estimate holds:

|
∑
Q∈T

ΛQ(f0, · · · , fd)| . δ|Q′top|(#Υ).

This bound easily extends to trees with general length #Υ by dividing Υ
into pieces of the length Cd(δ).

Corollary 4. Given δ > 0, there exists Cd(δ) such that for any tree with
#Υ > δ−1Cd(δ), the following estimate holds:

|
∑
Q∈T

ΛQ(f0, · · · , fd)| . δ|Q′top|(#Υ).

27.2.3 The selection scheme

Our task now is to sum up these tree estimates. Note that we cannot
simply put each cube in a tree, because there will then be infinite trees with
tops of the largest scale, and the summation of their tree estimates is ∞.
A more efficient way is to consider the density of ΛQ over each Q. Let
aQ =

ΛQ
|Q′ | . We have

|aQ| .
d∏
j=0

inf
xjc∈πjcQ

Mdfj(xjc). (6)

by the Loomis-Whitney inequality.
Now only take trees with large densities on tops. For each Q, s(Q) ∈ S
satisfying |aQ| > λ (λ depends on δ) and Q′ is maximal, we construct a tree
T (Q) := {P : s(P ) ∈ S, P ′ ⊂ Q

′}. (6) implies the weak type estimate for
these trees: ∑

Q: |aQ|>λ, Q′ is maximal

|Q′| . 1

λ

d∏
j=0

|Ej|
1
pj . (7)

Thus summing over these trees is acceptable. We briefly explain why (7) is
true. First take a maximal sub-collection {Q̃} from
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{Q : |aQ| > λ, Q
′ is maximal} such that (CQ̃

′
)’s don’t include each other.

We have ∑
Q: |aQ|>λ, Q′ is maximal

|Q′ | .
∑
Q̃

|Q̃′ |.

Then we use (6) to estimate

∑
Q̃

|Q̃′| . 1

λ

∑
Q̃

d∏
j=0

‖Mdfj‖Lpj (πjcQ̃) ≤
1

λ

d∏
j=0

(
∑
Q̃

‖Mdfj‖
pj

Lpj (πjcQ̃)
)

1
pj

≤ 1

λ

d∏
j=0

‖Mdfj‖Lpj

.
1

λ

d∏
j=0

|Ej|
1
pj ,

where we use (πjcQ̃)’s are disjoint since (CQ̃
′
)’s don’t include each other.

All cubes left must have small densities, and we can use (6) as above to
directly control them.
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