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1 Boxes, extended boxes and sets of positive
upper density in the Euclidean space

After P. Durcik and V. Kova¢ [DK]

A summary written by Ethan Ackelsberg

Abstract

We present an argument of Durcik and Kova¢ [DK]| showing that
sets of positive upper Banach density in sufficiently high dimension
contain congruent copies of all large dilates of the 2™ vertices of an
n-dimensional rectangular box, as well as the extension of a box by n
vertices completing 3-term arithmetic progressions.

1.1 Introduction

Euclidean Ramsey theory is concerned with finding congruent copies of ge-
ometric configurations in large subsets of Euclidean space. The relevant
notion of largeness for this paper is as follows: the upper Banach density of
a measurable subset A C R? is the quantity

d
3(A) := lim sup sup AN (x +d[O,N] 1]
N—oco xcRd N

where |-| denotes the d-dimensional Lebesgue measure on R

The first result states that sets of positive upper Banach density in suffi-
ciently high dimension contain congruent copies of all large dilates of the 2™
vertices of any given n-dimensional rectangular box.

Theorem 1 (|[DK], Theorem 1). Letay, ..., a, > 0. For any natural numbers
dy,...,d, >5 and any measurable set A C R x - x R with §(A) > 0,
there exists A\g > 0 such that for any A > Ao, the set A contains a box

B(x1, ..., T S1, -y 8n) = {(x1 + €181, ..., Tpn + €,8,) 1 €1,..., 6, € {0,1}}

with x;,s; € R% and ||s;|le = Aa;.



Extending the boxes appearing in Theorem 1 introduces new difficulties:
Bourgain [B] constructed a set A C R with §(A) > 0 for which there is
an unbounded sequence s,, — oo such that A does not contain any 3-term
arithmetic progressions with common difference s,,. However, in higher di-
mensions, Cook, Magyar, and Pramanik [CMP] proved a density theorem
for 3-term arithmetic progressions when the size of the common difference is
measured in the ¢ norm for 1 < p < oo, p # 2.

The second main result of this paper is a common generalization of The-
orem 1 and the aforementioned result from [CMP| about 3-term arithmetic
progressions.

Theorem 2 (|DK]|, Theorem 2). Let ay,...,a, >0, and let 1 < p < 0o, p #
2. There exists a threshold dy such that for any natural numbers dq, ..., d, >
dy and any measurable set A C R x --- x R with §(A) > 0, there exists
Ao > 0 such that for any A > X, the set A contains a 3AP-extended box

Bsap(x,8) := B(x,s) U{(z1 + 281, ..., 2Zpn), ..., (T1,%2, ..., Tp + 25,)}

with x = (1, ...,%,),8 = (81,...,5,) € R® x -+« x R™ and ||s;]|e = Aa;.

1.2 Strategy of the proof

Rather than proving Theorem 2 directly, we deduce it from a result about
higher-dimensional configurations and then project. Namely, we will prove a
similar statement for corner-extended boxes

BL($17"'axn;ylw"?yn;sl?'"7871)
={r1+ €181, T+ €nSn, Yl o, Yn) (€1, 6 € {0,1}}
U{(21, o Ty 1 F 81,5 Un)s oo oy (15 ooy Ty Y1y oo o Yn + Sn) }

with z;,y;,s; € R%, s; # 0. Note that the projection (z;,y;) — y; — ;
sends the corner-extended box B (x,y,s) C (Rdl X e X Rd")2 to the 3AP-
extended box Bsap(y —x,s) C R x ... x R%. Theorem 2 therefore follows
from

Theorem 3 (|DK|, Theorem 3). Let ay,...,a, >0, and let 1 < p < oo, p #
2. There exists a threshold dy such that for any natural numbers dy, ..., d, >
do and any measurable set A C (R x -+ x ]Rd”)2 with 6(A) > 0, there exists
Ao > 0 such that for any A > Ng, the set A contains a corner-extended box
B (x,y,s) for some x,y,s € R x --- x R™ with ||, = Aa;.
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In order to prove the existence of a configuration in the subset A, we
will establish positivity of an associated average that provides a normalized
count of configurations in A. To that end, define the measure o%? on R?
by a?(s) = §(1 — |s]|%), Where 9 is the Dirac ¢ distribution. The dilated
measure o5, defined by §*(A) = o%?(A~1A), is supported on the surface
{s € R%: ||s]ler = A}

Fix dy,...,d,, and let D =d; +---+d,,. Let a= (ay,...,a )GR be
fixed. For A > 0, we let o}, denote the product measure Ufl Pox oo x afgnp
on R% x -+ x ]Rd" >~ RP. We then define the pattern-counting forms at a

scale A > 0 by

/ Hf ) do,(s) dx

z€B(x,s)

and

/ T £(2) dofu(s) dx dy.

z€B, (x,y,z)

The quantities N7 and /\N/:{7 are normalized counts of boxes and corner-
extended boxes at the scale A, weighted by the function f. In particular,
if N7(14) > 0, then A contains a box B(x,s) for some x,s € RP with
lsjllee = Aaj. Similarly, if /\N//{’(ILA) > 0, then A contains a corner-extended
box B(x,y,s) for some x,y,s € R with ||s;||» = \a;.

We will also work with smoothed approximations of the pattern-counting
forms, defined by

MEE(f) = / [I £(2) wii(s) ds dx
R2D z€B(x,s)
and
MEE(f / H f(z) Whe(s) ds dx dy,
z€B_(x,y,2)

where w{* is a smooth bump function supported in an e-neighborhood of the
surface {s € R : [|s;|l» = Aa; for j € {1,...,n}}. A precise definition for
can be found in [DK, Section 2. Flnally, let

EVE(S) = MEE(f) = blp, o) M ()

w)\a

10



and

EVE(f) = MEE(f) — b(p, ) ME (),

where
D,E
b(p,e) := —fRD Wh(s) ds.
fRD wPl(s) ds

We now sketch the proof of Theorem 1. The proof strategy for Theorem
3 is completely analogous.

Proof of Theorem 1 (sketch). A standard argument by contradiction shows
that it suffices to prove the following: for any sufficiently large N > N(§),
any measurable subset A C [0, N|P with |A| > 6 NP, and any sequence of
scales \j < Ay < -+ < Ay < N with A,y > 2\, and M > M(0), there
exists m € {1,..., M} such that N3 (14) > 0.

We may write

NE (La) = b(2,e) M3 (La) + (N (La) — M3E(La)) + EXE(S).

The main term b(2,6)./\/l?\’7i(]l,4) is large (> C(D,d)NP) by an application
of the multidimensional Szemerédi theorem of Furstenberg and Katznelson
[FK| and an estimate on b(2, ¢) from [CMP]. The first error term N3 (14)—
M?\i(ﬂ 4) tends to zero as € — 0, since M is a smoothed approximation of
N. The remaining error term 5/3;( f) is small for all large enough values of
m as a consequence of a singular Brascamp-Lieb inequality due to Durcik
and Thiele [DT|. Hence, taking e sufficiently small and m sufficiently large,
N3 (14) > 0 as desired.

The full argument can be found in [DK, Section 2|, where the main term
is handled in |[DK, Proposition 4|, the first error term in [DK, Proposition
5], and the second error term in [DK, Proposition 6. O

1.3 Key estimate

The most technically demanding part of the proof outlined above is the
estimate of the second error term Sfj( f). We use the notation A(N) <p
B(N) to denote an inequality of the form A(N) < CB(N), where C' is a
constant depending on the parameters P.

1

10D and

Proposition 4 ([DK]|, Proposition 6). Let 1 < p < 00, 0 < € <
0 <A <-+- < Ay with Ay > 20,

11



1. If f: RP —[0,1] is a measurable function supported on [0, N|P, then
M
> [E5(N)] <o NP
m=1

2. If f : R?P — [0,1] is a measurable function supported on [0, N]?P, then

(>

m=1

, 1/2
gfj(f)’ > <<D,s N2D‘

Part 1 of Proposition 4 is deduced from the following singular Brascamp—
Lieb inequality (Part 2 follows from a similar inequality corresponding to
corner-extended boxes):

Theorem 5 (|DK], Theorem 10(a)). Let K : RP — C be a bounded com-
pactly supported function satisfying the symbol estimates

rRE)| < el 1

for any multi-index k. Then

H Fi(x +es) ds dx| <) dr,..dn H | Fell g2

R2D

ee{0,1} e€{0,1}
where es denotes the point (€151, . ..,€,8,) € R4 x - .. x R,
In the special case d; = --- = d,,, Theorem 5 follows from [DT, Theorem
1], and the general case can be reduced to this one (see [DK, Section 4] for
details).

We end with a sketch of the proof of Proposition 4 using Theorem 5.
Proof of Proposition /4 (sketch). For each m € {1,..., M}, expand
D= [ T 16 (i) = breflafs) ds ax.

2€B(x,s)

The function Wy (s) — b(p, 5)w§;ia(s) may be written in the form

n n

Z H‘PAm (s5)

i=1 j=1

12



for some C* functions d\fn with [ ‘Pi\; =0 and wi\fn >0 for i # j.
Let o, € {—1,1} so that

€] = amER
Then

Z\S{jy _Z ) [[ f(2) ds dx

2D
R zEB(x,s)

for
Zam‘ﬂ,\ s1) SDA o (sn).

One can check that the kernels K; satisfy the estimates (1), so we conclude

M
DR < (Il 7 < NP,
m=1
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2 Quantitative bounds in the nonlinear Roth
theorem, part 11

After S. Peluse and S. Prendiville [PP 22]

A summary written by Seljon Akhmedli

Abstract

We summarize a quantitatively effective version of the polynomial
Szemerédi theorem for nonlinear Roth configurations of the form =, z+
2
Yy, +y°.

2.1 Introduction

One of the classical theorems in combinatorics is of Szemerédi’s which says
a set with positive density will contain arbitrarily long arithmetic progres-
sions. In a similar spirit, there are other types of configurations (besides
arithmetic progressions) which arise in dense sets such as polynomial pro-
gressions. Indeed, the polynomial Szemerédi theorem says if py, ..., p, € Z[y]
with p;(0) = 0 for all 1 < i < n, then any set S C N with positive upper den-
sity must contain a nontrivial progression of the form z, z+p;(y), ..., +pa(y).
Another equivalent form of saying this is that the size of the largest subset of
{1,2,..., N} lacking the nontrivial polynomial progression is o(N). Gowers
|G 01| produces bounds on the density in Szemerédi’s theorem, namely, for
all k € N, there exists ¢(k) > 0 s.t. any subset of {1,2,..., N} of density at
least (loglog N)~¢ contains an arithmetic progression of length k. In [Pre 17],
quantitative bounds are given for the polynomial Szemerédi theorem but in
the homogeneous case, namely, when the polynomials p;(y), 1 < i < n, are
all of the same degree. The main result in [PP 22| given below is the first
quantitative version of the theorem for polynomial progressions of length
three and of differing degrees over Z.

Theorem 1. There exists ¢ > 0 such that if A C {1,2,..., N} does not
contain a nontrivial progression of the form

T,x+y,x+ P

then
|A] < N(loglog N)~°.

14



We note that having a zero constant term in the polynomial progressions
is necessary; for example, within the even numbers, we already cannot find
a configuration of the form z,z + y + 1,2 + y? by parity reasons. Bourgain
and Chang gave quantitative bounds on the nonlinear Roth configuration
z,z +y,x +y? over F, [BC 17|. However, there are difficulties in adapting
their method to Z. Peluse |Pel 19] shows that under certain conditions on
the characteristic of I, there exists ¢ > 0 such that any subset of F,, of size
at least p'~¢ will contain a nontrivial polynomial progression

z,T _'_pl(y)a cey L +pm(y)

where p;(0) = 0 for all 1 < ¢ < m. Peluse and Prendiville are able to utilize
an important idea from [Pel 19|, that is, if one can control the nonlinear Roth
progressions by a Gowers U® norm, then we can descend in s to obtain control
by a U'-seminorm through the degree lowering method. In the setting of
finite fields, the so-called PET induction scheme of Bergelson and Leibman
controls these configurations by a global U® norm. Because of difficulties
which arise in the integer setting, the PET induction only reduces to working
with an average of constrained U'-seminorms and we instead get localized U*
norm control. The authors in [PP 22| then show these averages are controlled
by a global Gowers U® norm.

2.2 Control by a global Gowers norm

Definition 1. Let f : Z — C and A, f : Z — C be the difference function
of f given by
Apf(x) = f(x)f(z+h).

Then the Gowers U®-norm of f is given by

Us 32( Z Ahl h )>21

xhly 7

11

If S C Z, then the localized Gowers U®-norm is || f|

vs(s) = || fLs|us

Definition 2. The counting operator on the functions f; : Z — C by

Ag(fo, 1. f2) = ZZfo ) fi(z +y) fal + qy?).

z€Z yeN

15



Notice when f; = 1jn) for ¢ = 0, 1,2, the counting operator Ay(fo, f1, f2)
counts the number of nonlinear Roth progressions in [N]. The theorem below
provides control of this count by a Gowers U%-norm.

Theorem 2. Let go, g1, f : Z — C be 1-bounded functions, each supported in
[N]:={1,2,...,N}. Suppose that

‘ > Zgo(w)gl(l’+y)f($+qy2)) > 63 > Iw(@) (@ + y) L (z + qy?).

z€Z yeN z€Z yeN

Then either N < q or

Z ||f‘|U5(u+qZ > 50(1) Z ||1[N ||U5(u+qZ

u€[q] u€lq]

In the proof of the above theorem, there are multiple technical lemmas
used. We will highlight some of those main ingredients and tools in the
following subsections.

2.3 PET Induction and van der Corput

The polynomial exhaustion technique (PET) was first developed by Bergelson
and Leibman [BL 96| in the proof of the classical polynomial van der Waerden
theorem. In [PP 22|, the tool is used to replace working with univariate
polynomials like y? in our progression to instead working with bilinear forms
such as ah. Notice the polynomial y? has a sparse image compared to ah and
this creates difficulties in trying to obtain control by some U® norm. The van
der Corput method in some sense takes a large nonlinear average and bounds
it by a large linear average. By applying Cauchy-Schwarz, van der Corput,
and a change of variables, [PP 22, Lemma 3.2| shows how difference functions
control linear progressions like =, z + ay, a + by, x + (a + b)y, where a,b € Z.
The next step is linearization where the counting operator A,(fo, f1, f2) will
be controlled by difference functions of bilinear forms. We give this lemma
below.

Lemma 1. Let f; : Z — C be such that |f;| < 1 and with support in [N].
Then for any 1 < H < M we have

(fo,fl,fg

<< Z pong (@) g (0) per (D) Ege (v Doglatb)hy 2gbha,2qahs f2()
a,bh
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where M := [\/N/q].

Thus the largeness of the counting operator implies the largeness of

(1) Z Z Z Ay b, (a+b)hs [2(T),

a,b€[N 2] hy ha,hse[N2] ©

and with an inverse theorem and concatenation result we will be able to
further show largeness of || fa||vs.

2.4 An Inverse Theorem

Lemma 2. Let a,b be positive integers and coprime. Suppose that f : Z — C
is 1-bounded with support in the interval [N] and satisfies

(2) ZNH(h)Aahl,bhgf(I) > ON.

Then there exists 1-bounded functions g, h : Z — C such that g is a-periodic,
h is almost b-periodic and furthermore

|3 @] = oL =25+ 7))

The proof of the above reduces to relating (2) to a box norm. In fact,
understanding the largeness of (2) comes down to understanding the largeness
of two dimensional Gowers box norms in directions ‘a’ and ‘b’. Indeed, the
largeness of this norm will imply a correlation of f with a product of periodic
and almost periodic 1-bounded functions.

2.5 Quantitative Concatenation

Notice in (1), the coefficients of the h; in the difference function of fy have
some linear dependence. The purpose of the concatenation theorems are
to work with this type of dependence. Roughly speaking, if one can un-
derstand the largeness of a function in two different directions, then one
can understand the largeness in both directions jointly. There are a few
technical lemmas in the final step to obtain control by a global U® norm.
The essence of [PP 22, Lemma 5.3] is if Za’hew%] Y. Aanf(z) is large, then
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D ke(-N,N) 2z Dif(2) is large as well. So on average the behavior of these
functions is relatively the same. Similarly, the motivation behind [PP 22,
Lemma 5.4] is that A,,f behaves like fg, on average, where g, is an a-
periodic function. The proof of Theorem 2 uses all of the above tools and
methods but there is still more work needed to obtain U® control for the
nonlinear Roth configurations.
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3 Singular Brascamp-Lieb inequalities with cu-
bical structure

After P. Durcik and C. Thiele [DuTh]

A summary written by Michel Alexis

Abstract

In [DuTh|, Durcik-Thiele show that for a collection of linear trans-
formations possessing “cubical symmetry”, the associated singular Brascamp-
Lieb inequalities hold if and only if the standard dimensional Brascamp-

Lieb criterion holds across all linear subspaces V' of the ambient space.
Because this criterion is only known to be necessary for singular Brascamp-
Lieb inequalities, this result of Durcik-Thiele strengthens the conjec-
ture that a general singular Brascamp-Lieb inequality holds if and only
if the same Brascamp-Lieb criterion holds across all linear subspaces

V.

3.1 Introduction

Fix surjective linear maps II; : R™ — R¥ and exponents p; € [1,00] for
1 =1,...,n. One may ask whether there exists a constant C' for which the
following multilinear inequality holds,

/ (HF <H@-x>> iz < CTTIF, 1)

m

This sort of inequality is known as a Brascamp-Lieb inequality. In [BeCaChTal,
it was shown that inequality (1) holds if and only if for every linear subspace
V C R™ we have

dim (V) < Z z% dim (ILV) | (2)

with equality in (2) when V' = R™. To communicate to the reader why these
are inequalities of interest to analysts, consider for instance the case that II;
equals the identity on R™: then the Brascamp-Lieb inequality (1) reduces
to Holder’s inequality for the n functions {F;}i<;<,, and (2) reduces to the
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classical condition ) z% = 1. And for instance when n = 2, if we consider
i=1""
the linear surjective maps II; : R* — R? and II, : R? — R? given by
Hl(xay):x_ya H(y):y7 x,yGRz,

then (1) yields a particular case of Young’s inequality

\ [ [ R = vFsiuds

and (2) reduces to the corresponding exponents - o = =1L

In their paper [DuTh], Durcik-Thiele consider singular Brascamp-Lieb
inequalities, i.e. inequalities of the form

/ (HF <mx>> K () ds| < CT[IIR, | (3)

< CE, 1E21l,, -

where in addition we consider II : R™ — R* a surjective linear map and all
Calderon-Zygmund kernels K, i.e. all kernels K satisfying a Mikhlin multi-
plier condition

R ()] < g™ (4)

for all o up to a certain threshhold. Durcik-Thiele note that a necessary
condition for (3) to hold for all kernels K as above is that for every linear
subspace V' C kerIl, we have

dim (V) <> pi dim (Hi
i=1 1

) E

with equality in (5) when V' = R™. However it is not known if (5) is sufficient
for (3) to hold; moreover, no general necessary and sufficient condition is
known for singular Brascamp-Lieb inequalities, and most work on them has
been done case-by-case (see for instance [LaTh| for a drastically approach
from Durcik-Thiele [DuTh]).

However, under the assumption of some additional symmetry, dubbed
“cubical structure,” on the linear maps II; and particular choice of the coef-
ficient p;, Durcik-Thiele are able to verify (5) is sufficient for (3). This work
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of Durcik-Thiele lends credence to the idea that (3) if and only if (5) is the
“right theorem” one should be aiming for.

More precisely, to the cube @ = [0,1]" in R™, we may associate each
vertex to a function j : {1,...,m} — {0,1}. In an abuse of language, we let
the cube Q) denote the set of all such functions j. And finally, given x € R?>™,
we will write it as z = (29,29, ..., 2%z, 23, ... 2l).

9 m? ? m

Theorem 1 ([DuTh, Theorem 1]). Let II; : R*™ — R™ be given by [z =
(:Ej(l),xJQ), . ,x%m)). Then (5) holds across all subspaces V' of ker 11, with
equality if V- = ker I1, if and only if (3) holds.

3.2 Broad picture of the proof: an induction using sym-
metry and Gaussians

Durcik-Thiele prove Theorem 1 using a clever induction to leverage the sym-
metry and cubical structure of their setup. First, without loss of generality
they may assume that their singular Brascamp-Lieb integral is always of the
form

A(K,A) = / (HF] (H]-:E))K((IA)x)dm, (6)

where A is some m X m matrix satisfying some non-degeneracy condition
(see e.g. (7) below, where € = ¢(A)). Then Durcik-Thiele spend most of
their paper proving the following lemma, by induction. In what follows, let
g(x) = e~™le* denote the standard Gaussian, and given a function j in the
cube (@), define the reflection j % ¢ to be the element in the cube () such that

jxi(a) =j(a) if a # i, and j*xi(i) = 1 — j(3).

Lemma 2. Let m >1,0<[1<m and let 0 < € < 1. Furthermore, let A be
an m X m matriz that is such that

|det (1 AT > €  and Al <€, (7)

for all 1 < j < m, and assume the first | rows of A are equal to the first |
rows of —I. Finally, let (Fj)jeQ be a tuple of functions with the symmetry

Fj=Fii and  ||Fl. = 1.
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1. If K is a kernel satisfying the Mihklin multiplier condition (4) for all
a up to a certain threshold, and K satisfies the vanishing condition

k(fla--wghoa"'ao)z()?

then
’A (K7 A)l Sm,l,e 1.

2. Letl < i <m, let w € R™ and for each t € (0,00) let ¢, € L>®(R™)
with |c| < 1. If K is the kernel defined by

K (5) = 70075(’&)@ <(I A)T (tf)) e2m’ui§%’

0

then
A (K, A)| Sie (1 [ )00

Lemma 2 has two statements, (1) and (2). As Durcik-Thiele note, when
[ = 0, statement (1) yields Theorem 1. And when [ = m, statement (1) is
trivial because the kernel K = 0. As such, the authors proceed by induction
on [ to get from statement (1) with [ = m to statement (1) with [ = 0. More
precisely, they show that statement (1) with [ = m implies statement (2)
with [ = m — 1, then they show that (2) with [ = m — 1 implies (1) with
[ =m — 1, then that (1) with [ = m — 1 implies (2) with { = m — 2, and so

on ...; see e.g. Figure 3.2 for further details.
| = \ 0 1 2 ... ml m |
Lemma 2 part (1) | Theorem 1 X X . X Trivial
N O 2 N
Lemma 2 part (2) X X X . X (Ignore)

Figure 1: Implications of (1) and (2) in induction argument

The argument showing (1) <= (2) for the same [ is more straightforward of
the two arguments, as similar ideas have been applied elsewherein harmonic
analysis. Namely the authors do a cone decomposition of the kernel K,
which will preserve all of its Mihklin multiplier conditions. They choose
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the cone small enough so that the conic decompositions will also preserve
nondegeneracy of the newly resulting A. Of course, the authors also leverage
the vanishing condition for K. While reading this part of the argument, one
might wonder though, why did the authors chose to use particular Gaussians
in their conic decomposition?

The answer lies in the argument showing

{statement (2) for [} < {statement (1) for [ —1}.

To prove this portion of the argument, the authors make use of the special
of Gaussians. Namely, they first note that in a special case of (2), the form
A(K, A) is simply an integral of a product of Gaussians times squares of Fj’s,
using the symmetry inherent to the problem. Thus the authors need not
worry about cancellation, and they need only show a sum of special cases of
(2) is under control. They do this using the extra symmetries resulting from
the sum, which then allow them to use general estimates involving Gaussians.
(After all, this is generally how one estimates integrals of Gaussians in the
first place, using symmetry). The authors then essentially demonstrate that
this “special” case is in fact the only case that matters, and they show one
can always reduce down to those considerations, using ubiquitously along
the way the special multiplicative properties of Gaussians and the cubical
symmetries in their setup the problem.
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4 On the polynomial Szemerédi theorem in fi-
nite fields I

After S. Peluse [Pe]

A summary written by Lars Becker

Abstract

Let Py,..., P, € Zly] be any linearly independent polynomials
with zero constant term. We show that there exists v > 0 such that
any subset of IF, of size at least ¢'™" contains a nontrivial polynomial
progression z,z + Pi(y), ...,z + P (y), provided the characteristic of
[F, is large enough.

4.1 Introduction

Let Py,..., P, € Z[y] and let S be either [N] = {1,..., N} or F,. We denote
by rp, . p,(S) the size of the largest subset of S containing no polynomial
progression z, x + Pi(y), ...,z + P,(y) with y # 0. To avoid simple congru-
ence obstructions to the existence of polynomial progressions in large subsets,
we will always assume that P,(0) = --- = P,(0) = 0, and we call the space
of such polynomials Z[y]o. In this notation, Szemerédi’s theorem states that

Ty2y,... (k-1 ([N]) = or(N)

and Gower’s proved the quantitative bound

N
Ty2y,.. 0k~ 1)y ([N]) Sk (log log )

For general polynomials it is known by work of Bergelson and Leibman [BL|
that

TPl,...,Pm([N]) = 0P1,...,Pm(N) .

This talk is about a quantitative version of their result, but for finite fields
[F, instead of for [IV].
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Theorem 1. Let Pi,..., P, € Zlylo be linearly independent over Q. There

exist ¢,y > 0 such that if the characteristic of F, is at least c, then
7Py (Fg) Spypn €77

and, more precisely,

#{(x,y) € IF?] sz, e+ Pi(y),...,x+ Pu(y) € A}

Let mqy > 1, mg >0, Pp,...,Pu,Q1,...,Qm, € Zly]. For every F =
(for--s fon)s G = (G0 - - -, gm,) With f;, g; : F, — C define
mi m2
Q1,-,Qm
AR (B G) =By [fole) [ £i(e + Pi) [ [ 95(Qi )]
j=1

-----

j=1
where E denotes expectation with respect to the uniform probability measure

on F,. Theorem 1 is an easy consequence of the following theorem with
me =0, m=mand fy=---=f, =14

Theorem 2. Let my > 1, my > 0 and let Py,..., Py, Q1,...,Qm, € Z[ylo
be linearly independent over Q. There exist ¢,y > 0 such that if the charac-
teristic of Fy is at least c, then

Jj=0

whenever F' = (fo,..., fm,) is 1-bounded and ¥ € (@q)m?

4.2 Preliminaries
4.2.1 Upper bounds in terms of some U*-norm

The first ingredient in the proof of Theorem 2 is the following bound for
P, in terms of some U* norm (for possibly very large s) of the f;.

77777

Proposition 3. Let Py, ..., Py, Q1,...,Qm, € Z[ylo. There exists 1 > >
0 and s € N such that

.............

for all 1-bounded F = (fo, ..., fm,) and U € (F,)™2.
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This proposition is a slight generalization of a bound that already occurs
in [Pr], and the proof is based on arguments from [BL].
4.2.2 Decomposing functions

Given a norm |-|| on R", we denote by

[@[I" == sup{{¢,z) : [lz]| <1}

the dual norm. The following proposition allow us to decompose a function
into pieces, each of which is of controlled size in a certain given norm.

Proposition 4. Let ||-|| be any norm on the C-vector space of complex valued
functions on F,, and let d1,04,03,04 > 0. Suppose that f : F, — C with
I flla < 1. If ¢°27% + %% < 1/2, then there exist fa, fp, fo : Fy — C such
that

f=Jat fot fe
and || foll* < ™, Ifolle < g7, [ fellze < ™ and || fel] < q7°*.

The proof is based on the finite-dimensional Hahn-Banach theorem and
simple properties of ||| .1, ||-||z2 and ||| ze.

4.3 The induction scheme
4.3.1 Overview of the argument

Theorem 2 is proven by induction on m;. More specifically, denote by E(s)
the statement that there exists 1 > $ > 0 such that the estimate

Ql?"'!QmQ . —
Mg, p, (F5 D) < min] b+ 0(g™) (E(s))

holds for all 1-bounded F. Then the key step is to show that the case
(m1 — 1,mg + 1) of Theorem 2 together with E(s) implies E(s — 1). Since
E(s) holds for some s by Proposition 3, we can iteratively apply this to
deduce E(1), which is

Q 1"'7Q7YL : —
AR A (B3] < mjlnllfjllgl +0(¢7"). (E(1))
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To deduce from E(1) the case (mi,ms) of Theorem 2, write f), = fm, —
E[fmn,]- Then

AZTE (F ) = ARTR (for s fnaos W)EL ]

Q 7777 Qm 1
+ 2/\1911 me (fla oy fma—1, §ﬂn1; \II)

.....

By the case (m; — 1,my) of Theorem 2 and 1-boundedness of f,,,, the first
term 1s

Loet [ LA + Ol

j=1
By E(1), the second term is bounded by

2min||fi[lp + O(¢™") = O(¢™),
since || f;, [lor = |E[f,,]| = 0. This completes the induction step.

4.3.2 Base case of the induction

We need the following lemma, which is a consequence of the Weil bound.

Lemma 5. Let Py,..., P, € Zlylo be linearly independent over Q. There
exists ¢ > 0 such that if the characteristic of I, is at least c and ¥y, ..., ¢ €
F, are not all trivial, then

Now we can prove the m; = 1 case of Theorem 1:

Lemma 6. Let mg > 0 and Py, Q1, ..., Qm, € Zlylo be linearly independent
over Q. There exists ¢ > 0 such that if the characteristic of F, is at least c,
then

1
Ql :::: Q’mg . —
|Ap, (F;0) = Lozt [[EJLAW SPQuam, @7
=0

whenever F = (fo, f1) is 1-bounded and ¥ € (F,)™.
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Proof. Write f| = fi — E[f1] and F' = (fy, f1). Then

Agf ,,,,, QmQ(F;\I/)ZAjQDj ,,,,, ng(F/ )+]Ef1 xyfo ij QJ

Agll ~~~~~ m2 (P ) + E[f,]E ng @iy

The y-expectation term equals 1 if all ¢; = 1, and else it is < ¢~'/2 if the
characteristic of I, is large enough, by Lemma 5. Since fy, f; are 1-bounded,
it follows that

The first term equals, by Fourier inversion and since E[f] = fi(1) =

> folno) f1(n1)Eano () () By [m (Pr (y H% (Q;(y

= o) B, (Pi(v)) [ [ ¢5(Q;(w)]
n#0 =1

By Lemma 5 the y-expectation is < ¢~/? if the characteristic of F, is suffi-

ciently large. By Cauchy-Schwarz, Plancherel and the 1-boundedness of f

and fi, it follows that the whole expression is < ¢~'/2, which completes the
proof. ]
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5 On the norm convergence of non-conventional
ergodic averages
After T. Austin [A]

A summary written by Noa Bihlmaier

Abstract
We show the norm convergence of ergodic averages of the form

1 N d
v+ 2o Lo

n=—N 1=1

following the proof by Austin in [A], which proceeds by building suit-
able structured extensions of the initial system.

5.1 Statement of the theorem

Given a probability preserving transformation 7" on a standard measure space
(X, 3, ), the multiple ergodic averages

1 N d A
ON + 1 > Ilset

n=—N i=1

are of central interest in ergodic theory. Most importantly, Host and Kra in
[HK] and independently Ziegler in [Z] showed the L*(u)—convergence of these
averages for all f; € L*°(u). Soon after, Tao in [T| generalized this situation
to averaging d commuting transformations 7; rather than powers of a single
operator T' by converting the problem into a finitary problem. We prove the
same result as Tao, with the proof of Austin [A].

Given a standard Borel measure space (X, X, ) together with invertible
commuting measure preserving continuous transformations 7;: X — X (for

i=1,...,d), we prove the following ergodic theorem which is a special case
of [A, Thm 1.1].
Theorem 1. For any choice of measurable functions fi, ..., fq in L>(u) the
ergodic averages
1 N d
Lo Ty
2N+1n:ZNHf° 1 &)

converge in L2~norm as N tends to infinity.
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5.2 The proof

We prove this by induction on d. The induction start d = 1 is simply the von
Neumann ergodic theorem. In every step d—1 — d we prove the convergence
by finding a suitable "pleasant" extension of our initial system for which the
convergence of the multiple ergodic averages can be proven.

5.2.1 Part 1: Reduction to pleasant systems

The main idea of this part is that in order to prove the convergence of multiple
ergodic averages, it might suffice to prove convergence for an easier set of
functions which still encodes all the information of the convergence of the
averages on the original system. As we want to prove the statement by
induction, we restrict only the first function to a smaller o-subalgebra. This
leads us to the notion of pleasant systems.

Definition 2. We denote by X7 the invariant factor of T;, i.e. the subalgebra
of ¥ consisting of all A € ¥ with n(AAT;(A)) = 0. Further we denote by
YT=Ti the invariant factor of T; OTj_l. Now we call a system T = (T})i=1...a
pleasant if restricting the first coordinate to the o—subalgebra

d
2=y v\/ghh

i=2
yields a characteristic factor, i.e. for any functions fi,..., fa € L™®(n) we
obtain
1 N 4 1 N d
;o — E ZloT"- 0T — 0
2N+1n; Hfo 7 2N+1n; ,U[f1| ]O 1 gfo i

in L*(u) as N — oo.

For such pleasant systems we are able to complete the induction step, noting
that in the induction hypothesis we do not only assume the convergence for
pleasant systems but rather for all systems.

Proposition 3. IfT = (T;)i=1,. a s a pleasant system and Theorem 1 is true
for all systems of d—1 commuting actions, then it also holds for (X, %, u,T).
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Proof. In order to prove this, by pleasantness of the system we can first
assume f; to be X7 v \/%, ©T="1 measurable. Then we note that we can
replace f; by a sequence ( fl(m)) in L>=(u) converging to fi in L*(u). As fi
is ©71 v \/, ©T=T1 measurable we can assume the approximating sequence
to consist of finite sums of products g; - - g4, where g1 € L*>®(u |,m) and
9i € L=(p |ymi=1,).

Thus it suffices to prove the convergence of averages of the form

N d
1
> ((g-g2-g0)oTP) - [[ fio T
2N +1 11

n=—

Since g1 € L™(pu |ym ), we obtain gy o 77" = ¢; and similarly g; o 17" = g; o T}
for all 7. This simplifies the above term to

1 N d
9 g1 2 Ll f)oTr

n=—N i=2

but this converges by induction hypothesis. m

5.2.2 Part 2: Constructing pleasant extensions

Knowing the convergence of (x) for all pleasant systems reduces the problem
to finding "enough" pleasant systems to obtain the convergence of (x) for all
systems, i.e. the following proposition together with the above Proposition
3 clearly imply the induction step and hence the desired statement.

Proposition 4. Every system T’ = (T;)i=1,...a has a pleasant extension, i.e.,

there exists a pleasant system (X,%, i, T) and a factor map V intertwining
the actions.

In order to construct such a pleasant extension we need to iteratively pass to
an extension which controls the previous averages better. This step is done
via the Furstenberg self-joining.

Definition 5. For any action T = (T})i=1..a on (X, X, p) we define the
Furstenberg self-joining of (X,3, ) corresponding to T as (X%, X% p*d),
where (1* is defined via

N d
1
*d — n
(A x X Ag) ]\}lm SV T 1 n:E_N/X J:ll L, o T]'dp.
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Note that the well-definedness of the above limit follows by the induction hy-
pothesis, and that the Furstenberg self-joining is invariant under the actions
of T; x T; x --- x T; and of T} x Ty x -+ x Ty. Using these actions, we are
now ready to construct the pleasant extension starting with an initial system
(X, 2, 1, T).

Construction of a pleasant extension.

1) First we iteratively construct actions on Furstenberg self-joinings.
Define (X©, %@ ;@ 7©)) = (X, %, 4, T) and now build extensions

™) (X(m)’ E(Tn)7ﬂ(m)7T(m)) N (X(m—l)’ E(m—l)’u(m—l) T(m—l))

Y

iteratively for all m € N by setting (X £ ;™) as the Furstenberg
self-joining of (X (=1 nm=1) "y (m=1) pm=1)y and T = (T(m))i:lmd via

T =1 ey oY
T =1 e Ty o™ Y

T =T e T o Tim Y,

The projection 1™ is now given by the projection onto the first coordinate
of X(m)

2) Having constructed this projective system of measure preserving actions,
we want to pass to a limit as each step "controls" the previous one.

Thus we define the desired extension (X, %, i, T ) as the inverse (projective)
limit of this system of extensions, i.e.,

(X 3 i, ) L(X(m )’M(m)’T(m))
equipped with the corresponding factor map
U (X5 4, T) = (XO, 50 40 7O) = (X, 5,4, 7).

Proof of pleasantness.
To see that this extension is indeed pleasant, first we show that it suffices to

prove that for any fi, fo,..., fa € L®(1) and § € L>(p* \(md)TlezX xTy)
we have

flom (Hfzwrz)'ﬁdﬁ*d—/)zd alfi | E]of - (Hfzom)-édﬁ*d
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where ) o o
==yl v EREy Ly BT
and the 7; are the corresponding coordinate projections. This is done by

showing that the Furstenberg self-joinings control our averages, i.e. we prove
that if fi € L>°(p) fulfills

d d
/ f1O7T1'<Hf¢O7Ti>'9dM*d:0
X i=2

for every fa,..., fa € L®(p) and g € L>(p*" | geayr xmyx-xt, ), then

N

1 - .
w1 2o et =0

n=—N =1

for every fo, ..., fa € L™(u).

Second we prove that the invariant factors behave nicely under projective
limits and hence we can obtain a good description of = in terms of the o—
algebras

=0m) — ()T () TV=T Ly (T =T

This allows us to translate our problem onto some finite level of the projective
system. There the statement can be proven with some calculations.

O
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6 Using Quadratic Fourier Analysis to Find
4-term Arithmetic Progressions

After B. Green |[G]

A summary written by Bora Calim and Nihan Tanisalr

Abstract

We give an inverse theorem for the Gowers U3 norm on FZ and
use it to prove the existence of many (proportional to the density of
the set) 4 term arithmetic progressions with the same step size in
subsets of [Fy.

6.1 Introduction

Let 1 > a > 0 be a real number. We aim to show the existence of 4 term
arithmetic progressions in subsets A C F? with density « for large enough
n. Throughout the summary, G will denote FZ, and N = |G].

Theorem 1. Let a, e > 0 be real numbers. Then there is an ng = no(a, €)
with the following property. Suppose that n > ng(a,€), and that A C G is a
set with density o. Then there is some d # 0 such that A contains at least
(a* — €) N four-term arithmetic progressions with common difference d.

Instead of working with the set A C G, we will consider its characteristic
function 14 : G — {0, 1}. The averages, the Fourier transform, and the
Gowers uniformity norm of functions carry information about the number
of arithmetic progressions in A. However, the techniques used to prove the
existence of 3-APs cannot be directly generalized to 4-APs. We summarize
these differences and introduce the required notions.

Definition 2 (A3, Ay). For f; : G — [—1,1] we define
As(f1; f2: f3) = Boaf1(@) fo(@ + d) f3(@ + 2d), and Ny(f1, f2, f3, f1)

analogously.

Definition 3 (Gowers norms). The Gowers uniformity norm of f : G — R
for integer d > 2 is defined as follows

IflFa =" [T e+ hw +. 4 hawa).

xz,h1,...hg wi,..wqg€{0,1}
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In k£ = 3 case

e The operator Az is controlled by the Gowers U2-norm. Specifically for
any three functions fi, fo, f3 : G — [—1, 1] we have

|As (f1, f2, f3)] < Zzl{lg3 | fill = -

e (Gowers inverse theorem) If the Gowers U?-norm of a function
f: G —[—1,1] is large, f must have a large Fourier coefficient:

Ifllo =6 = [l > 6

The first item is directly generalized, while the second item is not. The
following proposition and example illustrate this.

Proposition 4. Let fi,..., fy : G — [—1,1] be any four functions. Then
we have

[Aa(fryo fl < bl fillgs -

Example 5. There is a function f: G — C with || f||c < 1 such that
| fllos = 1, but such that ||f]|eec < N™Y2. Namely f = w® *.

Instead, we find that f has significant correlation with a quadratic phase:

Theorem 6. Suppose that [ : G — [—1,1] is a function for which
| fllus = 6. Then there is a matriz M € M, (F5) and a vector r € F so that

Ea:er(x)waMHrTx > 1.

6.2 Proof of Theorem 6

There are 3 steps in proving a function f with large U? norm correlates
with a quadratic phase w® M=+ Throughout, |G| >4 1 whenever
needed, f: G — [—1,1], || fllus = 0, M denotes an n X n matrix with
entries from F5, b denotes a vector in F2, and A(f;h)(z) = f(x)f(z — h) is
a "multiplicative derivative".

The first step is to show that the derivative of f obeys a "weak linearity"
property: There is a function ¢ : G — G and S C G with |S| > |G| such
that
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L JA(f;h)M@(h))] >s Lfor all h e S

2. There are >s |G|*> quadruples (sy, s9, 53, 54) € S* such that
$1+ 89 = 83+ sy and @ (s1) + ¢ (s2) = ¢ (s3) + ¢ (54).

The second step is to show that this weak linearity property implies a
stronger linearity property: If ¢ : G — G, S C G satisfy the conclusions 1
and 2 of the previous step, then there is some linear function

(x) = Mx + b such that ¢(z) = ¢(z) for >; |G| values of z € S. We give
a sketch of the proof of this step.

Consider I' = {(h, ¢(h)) : h € S}. By conclusion 2 of the first step, we can
use the Balog-Szemerédi-Gowers theorem to find some I C T" such that
IT| >5 |T| > |G| and |T” +T"| <5 |T’|. Identifying G x G with F2" by
Freiman’s theorem, we can find a subspace H C F2" containing I"” such that
|H| <5 T <5 |G

Consider the canonical projection m : H — G to the first factor, and let

S" = n(I'), so that |7(H)| > |S’| >s |G|. By the rank-nullity theorem, it
follows that dimker(m) <5 1. Let H' = (ker(m))*, so that

H = U (H' + ), where the union is disjoint and taken over < 1

xeker(m)
elements. Observe that 7 is injective on each of the cosets in the union. By

the pigeonhole principle, there is some x such that

|(x+ H')NT'| > |I'| >5 |G]|. Let I = (x + H) NI and S" = =(I"),
V=mn(x+ H'). Then:V — G given by the composition of 7~ and the
canonical projection to the second factor is an affine map, so

Y(x) = Mx + b for some M, b. It can be seen that ¢ (x) = ¢(z) for all

x € S”, so the proof is complete.

Combining the two steps, we can find some M, b such that

Ep |A(f; ) (Mh + b)[> > 1.

It turns out that a Matrix M satisfying the above bound is approximately
symmetric in a precise sense: If

En |A(f; h) (Mh+b)[* >5 1,

Then rank(M) < 1.
From this we can recover a fully symmetric matrix M’, which gives theorem

6.
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6.3 Arithmetic Regularity for U?

In this section, the main objective is to decompose a function

f: G — [—1,1] into three parts. The first one, E(f | B), is constant on
certain sets, the second one is the error term in the sense of having a small
Ly norm, and the third has a small U? norm.

Definition 7 (Factors, Conditional Expectation, Rank of a Quadratic
Factor). Let ¢1,...,¢r : G — G be any functions. The o-algebra, B,
generated by the sets (atoms) of the form

{r e G| ¢1(x) =c1y...,0k(x) = cx} are called a factor. The conditional
expectation of f is defined as

where B(x) is the atom of B containing x. If all the functions ¢;(x) i < k
are of the form vz for some r; € G the factor B generated by ¢;,i < k is
called a linear factor of complexity at most k.

Leti < d;,r; € G and M;,j < dy be symmetric matrices in M, (G). Let B,
be the factor generated by the linear functions ¢;(x) = rlz; and By be the
factor generated by ¢;(x) = riz,i <dy and ¥;(x) = 2" Mz, j < dy. By is a
refinement of By. (By,Bs) is called a factor of complexity (dy,dy). We say
that (By, B2) has rank at least r if for all nontrivial linear combinations of
M, ..., My, has rank at least r.

With the following lemma, we write any function f: G — [—1,1] as a sum
of a measurable function with respect to a quadratic factor and two error
terms that are small, respectively, in L? and U3. The strength of the lemma
is to make || f3||ys arbitrarily small by choosing a suitable growth function
wy with the cost of making the complexity higher.

Lemma 8. Let 0 > 0 be a parameter, and let wy,ws : Ry — Ry be arbitrary
growth functions (which may depend on 6 ). Let n > ng (0, wy,ws) be

sufficiently large, and let f : G — [1,1] be a function. Let <B§O),B§O)> be a
quadratic factor of complexity (dgo), d§0)>. Then there is a quadratic factor

(By, By) with the following properties: (By,Bs) refines <B§O),B§O)),' the
complexity of (By,Bs) is at most (dy,ds), where

d17d2 < C (57 w17w27d50)7dg))) ’
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for some fized function C; the rank of (B, Bs) is at least wy (dy + ds); there
1s a decomposition [ = f1 + fo + f3, where

i 1=E(f|52),
[ fally <6,
[ fsllps < 1/wa (di + da).

6.4 Main Theorem

To understand By measurable functions, i.e., functions that are constant on
the atoms of By with complexity (dy,dsy), we study functions on the
configuration space Fgl X ]ng. We take ry,...,rq, linearly independent and
define T'(x) == (r{,...,ry) and ®(x) := (" Mz, ... x] My,x).

Proof of theorem 1. We apply theorem 8 to 14 to obtain a decomposition
1a = f1 + fo + f3 such that the quadratic factor (B, Bs) is with complexity
(dy,dy) d; < do(a, €) and the rank r is such that

r > 100(log(1/€e) + log(1l/a) + dy + d2).

The parameter 0 and w (which only depends on « and e justifying the
bound for dy) will be specified afterwards. We define the n — d; dimensional
space H := (ry,...,rq,)", and upy to be the normalised measure

w2 1y /Ely. To prove the theorem, we show

Epqla(z)la(z 4+ d)1a(x + 2d)14(x + 3d) g (d) > (a* — ).

The left-hand side of the above expression splits into 81 parts after the
substitution 14 = f1 + fo + f3.

Claim 1. The 65 terms containing fo has contribution < €/200.

Claim 2. The 65 terms containing f3 has contribution < €/200.

Proof. Suppose that g; = f3, the other cases are similar. We write the term
as

E. a91(z)ga(z + d)gs(z + 2d)ga(x + 3d) prr (d) (1)

where g9, g3, g4 are one of the fi, fo, f3. We make the observation

L(d) =Y Lienr (@)L (z + 2d)
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where the sum is over all cosets of H in G. By proposition 4

E;a91(2)g2(z + d)lirm(x + d)gs(x + 2d) 14 g (z + 2d) ga(x + 3d)
< |Ifsllvs < 1/wa(dy + da).
Hence we bound (1) by < 5> /w(d; + d). Provided that
w(m) > 5m+ /e, -

Claim 3. As f is a By measurable function we define f, : F&' x F2 such that
fi(z) = £, (T'(z), ¢(x)) for all x € G. Since the size of the factors are not
equal, we have

Euafi(z) fi(z + d) fi(z + 2d) fi (x + 3d) g (d)
=E a€FIt b1 | b®) cFi2 fi(a, b(l))fl(C% b<2)>f1(a7 5(3))1?1(@, b(4))
b1 —3p(2) 1-3p(3) _p(4) =0

_|_ O<52d1+3d27’r‘/2>'

The constraints on a and b is a result of two facts: d € H and
O (z) — 3P(x + d) + 3P(x + 2d) — ®(z + 3d) = 0.

(5—2d1—3d2 + 0(5—1“/2)) Z Z f, <a7 b(l))fl <a7 b(2))

a€FZ qeRl p(1), . b4 epi2
(1D —3p(2) 1-3p(3) _p(H =0

X fl (Cl, b(s))fl (CL, b(4)>
> (5—2d1—3d2 + O<5_r/2))<E(a7b)€Fgl ><]F§2 fl(a, b))4
The last line follows from two applications of Cauchy-Schwarz.
Claim 4. E(mb)nglegQ fi(a,b) = (1 + O(5%+%=/2)) This claim is a result
of the fact that atoms are close in size. After some calculations, the

theorem follows from these four claims.
O
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7 Degree lowering for the polynomial
Szemerédi theorem in finite fields

After S. Peluse [Pel19]

A summary written by Jonathan Chapman

Abstract

We give an exposition of a degree lowering argument used by
Peluse to obtain quantitative bounds in the finite field polynomial
Szemerédi theorem.

7.1 Introduction

In the previous summary, an overview was given of the recent work of
Peluse on the polynomial Szemerédi theorem in finite fields. Recall that the
goal is to obtain upper bounds on the size of an arbitrary A C F, which
does not contain a progression of the form {z,z + Pi(y),...,x + Pn(y)},
where the P; are integer polynomials with 0 constant term. Peluse’s
method involves studying properties of counting operators of the form

AR (i) = Eay fo@) [ e+ @) [ s@) ()

Specifically, Peluse’s power-saving quantitative bounds for the finite field
Szemerédi theorem [Pell9, Theorem 1.1] are a corollary of the following
result.

Theorem 1 (|Pell9, Theorem 2.1]). Let my > 1 and my > 0 and let
P, P, Q1o Quy € Zlylo be linearly independent over Q. There
exist ¢,y > 0 such that if the characteristic of F, is at least c, then

mi
Q1,-,Qm —
APll,,Pmlz (F; \Ij) - 1\1]:1 H Exfz('r) + OPla'“’Pmlan)'“)QMQ (q ’y) (2>
1=0

~

whenever F' = (fo,..., fm,) is 1-bounded and ¥ € (F,)™.

The main purpose of this summary is to give a proof of this theorem using
Peluse’s degree lowering argument [Pell9, Lemma 4.1].
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7.2 Discorrelation estimates and norm control

Our primary objective is to obtain an asymptotic formula (2) for the
counting operators (1). For fixed W, these counting operators are averages
of functions f; evaluated along polynomial progressions. Compare this with
(2), where the main term is just a product of the averages of the f;. As
noted in [Kuc21], we can therefore think of (2) as demonstrating a kind of
‘discorrelation’ of the f;. This motivates the following non-standard, but
useful, definition.

Definition 2 (Discorrelation estimate). Let my > 1 and ms > 0 and let
Py P, Q1. .., @, be integer polynomials with O constant term. Let q
be a prime power, and let C,~v > 0. We say that the counting operator
A%j Q:Q defined by (1) satisfies a (C,~)-discorrelation estimate if

AR B (B 0) = Ly [ [ Bafile)| < Cg
i=0
holds for all 1-bounded F = (fo,..., fm,) and all U € (R,)m2

Recall from the previous summary that the Gowers U*-norm! is defined by
the equation

B by hocFy Dby, hs [ ().

In additive combinatorics literature, one refers to a counting operator, such
as (1), as being ‘controlled’ by the U*-norm if the counting operator is
small whenever one of the f; has a small U*-norm.? We formalise this by
making the following (again, non-standard) definition.

Definition 3 (Norm control). Let g, my,ma, Pi,..., Py, Q1,...,Qm, be as
in the previous definition. Let by, by, b3 > 0. We say that the counting
operator AQl’ ’Qm2 defined by (1) is (b1, ba, bs)-controlled by the U*-norm if

Agf,’f.'ffg,z? (F50)] < by mlnllfj .+ by

holds for all 1-bounded F = (fy, ..., fm,) and all ¥ € (F )™

!Note that these are norms for all s > 2, but for s = 1 this defines only a semi-norm.
2See, for example, [Prel7].
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To demonstrate the utility of control by Gowers norms, we now prove
Theorem 1 under the assumption of U'-norm control.

Lemma 4. Let ¢,my,mo, P1,..., P, Q1,...,Qm, be as above. Suppose
that AjQDlly’:-:.,,gnZQ is (a,b,q¢)-controlled by the U'-norm for some a,b,c > 0.
If Agf;'::”g;ffﬁl satisfies a (C,v)-discorrelation estimate, then Aﬁj?ﬁ
satisfies a (C' + 2, min{c, v})-discorrelation estimate.

~

Proof. Let F' = (fo,..., fm,) be 1-bounded, and let ¥ € (F,)™. Write
h = fum, —Egfm,(z), whence ||h||yr = 0 and h/2 is 1-bounded. Using our
U! control hypothesis, we observe that

ASTB (F W) = By oy (2)AR 750 (for o fn 13 )
Q17"'»Qm2 —c
<2AAZ B (fon o fnt B2 0)| < 207

The result now follows from our discorrelation estimate for Aﬁj;j];,?;’f_l. O

7.3 Degree lowering

In view of the previous lemma, if we can control the counting operators (1)
by the U'-norm, then we can prove Theorem 1 by induction on m.
Unfortunately, as shown in [Pell9, Proposition 2.2| and [Prel7, §§3-5|, one
can usually only obtain control of (1) by a U®-norm with s a very large
number which depends on the degrees of the P; and @);.

The key insight of Peluse was that it is possible to leverage discorrelation

. . S11.ensSom .
estimates for counting operators Ay "7 7"2" to improve U*-control for
B

A%gﬁ to U !-control. This strategy is known as degree lowering and
has become a highly influential tool in additive combinatorics and beyond
(for further examples, see the other summaries in these proceedings).

The degree lowering argument employed to prove Theorem 1 is
encapsulated in the following lemma, which we have reworded using the
definitions introduced in the previous section.

Lemma 5 (|Pell9, Lemma 4.1]). Let Py, ..., Pp,,Q1,...,Qm, € Zly|o be
linearly independent, for some Let my = 2 and mqo > 0. Suppose there exist
b1,b,b3,b4,c1,c0,7 >0 and s € N such that the following two conditions
both hold whenever F, has characteristic at least c;.
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(I) For all linearly mdependent Ry,..., Rpy—1,51, .., Smyt1 € Zlylo, the

----- Sm 1
counting operator AR1 TR
.

estimate.

satisfies a (cq,7)-discorrelation

(II) The operator AQI’ ’Qm2 is (b1, ba, bs)-controlled by the U®-norm.

Then there exist ¢, cy,y' > 0 depending only on the P; and Q); such that, if
[F, has characteristic at least max(c}, by), then the following is true. For
every 6y, 0a, 03,04 > 0 satisfying ¢°2% + ¢**~ < 1/2, the counting operator

Aﬁij,?g is a (¢°1, 2172, B)-controlled by the Us~'-norm, where

22—25

Cl
B=q" ( 2,) g% TR gy,

Remark 6. Although the flexibility in the choice of §; is important in the
proof of [Pell9, Theorem 2.1, we will not keep track too carefully of these
parameters in our proofs. We similarly omit details regarding the b; and c;.
The interested reader should consult [Pell9] for a more thorough account.

Proof of Theorem 1. Iteratively applying Lemma 5 with an appropriate
choice of parameters J; at each step (see [Pell9, Eqn. (19)]), we can control
AjQpll” ”Q’"Q by the U'-norm. The result then follows from Lemma 4. O
Before concluding with the proof of Lemma 5, we require the following
lemma, which relates the U*-norm of a general counting operator with an
average of U?-norms of discrete partial derivatives. It is proved using
multiple applications of the Cauchy-Schwarz inequality; we omit the details.

Lemma 7 ([Pell9, Lemma 5.1]). Let fi,..., fm : F2 = C be 1-bounded. For
every hy, ..., h € Fy, define

T) 1= Enyz’(%?/)? Th,.. ,h H hl, ,htfl x,y).
i=1 ity
Then | T3~ < Enyohe oI Thy,hos e for all s = 2.

Proof of Lemma 5. Applying the regularity lemma [Pell9, Proposition 2.6],
we can decompose

fo=fa+ o+ fe

43



for some fa, fy, fo : Fq = C with || foll7e < ¢, | follr < a7, [ fell < ¢,
and || f.||vs < ¢7%. Writing F, = (fa, f1,- -, fin, ), and similarly defining F,
and F,., we have

Q ""7Qm Q ""7Qm Q 7"'7Qm Q 7-~~7Qm
APf,...,me (£ V) = APf,...,me (Fo; ) + APE,A..,me (£ W) + Apll,...,me (Fe; W).

The triangle inequality shows that the second term is at most ¢~%. Using
our U*-norm control assumption (II), we have

Q 7"’7Qm - -
‘APE,...,PmIQ (Fc; \Ij)| < q(l b2)d3 b264b1 + q63b3.

Introducing the auxilliary counting operator
Y(x) =B, [ [ file + Py) [ vi(Qiw)),
i=1 j=1

we can bound the first term:

Q 7“"Qm
AR pn (Fas )] = [{fo, T)| < I fal vs < ¢

|

*
Us Us-

It therefore remains to bound ||Y||ys. Lemma 7 informs us that

225—2

HT“US < Eh17~--’hsf2HThly--whszH?]Q' (3>

Here, T},  n. , is as defined in Lemma 7. In view of the well-known fact
that ||ib||lp> = [|ib||p+ for any ¢ : F, — C (see [Pell9, Eqn. (6)] or [Prel?,
Page 11]), we proceed to study the Fourier transform. For each
ke{l,...,m} and ¢,y € @q, we observe that

—

1,8
Yhirooms (Do) = Ap) 52" (Gos -+ s Gtk D1, -+ s B,

where

-1 i<
y Sj:Sj,k: QJ j M ,
Pk j:m2+1

and
¢m—2-‘r1Ah1,...,hs,2fk 1=0
Gisk = § Dhy,oshasn i i1 <k—1.
Apyohoo firn 1>k

44



We can therefore bound the Fourier coefficient using our discorrelation
estimate assumption (I). For our choice of g;x)’s this gives

T enrea(Bman)| < i [Bopy o, fil2)| + c2g7
for some 4" > 0. Incorporating this into (3) leads to the bound

Q1,-,Qm : 1-s
‘Aplly,,,,me (FS \IJ)| < qél Iln>1{1 Hfz’ 2US*1 + .

If we decompose f; instead of fy and follow this same argument, then we
can extend the above minimum to cover ¢ = 0 as well, completing the
proof. O
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8 A mean ergodic theorem for
N 2
2n—1 J(T")g(T™)
After H. Furstenberg and B. Weiss [FW]

A summary written by Yoav Cohn

Abstract

We survey Furstenberg and Weiss’s proof of L? convergence of
non-conventional ergodic averages of the form ZnN:1 F(T™)g(T™)

8.1 Introduction

Let (X, B, 1) be a measure space, with u(X) < oo, and let T: X — X be a
measure preserving transformation of this space. Expressions of the form
PN H§:1 f;(TP), Where {f;}_, are bounded functions, and {p;}}_,
are integer sequences are well - studied, and by now, are well understood in
many cases (see, e.g [HK]). In this paper, we present Furstenberg and
Weiss’s result, regarding the specific case £ = 2, p1(n) = n, pa(n) = n?,
that is:

Theorem 1. For any measure-preserving system (X, B, u,T) and
fig € L>®(X), the averages 25:1 F(T™)g(T™) converge in L2(X).

A central tool in the investigation of multiple ergodic averages is the
construction of appropriate characteristic factors. This is true also for the
case we will discuss here. Through a series of reductions, the authors
reduce matters the case where the system is a group extension Z x, S* of
the Kronecker factor, where p : Z — S! is a cocycle, satisfying a functional
equation to be specified (see Equation 1). Then, this functional equation is
used to conclude the proof. In more detail, the main steps of the reduction
are as follows:

topsep=0pt,ltemsep—=-1lex,plrtopsep=1ex,plrsep=1lex Showing that a
characteristic factor
for all schemes
{rn, sn,tn} where
t =r + s is a partial
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topsep=0pt,2temsep=-2ex,p2rtopsep=2ex,p2rsep=2ex

topsep=0pt,3temsep=-3ex,p3rtopsep=3ex,pIrsep=3ex

topsep=0pt,4temsep—=-4ex,p4rtopsep=4ex,pdrsep—4ex

topsep=0pt,btemsep=-5ex,pdrtopsep=>ex,porsep=5nex

characteristic factor
for {n,n*}. (see
[FW, Chapter 4] for
the definition of a
partial characteristic
factor).

Showing Z is a
characteristic factor
for the schemes
{rn, sn,tn}.

Reduction to the
case where the
system is normal.
That is, Zisa group
extension by some
compact group G.

Reduction to the
case where G is
abelian, and from
there to S*.

Reduction to the
case where the
cocyle satisfies an
equation of C'L -
type. (see Equation

D)

Our talk will focus on the last two steps of the reduction, and the

conclusion of the proof.

8.2 Preliminaries

In this subsection we survey some important ideas and terminology that are
used in the paper. For other, more common preliminaries, such that the
definitions of cocycles and partial characteristic factors, one can turn to

[FW].
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8.2.1 Isometric extensions

Let (X, B, 1, T) be an ergodic measure preserving system, and let
(Y,D,v,T) be a factor. Observe the subspace of L?(X) spanned by finite
rank modules over L?(Y'). This subset naturally corresponds to another
factor of X, which is called the Maximal isometric extension of Y in X.
We will denote it by Y. It is known that each such factor is isomorphic to a
system of the form (Y x M, B,v x my;, T), where M == G/H is a
homogeneous space of a compact group G, my; is the invariant measure on
M, and B is the appropriate o - algebra. The action is defined by

T(y,u) = (T(y), p(g)u), Where p: Y — G is some measurable map. In the
case where H = 1, this structure is called a group extension. (see [FW,
Chapter 5] for some more information). Let (Z, ) denote the Kronecker

factor of X. Then X will be called normal if Z is a group extension of Z.

8.2.2 CL-cocycles AND CL-function

As noted above, we will survey a series of reductions, that will bring us to
work with characteristic factors of the form Z x, S'. Going further, we will
reduce to the case where the cocycle defining the action S : Z — St,
satisfies the following functional equation:

Definition 2. S will be called a CL - cocycle if there exist m,{ € N such
that for v,z € Z:

Se(z +mw)

5,02) =N(z+102)

5.0 W

where A, K are measurable functions with values in S*.
Also, a function n € L*(X) will be called a CL - function if there exists
some C'L - cocycle such that Tn = Sn.

8.2.3 Mackey group

Let Y be an ergodic system, and let Y x, G' a group extension defined by a
cocyle p : Y — G. Note that if we have Im(p) C H for some H, a proper
subgroup of GG, then v X m¢ is not ergodic. This means that the group
extension does not have to be ergodic by itself, but also hints us as to what
its ergodic components might be:
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Theorem 3. For any cocycle p: Y — G there is a closed subgroup H C G
(called the Mackey group of the extension), uniquely determined up to
conjugacy, such that:

e There is a cocycle p'(y) = ¢(Ty)p(y)d(y) ™! equivalent to p taking values
in H (for some ¢ : Y — G).

e The transformation T': Y x G =Y x G, T'(y,9) = (Ty, p (y)g) has
ergodic invariant measures v X Mm, where M, 1S the Haar measure mg
translated by [ to the right.

e Any ergodic T'- ergodic invariant measure on'Y X G has the above form,
and the T - invariant measures are obtained by re-parameterization. That
is, applying W= to the ergodic T'- invariant measures, where

U(y,g) = (y,06(y)g) for some measurable ¢.

To prove this, for each v € G define S, (y,g) = (y,g7). Then the
appropriate group is given by H := {v|S,u = p}. The proof belongs to the
theory by George Mackey. We will sketch it briefly during the talk.

8.3 Overview of the proof

We start our description with step 2. We apply the Van der Corput lemma,
and want to show that Z is a characteristic factor for all schemes

{rn, sn, tn}. By the mean ergodic theorem, it can then be seen that it’s
enough to understand 7" x T* x T* - invariant functions with respect to
some T" x T° x T* - invariant measure fi, which is also a X? conditional
product joining relative to Z3. Such measures are closely related to
maximal isometric extensions (see [FW, Theorem 5.1]). So, it follows that
each such function comes from the maximal isometric extension of Z. That
enables us to conclude what we wanted.

For step 3, the authors investigate the way inverse limits interact with the
Kronecker factor, and with group extension. From there, for any ergodic
system, they construct a normal extension, using inverse limits.

The above arguments reduce matters to the case where X is normal. Step 4
will be a reduction to the case where G (the group by which Z is extended),
is an abelian group. Similarly to what was done in step 2, we define a
measure. Let W, o, = {(z 4+ 12,2+ 52/, 2 + t2)|z,2' € Z} C Z3. Define i to
be the Haar measure on W, 5, x G3. TtisT" x T x T" - invariant. We look
closely at the ergodic components of fi on W, ;. Those are shifts of the set
Zrst ={(rz',sz/,tz')} by an element of the form (z, 2, z). For each such z,
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denote by [L.] its Mackey group, defined up to conjugacy class. The
function z — [L,] will be measurable. By ergodicity, it is actually constant.
Our next goal is to show that L has some structure. That is, we want to
show that there exists some abelian group J and three homomorphisms
{ti}io1 : G — J such that J = {(g1, g2, g3) | ¥1(91)¥2(g2)¥2(g2)}. For this,
by virtue of a group - theoretic lemma (see [FW, Lemma 9.1]), it’s enough
to show the for each 1 <14, j <3, 7 ;(L) = G; x G,. This is done by
showing the Mackey group for The action of m; j(W, s;) on G?, is G*.

From here, one can conclude that since (G')? C L, then any T" x T° x T* -
invariant function comes from an invariant function of (G/G’)3, and so- we
can reduce to the abelian case.

Next, we look at 1; defined above. Since (Hy)? = (¢; C L, it is shown that
H can be replaced by H/Hy. Then, we will have that characters of the form
X © ¥; separate points, and hence, by Pontryagin duality, we will be able to
reduce to the case where H = S, and the cocycle is of the form x o 9; o p.
We now want to study the action by the cocycle p == (ps, p,, pi) : W. — H3,
where W, are the projections to W, ;, of the ergodic components of /.
Recall that the Mackey group L characterises the ergodic components.
Namely, there exists a measurable ¢ : W, — H? such that

¢(21, 29, 23)5(21 + ro, zo + Sa, Z3 + tOZ)QS(Zl, 29, Z3) S L
From this, we get that for every character y € J , we have
F\((#1, 22, 23) + (ra, sa, ta))

(x ot 0p(21)) (x 020 pr(22)) (X 0 W3 0 pr(23)) = F\((21, 22, 23))

(2)

For some F), : ((z,2,2) + Z,s1) — S*. The next step will be to study
X © ¥ o p.. We look at Equation 2, and want to get ride of g. A main idea
here is the definition of a class of functions us : W,.; — Z, for which the
following lemma is proved:
Lemma 4. Let A= 7,,NZ,, C Z%, and let A" = {5 € Z | (§,6) € A}.
The map of Wy x A" — W, given by (21, 20,0) = (21, 20, us(21, 2)) is
onto, and measure preserving with respect to the Haar measures on the
groups.
This yields the equation (depending measurably on v):

op(z1 4 (r—t)v) og(za + (s —t)v)  Gy(z1 +ra, 2 + sa)

0. (21) 0s(22) B Gy(z1, 22)

(3)
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Next, the following lemma is proved:

Lemma 5. Let (X,B,u,T), (Y,D,v,S) be ergodic systems, and let

f(x), g(y) measurable maps taking values in S*. Let H: X XY — X xY
not 0 a.e. Suppose it holds a.e that f(x)g(y)H (z,y) = H(T(x),S(y)). Then
there exist a constant ¢ and a measurable K : X — S such that

f(z) = c% (and similarly for g).

Note that the conditions of Lemma 5 are almost fulfilled in Equation 3,
except we that we don’t have ergodicity. Still, by treating ergodic
components separately, we get the functional equation:

o-(z+ (r—t))

o-(2)

K,(z +ra)
K. (4)

=N(z2+712)

Where the choice of A,, K, is shown to be measurable in v.

The above discussion motivates the definitions of C'L - cocycles, and C'L -
functions (see subsection 8.2.2). It can be shown directly that C'L -
functions are a group, so we can use them to generate an algebra, which
then corresponds to a factor of X, to be denoted by Xsp. We get that X¢p
is an appropriate factor for all schemes {rn, sn, (r + s)n}. This concludes
step 5.

The next step will be to investigate some conditions (for A,), under which
CL - functions must be degenerate. That is, defined over the Kronecker
factor of the system. Those will be:

Lemma 6. If n is a CL- function for a cocycle where A, = 1, then it is
degenerate. If n is a CL- function for a cocycle where A,(z + (Z) takes the
same value on a subset of positive measure of Z x Z/0Z, then it is
degenerate.

Before we will be ready to prove the convergence result we were aiming for,
we need another lemma, which is basically a corollary of Wiener’s lemma,
and is proven by mean of the Van der Corput Lemma:

Lemma 7. Let X be an ergodic measure preserving system, let ¢(x) be
defined over the Kronecker factor of X with values in S, and assume that
the distribution of ¢ on S* has no atoms. Let f € L*(X) and let n(n) be a
bounded sequence. Then for any a,b,c with a # 0:
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N
© Dm0

n=1

in L*(X).

By the previous discussion, and by a density argument, it’s essentially
enough to show the convergence of 25:1 F(T™)g(T™) for the case g = ()
(defined on the Kronecker), and g = 9(z), where g = ¢(z)n, where 7 is a
CL - function for a non - degenerate C'L - cocycle. Here, the result will be
proved based on the form of Equation 8.2.2, along with Lemmas 6,7 above.
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9 A new proof of an inequality of Bourgain

After P. Durcik and J. Roos [DR]

A summary written by Leonidas Daskalakis

Abstract

We discuss an alternative proof by Durcik and Roos of a trilinear
smoothing inequality originally due to Bourgain. This new approach
relies on techniques from additive combinatorics developed by Peluse
and Prendiville.

9.1 Introduction

Fix a compactly supported smooth function x: R — [0, 1] and consider the
following trilinear form

Z(fo, f1, fo) = ‘//fo(x)fl(m+t)f2(x+t2)x(t)dtdx :

In 1988 Bourgain |B| established the following trilinear smoothing
inequality.

Theorem 1. Assume K C R is compact. Then there exists Ck, > 0 and
an absolute constant o > 0 such that

Z(fo, f1, f2) < Crxll follss | fill2ll foll < (1)
for any fo € L™ supported on K, and any f1, f» € L.

Bourgain [B| used this theorem to prove a quantitative nonlinear Roth
theorem in the real numbers. Inspired by the breakthrough work of
Peluse-Prendiville [PP| and Peluse [P] on quantitative bounds for
arithmetic sets lacking polynomial progressions, Durcik and Roos [DR| gave
an alternative proof of Theorem 1 in order to illustrate how these new
techniques from additive combinatorics can be employed to establish
smoothing inequalities in harmonic analysis. Indeed, using the Peluse and
Peluse—Prendiville theory, far-reaching generalizations of such smoothing
inequalities for multilinear polynomial averaging operators have been
established independently at the same time [KMPW].
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The trilinear form considered in Theorem 1 is the simplest non-trivial
example where one may apply the Peluse-Prendiville and Peluse theory, so
its proof should give the key ideas with the least amount of technical
complications. We discuss Durcik and Roos’ proof in the following
summary.

9.2 Preliminaries

We collect some useful notation and make some preliminary remarks. Any
measurable function f will be called 1-bounded if || f||.c < 1. For any
f € L}Y(R), we define the Fourier transform as

fie) = [ fwye s
R
For any ¢ € R, let e¢(z) = e*™*. For any x,h € R we define

Apf(z) = f(x)f(x + h), and for h € R® we define
Apf(x) = Ap,Apy - - Ay, f(x). For any s € N we define

I/

o= [ Anfllwdh and || flluz = | fllo-
Rs

We remark that |||, should be understood as continuous variants of the
Gowers uniformity norms. We remind the reader that the Sobolev norm is

defined by
I = ([ 1P+ 1))

If A, B are two non-negative quantities, we write A < B to denote that
there exists a positive constant C' such that A < C'B, we use subscripts
when C depends on parameters®.

To establish Theorem 1, it suffices to prove the following proposition.

1/2

Proposition 2. Assume K C R is compact. Then there exist two absolute
constants c,o > 0 such that for any 1-bounded functions fo, f1, fo with fy
supported on K, we have

Z(fos i o) Srex I follir--

3For example, we could write (1) more compactly using “< Ko -
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One may prove that Proposition 2 implies Theorem 1 by utilizing the
homogeneity of Z, Littlewood-Paley theory and interpolation using the
following bound for Z( fo, f1, f2)

1ol / fi(2)

where we have used Holder and Young’s convolution inequalities.
The task is now reduced to proving Proposition 2. This will be achieved
through a degree lowering argument sketched in the next section.

s(x 4+ — Ox)dt|dr Sicy | follooll f1lls /2]l f2ll3/2

9.3 Degree Lowering

To establish Proposition 2, Durcik and Roos employ a degree lowering
argument, adapting the ideas of Peluse and Prendiville [P, PP|. This
argument relies on the following four key lemmata.

Lemma 3 (u3-control). Assume K C R is compact and fo, fi, fo are
1-bounded with fo supported on K. Then

Z(fo, fi. f2) S 1oL

Lemma 4 (Dual difference interchange). Let (F})ier be a family of jointly
measurable 1-bounded functions F;: R — C supported on a compact set K.
Let

F(x) = /Ft(x)x(t)dt.

Then for any s € N there exists a measurable function ®: R®* — R such that

Lemma 5 (Bilinear case). Assume that f,g € L?, and £ € R. Then

—2s

i3

L(ee: f,9) Sx M llm-rellglliee and Z(f,ee, 9) Sx 1l e2llgll -2

Lemma 6. For every s € N and o > 0, there exists ¢ > 0 such that for any
1-bounded function f supported on a compact set K we have

IALfIF-odh Sk N1 flles
RS
One can choose ¢ = 2°0(1 + 20)7 !
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Let us see how these four intermediate results imply Proposition 2.
Without loss of generality we may assume that f; is also supported on
compact set K; depending only on K and x. Consider the “dual function”

Fo(x) = /fl(x +t) fa(x 4+ 12)x(t)dt
and note that by Cauchy-Schwarz and Lemma 3 we get

T(for f1, f2) S (T(Fo, fro )72 Sk 1 Foll% .

Lemma 4 applied for s = 1 guarantees the existence of a function ® making
Z(fo, f1, f2) bounded by

273/5
dh) .

The expression in the absolute value equals Z(e ), Apf1, Ap f2), which by
Lemma 5 together with Cauchy-Schwarz yields

CK,X(/‘//Ahfl(l’ + 1) Ay fo(z +t2)e2mm(h)x(t)dtdx

274/5
T fir f2) St ( / ||Ahf1||zl/2dh) . @)

27%/5
u2

Apply Lemma 6 with ¢ = 1/2 to (2) to obtain Z(fy, f1, f2) Sk || f1ll
Now counsider the “dual function”

Fi(z) = /fo(:v—t)fg(:x—l—t2 —t)x(t)dt

and note that by Cauchy-Schwarz and the previous inequality we get
-6
Z(fo, frs o) Srex (o Frs ) S IFAI 7. (3)
Since || Filu2 = ||Fi]|s0, and
|F1(6)] = ’//fo(x —t) folw + 12 — 1)e*™ T x (t)dtdx| = T(fo, ec, f2),

we get that ||F1||,2 < || fa]| g-1/2 by Lemma 5. Combining this with (3) gives

I(f07 f17f2) SK,X HfZH;ﬁ?(/)z;

which proves Proposition 2 with 0 = 1/2 and ¢ = 1/320.
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9.4 Remarks on the four key lemmata

The final section is devoted to a very brief discussion on the four key
lemmata.

The proof of Lemma 3 begins with the PET induction scheme of Bergelson
and Leibman [BL|, which reduces our task to bounding a quadrilinear form
with linear patterns. PET is achieved here by repeated applications of
Cauchy-Schwarz, Fubini theorem, and change of variables. Finally,
appropriately bounding the resulting quadrilinear forms follows from a
standard procedure relying on Cauchy-Schwarz, called Gowers differencing.
We note that such a procedure can be applied in more general situations for
multilinear forms containing polynomials of higher degrees.

The proof of Lemma 4 follows the ideas from Lemma 6.3 from [PP]. For
simplicity, let us briefly sketch the proof only for the case s = 1, since this
case is sufficient for our degree lowering argument. By linearizing the
supremum appearing in |||z, it suffices to show that for any measurable
¢: R — R, there exists a measurable function ®: R — R such that

(/‘/ / AnFi(@)e*m Wy (t)dida dh>1/2.

‘/AhF(x)ezmmﬁ(h)dx‘ _ 62m’\1/(h)/Ahp(x)e2mm¢(h)dx

One may write

for a real valued ¥, and expand

AWF(z) = / / Fo () Fole + B)x () x () dtdt.

After taking all these into consideration and applying Cauchy-Schwarz and
Fubini, one can show that the expression (4) is bounded by
1/2
dhdh’ )

e [ [|[ [RGERERE + 0@men-n b
-1

where [ is an interval where y is supported. After a change of variables and
by fixing an h’ where the integrant in A’ is close to its supremum, one may

notice that ®(h) = ¢(h + h') — ¢(h’) has the desired properties.
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Both assertions of Lemma 5 can be established using the Fourier inversion
formula together with the following standard variant of van der Corput’s
lemma (see for example [SW, Proposition 2.1]).

Lemma 7. For all o, f € R, we have

‘ / IR (t)dt | Sy max{]al, 6]},

Finally, Lemma 6 is a straightforward adaptation of Lemma 3.1 from
[CDRJ. Similarly to Lemma 4, we apply the result only for s = 1 in the
degree lowering argument. The proof relies on basic properties of the
Fourier transform and their interactions with the operator Ay, and once the
situation for s = 1 is understood, the general case follows easily.
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10 A new proof of Szemerédi’s theorem for
arithmetic progressions of length four;
Generalized arithmetical progressions and
sumsets.

After W.T. Gowers [2] and I. Z. Ruzsa [4]

A summary written by Dimas de Albuquerque and Gautam Neelakantan
Memana

Abstract

In this section we will be presenting the tools required for Gowers’
proof of Szemerédi’s theorem for arithmetic progressions of length
four as presented in [2]. One key tool among these is the improved
version of Freiman’s theorem on sumsets due to Ruzsa [4].

10.1 Introduction

The famous theorem of Szemerédi asserts that, for any positive integer k
and any real number ¢ > 0, there exists an N > 0 such that every subset of
{1,.., N} of cardinality at least 6N contains an arithmetic progression of
length k. In [2|, Gowers extends the proof technique of Roth in [3], where
the author proves Szemerédi’s theorem for length three using exponential
sums. This proof technique also improves the known bounds for the
theorem using combinatorial proofs.

10.2 Reformulation of Szemerédi’s theorem

Notation: Let Zy be the group of integers mod N. For any function
f:Zy — C, f(r) denotes the r*® Fourier coefficient given by
> sezy J(8)w™", where w = exp(2mi/N).

Definition 1. 1. A function f from Zy to the closed unit disc (D) in C
is called a-uniform uf

2.

k

2
< aN3.

D Ss)f(s—k)
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2. A function f : Zy — D is called quadratically a-uniform if
3. A set A C Zy of size 0N 1is called a-uniform if the following function

-0 seA
fA(S):{l—(S S;A

2

< aN*.

S () FGs —w)f(s = 0)f(s —u—w)

is a-uniform. Similarly, A is called quadratically a-uniform if f4 s
quadratically a-uniform. fa is also called the balanced function of A.

Remark 2. A set satisfying (3) in Definition 1 should be seen as a
"nseudorandom” set as a consequence of uncertainity principle. Analysing
sets which are "pseudorandom” and not, separately, is one of the crucial
ideas in the proof of the main theorem.

Theorem 3. (/2] Corollary 8 ) Let A C Zy be a quadratically n-uniform
set of size SN, where n < 27298612 gnd N > 200673. Then A contains an
arithmetic progression of length four.

The analysis of sets which are not quadratically uniform is even harder.
The next section contains the main tools that show that the sets which fail
to be quadratically uniform can be restricted to a large arithmetic
progression where its density increases noticeably.

10.3 Application of Freiman’s theorem

Definition 4. Let ¢ : A — Zy. A quadruple (a,b,c,d) € A* is called
additive for ¢ if a +b=c+d and ¢(a) + ¢(b) = ¢(c) + ¢(d).

Proposition 5. (/2] Proposition 9) Let f : Zy — D and ¢ : B — Zy be a
function such that
—_ — 2
S|AR) (6] = an?, 1)
keB
where A(f;k)(s) = f(s)f(s — k). Then, there are at least a* N3 additive
quadruples for ¢.
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Remark 6. A set A with its balanced function fa satisfying (1) should be
seen as a "non-pseudorandom” set, which is in the same vein as Definition
1. This tells us that there are many values of k for which the function
A(fa; k) has large Fourier coefficient r. So, the above theorem says that the

set of pairs (k,r) for which A(f;k)(r) is large is far from arbitrary (i.e we
can find many additive quadruples). Also, the function ¢ should be seen as
linear embedding of A C Zy into Zy .

It turns out that functions with many additive quadruples have very nice
structure as a consequence of Freiman’s theorem [1].

Definition 7. A d-dimensional (generalized) arithmetic progression on a
commutative group G is a set of the form Py + ... + P;, where each P; is an
ordinary arithmetic progression on G.

Theorem 8. (Freiman’s theorem, [1], [4] Theorem 1.1) Let A, B be finite
sets in a torsion-free commutative group satisfying |A| = |B| = n,

|A+ B| < an. Then, there are numbers d,C depending on « only such that
A is contained in a generalized arithmetical progression of dimension at
most d and size at most Cn.

Remark 9. The commutative group from the above theorem will be Z" for
the proof in [2].

Proposition 10. (/2] Proposition 12) Let A be a subset of ZP of
cardinality m such that the number of quadruples (x,y, z,w) in A with

xr —y =z —w is bigger than com? for some constant cy. Then, there are
constants ¢ and C' depending only on cq such that there is a subset A" C A
of cardinality at least cm with |A” — A”"| < Cm.

Remark 11. The above proposition says that A has a reasonable large
subset B such that |B + B| is small. Now, we can apply Freiman’s theorem
to this B.

Corollary 12. (/2] Corollary 14) Let B C Zy be a set of cardinality SN,
and let ¢ : B — Zy be a function with at least coN?® additive quadruples.
Then there are constants v and n depending on [ and ¢y only, a mod -N
arithmetic progressions P C Zy of cardinality at least N7 and a linear
function ¢ : P — Zy such that ¢(s) is defined and equal to 1)(s) for ar least
n|P| values of s € P.
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10.4 Ideas of Ruzsa’s proof of Theorem 8

Ruzsa’s proof of Freiman’s theorem is based on the fact that one can reduce
the search for the generalized arithmetical progression to a set of residues,
and this is done by the concept of Freiman isomorphy:

Definition 13. Let G, G’ be commutative groups and consider
ACG,A CG'. A function ¢ : A — A’ is called an F, - homomorphism if

a1+...ar:b1+...br > ¢(a1)++¢(a7):¢(b1)—l—+¢(br) (2)

If ¢ is bijective and its inverse is also an F, homomorphism, we call it an
F,. isomorphism.

With the above definition, we can indicate the steps in the proof of
Theorem 8. Here we use the notation kA = A+ --- + Ak times.

(1) Omne constructs an Fg isomorphism between A and a subset of integers

As.

(2) One obtains a subset A’ C Ay C Z which is Fg isomorphic to a set T
of residues modulo m, where m € (16|24 — 24|, 32|24 — 24]) is a
prime number. This can be achieved using the Lemma below, which
is a result of Ruzsa [5].

Lemma 14. Let A be a set of integers, |A| = n,r > 2 an integer and
D=rA—rA. Write |D| = N. For every m > 2r(N — 1) there exists
a set A C A, |A’| > n/r which is F, - isomorphic to a set T of
residues mod m.

(3) There exists a generalized arithmetical progression P C 27 — 2T.
This is obtained from the fact such difference sets contain Bohr sets,
and Bohr sets on groups of residues contain generalized arithmetical

progressions. A Bohr set on a commutative group G is a set of the
form

B(’ylv"'a7k7€17"'76k) = {g € G |arg’)/](g)| S 27T€j .] - 1a7k:}
where the «; are characters of the group G.
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(4) Through the composition of F, isomorphisms, one obtains a

generalized arithmetical progression P* C 24 — 2A .

(5) At last, we are able to obtain a maximal collection {a4,...,as} C A

such that (P* + a;) N (P* + a;) = 0 if i # j, which in turn will give us
that A C {ay,...,as} + P* — P*, and this last set can be covered by a
generalized arithmetical progression, which concludes the Theorem.

Remark 15. In the above route, the dimensions and sizes of the
arithmetical progressions obtained are always dependent only on c.
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11 Power-type cancellation for the simplex
Hilbert transform

After Polona Durcik, Vjekoslav Kovaé, Christoph Thiele [1]

A summary written by Jaume de Dios Pont

Abstract

We prove LP bounds of the truncation simplex Hilbert transform
with a log-power less than one in the truncation range.

11.1 Introduction

Let fo,..., fn be n+ 1 functions of n variables. Define the simplex Hilbert
transform of these functions as

An(fo, -y fn) :=D-V. /Rn+1 kl_[()fk(xo, ey X1, Xt 1y - ..xn)mdx.
This multilienar form is a generalization (from the case n = 1) of the
bilinear form associated to the Hilbert transform. The Hilbert transform is
bounded from LP to itself whenever p € (0,00), and its bilinear form is
therefore bounded on LP° x LP* whenever p; € (0,1) and p;* +p;' = 1.
This work makes partial progress toward a generalization of this
boundedness result: Whether an inequality of the form

An(for s F)] S Huﬁ

n
=0

holds for any po, ..., pn, or more generally, for all p; € (1, 00) satisfying
Z?:o P t=1

Notation: We will write x; as the vector x with the ¢—th component
removed, and X> as the vector (Xg, Xg11,-..X,). We will define x<, X ..
analogously, and combine these symbols, so that z_, - denotes the vector
(Zht1y - -, Zj—1,%41, - - - Zy). We will denote by x the sum? of the
components of x. With this notation,

4The overline X usually denotes average. Since the focus of this work is not on the
explicit constants, either definition would work.
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= 1 = dt
An(For- s fn) i=D. V. )=dx = p.v. (% )0x—pdx —
Goveeestiimpv. [ ALz =po. [ [ T] htptras

A boundedness result of the form of (1) essentially states that Holder
inequalities of the form

/ TT £ Osms — Gyt < 2T 1 £l (2)
R 220 i=0

which hold whenever p; € [1, oc] satisfy Y7 ,p; ' = 1, and which are
essentially sharp for each individual value of ¢, cannot be simultaneously
sharp for most values of t. If they were simultaneously sharp for all ¢, the
best truncated inequality one would hope for is

An,r,R(wa"afn) = /<|t<R \/]Rn-&-l ka Xk X= tdx_ < 2H||fz

g 2
3)

The main result of this work is giving a quantitative improvement on this
log factor, of the form

Theorem 1 (|1, Theorem 1, Corollary 2|). Let po,...,p, € (0,00), with
ZZL OpZ = 1. Then there is an € = €(p1,...,pn) > 0 such that
1—e¢

(4)

log E
r

||An(f07 R fn)H < Cpov--wpn H ||fl||pz
1=0

When p = (277,277, 27 27n+2 " 271) "¢ can be chosen to be 27"

The proof of the Theorem is entirely by studying this particular case, all
the other cases are seen by interpolating with (3).

11.2 Sketch of the proof

In very broad terms, the proof studies a smoothed version of A,, . g, which
is written as an integral over scales (parametrized by the ¢ parameter).
This smoothed version is bounded by a delicate induction procedure, in
which variables are incorporated one by one, going from free variables to
satisfying the constraints of the Hilbert transform.

The key step of this induction procedure is an equality (equation (18)) that
allows one to do the integral in ¢ explicitly.
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11.3 Smoothing the cutoff

Let g(x) := exp(—2?). Bounding A, r is equivalent to bounding the
smooth-cutoff version

/Rmli[f’“(x’%)g(R_li);g<r_lx / /RWka s dx@ 5

where hy(z) = t71¢/(t 'x). This is because 1j, g — g(R™t) — g(r~'t) is in
L(dt/t), and the crude estimate (3) suffices to bound the difference
between the smooth and non-smooth version.

11.4 Setting up the induction

Let 22, = (2%, 2 >k) be two lists of n — k — 1 vectors. For r+;, € {0, 1}7F+1
let 2%, := (z;",...,2z") be an assignment of the variables z2,. Define

Filxeryz2) =1 11 Fil(xery.250);), (6)

J=1 ref0,1}n—k-1

that is, the product over the first k functions and over all possible choices of
the free variables of index larger than k, removing the appropriate variable.
These free variables will be chosen to be close from their true value: Let

g :=t~ exp(—2?/t?), the t—dilation of g. Given x> and a dilation vector
a~p, of positive numbers let

dryx>k,a>k Z>k H H gOt j d j (7>
5€{0,1} j=k+1

be the Gaussian measure (up to normalization constants) with diagonal
covariance given by the vector of a2 .
We can now define the induction variables, which are:

k R dt = .
AQZQZk = — Gta(X)dx AYxo oty (Z21)
r t \Rn-’—l J\RQ(nfk) P

Vv Vv
Scales  Original variables Free variables

[ Bl 22 byl = x0)dy

~~
Product of assignments
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Ak f dt °
Aa§a>k = 7 dxzk d’yx>k7t'a>k(z>k>
= r Rn+1-k RQ(n+17k)
[ e [ Tl 02 0= o) |
R

When k£ = n there are no free variables in F,,, and there is only one possible
assignment, which corresponds to H;‘l:1 fj(xj). In this case,

R
dt
AZ((X ) = / —/ gta()_()dx
’ " r t Rn+1

Setting a = ay,, = \/Li and removing the absolute values one obtains exactly
the smoothed version of A, (fo,. .., fn), namely the right-hand side of (5).
In particular, Theorem 1 follows from the case k = n of the following
lemma:

(9)

. (10)

/ T 4506 e, (= X0 )y

Lemma 2 ([1, Lemma 3|). For any 2 < k <n and any
O,y o € [270FD/2 00 and any R > 2r we have

If k =1, we have AZ

11.5 Showing A" < AF

By taking the absolute value inside in (9),

Ak f dt S °
Aa;azk < i ’hm (X)|dX d7X>k7t'a>k <Z>k>
r t Rn+1 R2(n—k)

'/.Fk<x<kuyvz.>k)hmk<y - X’“)dy‘}

k
[CHe S

(12)

where the only difference with A is the |ho(X)| term, as opposed to

g1a(X). The inequality A* < A* now follows from

o (X)| S 9210 (X) (13)
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11.6 Going up in k

We apply Cauchy-Schwarz to the definiton (8) of A”. s, tWice. First in ¢, to
get

R [Rat _ .
[Afs, | < log = / - ( / o (R)dx / d(22)
r r Rn+1 R2(n—k)

/]:k(. ) hiay, (Y — xi)dy )2

(This step is the reason the gain in the exponent is 27*+1: At each
induction step we only keep half the gains of the previous step.)

We then expand the product of Fj, into the terms involving f; for j < k and
the terms involving f; only. These last terms do not depend on y, so we
apply Cauchy-Schwarz in all variables but y. We obtain an expression of
the form

(14)

) R dt
M < [ Ma®MOT (15)

The term My(T') only depends on the last f; and can be dealt with
(uniformly in ¢) by direct methods. The term fTR N<i(t)% has the form

dt
/ /RnJrl gta dX/Rz (n—k) Z>k / H H F htak( Xk)dy

i<k r
We can write a square of an integral | [, ¢(y)dy|* as [5, ¢(27)0(20)dzpdz,.
Using this, we get an equivalent expression for Nk, namely Nep = @’;k,
where for j > k

dt
o’ o(X)d dvy(z® , -
<k / /Rn+1 gt X X/Rm " V(sza){

Frm1(Xch—1, Xp—1,2%p_ 1)htaj( )hm( xj)dz?dzjl}.

2

(16)

RQ

Since Fi_1 does not depend on x5, or ¢, one can perform those integrals
first, and define df/Z (x<x,22;) as the measure witnessing the integral over
Fi—1 in (16), so that one has

@jgk(t) = / Fr-1(T <1, T—1, Z;kq)d@jg(xgkv ). (A7)
Rk xR2: (n+1—k)
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k
/205 V2,00 41 .0m
(9) (without absolute values). The key "integration by parts" estimate,

which can be shown explicitly, where one gains some cancellation is

S e S L T
=k i=k

where dG, is the measure induced by

Define, analogously, d\;_1 as the measure witnessing A in

/]:k1(9€<k1,90k172;k1)th = /]‘-k1($<k1737k1az;k1)d7(z.>k1)g(x)dx

Now the induction step follows by integrating Fj against both sides: The
integrals against dGr and dG, are single scale, and can be controlled (< 1)
by Cauchy-Schwartz. The integrals against df”, give ©Z, (t), which are all
nonnegative because they arose from a Cauchy-Schwarz inequality. The

integral over d\ gives a term of the form ]\(’z;%k. That gives
k —2 2| ik
@Sk S1+ (1 -« Zaj) Aa/\/i;ak/\/iakﬂ---an <19>
j=k

closing the induction.

The base step, corresponding to Al

;a1
induction step and can be found at the end of [1, Section 2].

is (a simpler) variation of the
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12 Detangling a Twisted Form in L*

After P. Durcik [DU]

A summary written by Jacob Denson and Jacob Fiedler

Abstract

We discuss a ‘twisted’ singular quadrilinear form introduced by
Demeter and Thiele, which relates to the almost everywhere
convergence of statistics associated with commuting ergodic
operators, and discuss the proof of the L* boundedness of this form.

Take four functions F, Fy, Fy, and Fy on R?, and ‘entangle them’, forming
the function

F(LL‘, 33/7 Y, y/) = Fl (.CE, y)F2(x/a y)FS(x7 y/)F4($/, y/) (1)

We will be interested in the following quadrilinear form:

AP FoFa Fy) = | Fe =€ m =i, nded,

where m : R? — C obeys the symbol estimates [0°m(&, )| < (|€] + |n]) 71!
for sufficiently large a. The main result of [DU] is the following L* bound:
Theorem 1. The quadrilinear form A satisfies

|A(FY, Fy, By, Fy)| S L o) || F2 | oy || 3l o) || Fal| o w2y (2)

A special case of this quadrilinear form is the so-called ‘twisted
paraproduct’ introduced by Demeter and Thiele and defined as follows:

T(F17F27F3) = A(Fl,FQ,Fg,]_). (3)

However, using A brings to light certain extra symmetries in the problem
not immediate obvious in the definition of 7. The results of Kovaé [K] and
Bernicot [BE| show that for 1/p; + 1/ps + 1/ps = 1 and py > 2,

T(Fy, Fo, F3)| Spypops |1l 2o 2) || F2 || o2 (m2) || 5 || £rs (2)- (4)

Bounding 7" has ramifications in ergodic theory, detailed in the next section.
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12.1 Why do paraproducts relate to ergodic theory?

Let X be a probability space and let 7,5 : X — X be commuting
measure-preserving transformations on X. A natural question in ergodic
theory is to study, for f,g € L>(X), the almost everywhere convergence of
the averages

%Z f(T"z)g(S™"x) as N — . (5)

Using a paraproduct estimate, Demeter and Thiele [DT| showed
convergence of a related family of averages, including

2 O S TS (TS ) (6

n=1m=1

The basic idea is that if one can bound the oscillation of a weighted version
of the ergodic averages by Cy|| fl|zr1]|g||r2 (where Cj is a term related to
the oscillation) this is sufficient to conclude pointwise convergence on a full
measure subset of X. In [DE|, Demeter details this argument in the course
of reproving and extending a result of Bourgain on the convergence of (5)
when S is a power of T'. In this case, the desired inequality is

H<§ [Sup (Wi (f, 9)() _Wujﬂ(fag)(x)‘Q)é

j=1 kElujuj1)

Ll,oo(X) (7)
1
NEA ”fHLQ(X)HgHLQ(X)a

where the bound is uniform in J and all finite sequences Uy, ..., U;, and
where

Wilf.9)(2) = 3 wnsf(T"2)g(T ).

nez

Connecting bounds of this type to the types of estimates in this paper
requires invoking a transfer principle. Equipped with the right inequality,
one can consider functions on R? which are constant on all the integer
lattice squares (n,n + 1) x (m, m + 1), essentially functions on Z?. To
complete the transfer to X, use the functions F' on Z? which are of the
form F(n,m) = f(T"S™z) for some x € X. For further reference, [DLTT]|
details the transfer of a bound on a maximal average to a bound on an
ergodic average.
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The salient point is that after the transfer, we have essentially the same
upper bound. So, when Demeter and Thiele obtain an oscillation bound for
a sum of integrals of the form

/ Fie + 6,y + ) Fo( — £,y + 8)Ua(£) Dy (1) dids
R2

it implies the same bound for the oscillation of (6) (note the relationship
between the exponents in the ergodic average and the arguments in the
above integral), which imply the required pointwise a.e. convergence. In an
analogous manner, a better understanding of bounds for

/ Fi(x +t,y)Fy(x,y + t)dtds
R2

would improve the understanding of the more challenging average (5), and
bounding this bilinear Hilbert transform is directly related to bounding the
‘triangular’ Hilbert transform defined in (3).

12.2 The L* estimate

Recall the statement of Theorem 1. Spending rescaling symmetries, we may
assume that || Fy||z4, ..., ||Fy4||za = 1, and our goal is to prove that |A| < 1.
The proof has a nice flavor, because the main tools are all very general, but
used in some novel clever ways:

(A) Time-Frequency Analysis, i.e. simultaneous decompositions of
functions to localize behaviour in space and frequency.

(B) Exploiting cancellation using a ‘telescoping identity’, which for
intuition’s sake behaves like a multilinear variant of an integration by
parts.

(C) Using monotonicity to replacing arbitrary functions with concrete
functions (e.g. Gaussians).

Let’s begin with Technique (A). Without loss of generality, assume supp(m)
is contained in a cone I' = {(&,n) : €] < 1.001|n|}, since symmetry and the
triangle inequality then give the general result. Next, perform a
time-frequency decomposition of the multiplier m, writing

m(En) = / / / (1, 0) B (162D (t)? dt 1 dua d,
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where O, Qtu, @/Z)\t,u, and 1, are concentrated on {& : |£| < 1/t},

{z ]z —tu| St}, {n:|n| ~1/t}, and {y : |y — v| <t} respectively, and ¢y,
and vy, are L' normalized. The squares in the exponent here are irrelevant
to the existence of the decomposition, but will be necessary to get a nice
convolution representation of the operator later on in equation (8). The
symbol properties of m imply that the magnitude of p(u,v) decays rapidly
as |u|, || = oco. The result will therefore follow if we can obtain bounds on

/ ol €)% ()2 (6, €., —n) dt/t d€ dny uniformly in u and v.

The values of u and v are not too important to the main ideas of the
problem, so we will suppress them in later notation, i.e. writing ¢; for ¢y,
and v, for ¢, ,. The function ¢; behaves like a Gaussian supported in a
neighborhood of u, and v, like a modulated Gaussian supported in a
neighborhood of v. In fact, in our calculations we will eventually use
Technique (C) to replace these functions with Gaussians.

Writing f~(t) = f(—t) for the reflection of a function f, we can write A as
a ‘twisted convolution operator’, i.e.

A= /At dt/t, . (8)
where
Ay = /F(ﬂc, Y&,y )oe(T = x)py (= 2§ — y)ob, (5 =)
Let us write A; as Awt’wt—thth— (F1, Fy, F3, Fy), where
Moo= [ Plo,.a' )ala - 2)b(z — 2)eli ~ y)d(7 - o).
The terms involving v are where the significant cancellation occurs in the

integral, with ¢ providing little cancellation, and so we start by applying
the triangle inequality, writing

ey ‘ [ Ble R el -v) dy]

\ [ B E e - ) i
|<Pt(95 - j)| |<,0t(j - 95/>| dz da’ dz dy.
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In the worst case, the two integrals in the absolute values of (9) in could be
equal to one another (e.g. if F} = F3, F» = F; and |v| < 1), which means
Cauchy-Schwartz in 3 is likely to be efficient, and expanding out the
squares that are obtained by Cauchy-Schwartz, we obtain

A <A (Fy, By, Fy, F1)'°A (F, Fy, Fy, F5)'2. (10)

b, el eels ey Yy i leel ey

Notice that expanding out the square allows us to remove the absolute
values we introduced via the triangle inequality. In fact, reversing this
calculation shows

Aa,a,b1,b2(F1a Fz,Fg,Fl) Z O fOl" all a,bl, bg lf bl,bg Z 0 (11)

By symmetry, we focus on bounding A%%M‘,'w;'(ﬂ, Fy, Fy, Fy), which now

calls for applying Technique (B) to exploit the oscillation of ;.
Lemma 3 of [DU]. If —t9;|p;|*> = |5:(t7)|? for i € {1,2}, then

[ Aevoran tft = BOPROF [ BRFF~ [ Ay e/t (12
R

The proof given in [DU]J is very accessible, so for purposes of brevity we
refer to reading that Lemma directly from the paper. This Lemma works
like integration by parts, in the sense that we ‘antidifferentiate’ o, at the
cost of 'differentiating’ p, negating the integral (except that these
derivatives ‘preserve L' normalization), and introducing the ‘boundary
term’ [ FyFyF3Fy. Abusing notation, when applying Lemma 3 we will refer
to pairs p; and o; in the theorem as ‘derivatives’ and ‘antiderivatives’ of one
another respectively. To given intuition, one example of a pair p and ¥
which satisfy

p(t,x) = o=@/ and o(t,x) = _(4\/7?33/752)672#(;5/@2’

Graphs of p and ¢ for various values of ¢ are given below, on the left and
right respectively.
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We wish to apply the Lemma to Ay, y, o110~ (F1, F2, F1, F3), except that
|o¢| does not equal |, |. But we can fix this by emplying (11), which also
implies the monotonicity of Agap, b, (F1, Fo, Fo, F1) with respect to b; and
by. This means that

Awtawtﬁot»@; (Fl, F2, FZ, Fl) 5 A¢t,¢t,¢t,¢t(F17 FQ, F27 Fl); (13)

where, roughly speaking, ®, is an L' normalized even function, a sum of
two Gaussians centered at u and —u and supported on a t neighborhood,
chosen to dominate ¢; and ¢, . Thus we have applied Technique (C). If we
let D®, denote the ‘derivative’ of ®;, and [v; the ‘antiderivative’ of 1,
then we obtain that

/Awt,wt,cbt,cbt dt/t = C/ FLF; — /Alwt,lwt,cht,cht(FhF2aF17F2) dt/t.
]R2

We can choose v, such that I, has support on a length O(t) interval. By
Cauchy-Schwartz, [ F2F3 <1, and so it suffices to show that

‘ / A run vn.00n. 00, (1, o, Fa, FY) dt/t‘ <1

But by differentiating ®;, we have juggled the oscillation from the first two
functions in A to the latter functions in A, i.e. I1); no longer necessary
oscillation, but D®, is now oscillating, and so we should mirror our
calculations in (10), applying Cauchy-Schwartz in Z instead of g, which
yields

Aty 1o, 00,00, (1, Fo, F1, Fy) < Ajrw,) 1w, p0,,00, (F1, F1, FY, F1)1/2
A\ 1w, 19,00, D, (F2, Fo, Fy, F2)1/2-
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By symmetry, we again focus on Ajrw,||rv,|,pe, 00, (F1, F1, F1, F1). We have
now succeeded at disentangling the four functions, while maintaining
cancellation in the integrals studied. We now want to do a final application
of the telescoping identity, which, by exploiting monotonicity, allows us to
replace [IW;| with ®;, and then the telescoping identity yields that

/A@t,ét,D@,D@(FLF1,F1,F1)dt/t
(14)
:/Ffl—/AD@,D@,@,@(E,F1,F1,F1)dt/t.

Symmetry gives Ape, po,o,.0,(F1, F1, F1, F1) = Ao, o, Do, po, (F1, F1, F1, Fy),
and so now, rearranging the equation (14), and using the bound [ F}' =1,
we conclude | [ Apa, pa,.a,0, (F1, F1, F1, Fy) di/t] < 1, completing the proof.

References

[BE] Frédéric Bernicot, Fiber-wise Calderon-Zygmund decomposition and
application to a bi-dimensional para-product llinois J. Math. 56 (2),
(2012), 415-422.

[DE| Ciprian Demeter, Pointwise convergence of the ergodic bilinear
Hilbert transform. Illinois J. Math. 51 (4) (2007), 1123 - 1158.

[DLTT] Ciprian Demeter, Michael Lacey, Terence Tao, Christoph Thiele,
Breaking the duality in the return times theorem Duke Math. J. 143
(2), (2008), 281-355.

[DT] Ciprian Demeter, Christoph Thiele, , On the two-dimensional
bilinear Hilbert transform, Amer. J. Math., 132 (1), (2010), 201-256.

[DU| Polona Durcik, An L* estimate for a singular entangled quadrilinear
form. Mathematical Research Letters, 22 (5), (2015), 1317-1332.

K] V. Kova¢, Boundedness of the twisted paraproduct. Rev. Mat. Iberoam.,
28 (4), (2012), 1143-1164.

JACOB DENSON AND JACOB FIEDLER, UNIVERSITY OF
WISCONSIN-MADISON
emails: jcdenson@wisc.edu and jbfiedler2@wisc.edu.

77



13 Pointwise characteristic factors for the
Wiener-Wintner double recurrence
theorem

After I. Assani, D. Duncan and R. Moore [ADM]

A summary written by Leon Duensing

Abstract

In [ADM] it is shown that for a standard ergodic system (X, X, i, @)
with f1, fo € L>°(X) the averages

N
23 A @) @), abe
n=1

converge as N — oo for almost every x € X, independently of ¢. In
the talk we prove that the Conze-Lesigne factor Zs is characteristic
for these averages.

13.1 Introducing the statements.

Fix a standard measure-preserving system (X, >, i, ¢), meaning that X is a
compact, metrizable topological space, ¥ is the borelean o-algebra of X
and ¢: X — X is a homeomorhpism preserving the measure p. Assume
further, that this system is ergodic and take two functions fi, fo € L>(X)
and a pair of integers a < b. Let T: L}(X) — LY(X): f +— f oy be the
Koopman-Operator (or pullback) of the transformation.

In this talk, we study weighted double averages of the form

1 N

Wiilfifo) = 5 DT fi- T f- ™, NeNteR (1)

n=1
Assani, Duncan and Moore proved the following.

Theorem 1 (Weighted double convergence). There exists a full measure
subset X' C X such that the sequence Wi +(f1, f2)(x, x) converges for each
xe X andt eR.
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The strategy of the proof goes by first finding a factor F C L?(X) of the
system, which is uniformly pointwise characteristic (or just characteristic)
for the averages W, meaning that there is a full measure subset X’ C X
such that

A}i_Igo}WN,t(fbfﬁ(I,%) — Wit (E(Ai]F), E(fol F)) (2, 2)| = 0
for all z € X’ and t € R. Note, that this property is satisfied if

limsup sup|W(f1, f2)(z, )| =0 forae z e X
N—oo teR

whenever either f; or f lie in F*.
A promising candidate for this is the Conze-Lesigne Factor Zs.

Definition 2 (Host-Kra seminorms and factors). For f € L*(X) define the
Host-Kra seminorms recursively by

N
1 —
2. 1 _ E n o
and for each k > 2

2k71

N
1 _
2k : n
= limsup — T f - 1.
I = s - SIS T
In particular, for every k > 0 we define the k-th Host-Kra factor as
Zy = {f € LX(X): || fllx+1 = 0}

In the talk we focus on proving, that Z, is characteristic.

Theorem 3 (Double Uniform Wiener-Wintner Theorem). If fi lies in Z3-,

then
1« |
W (z) = limsup sup|— Z T f1 () TP fo(2)e* ™| = 0 (2)
N—oo teR|N £

for almost every x € X.

Hence, in order to establish Theorem 1, it is sufficient to only consider
functions fi, fo € 2,.
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13.2 Z, is characteristic.

We sketch the proof of Theorem 3.
In order to show that ||IV||2 = 0 first, one uses the Van-der-Corput lemma
on the sequence

(17" fr(@) T o)1)
and Cauchy-Schwarz to deduce

1/2
W(z)” < H T (Zh}r\fn_)sip il Z ’Trm T ) (2 )'Tbn(fz'Tbth)(x)‘2>
(3)

with C' > 0 being a constant and H € N a free parameter. Applying
Van-der-Corput again on the resulting sequence of correlations

(17" (fo- T fi) (@) - T (fo - T fo)(2)])
for each h € N and setting
ng)f _fy TRy TR py TR £ G](f])C — TRy TVRfy TR £,

yields the estimate

lim sup— Z|T‘m fi-Tf)(x) - T (f, - Tbth)(x)‘2 < %—i—

N—oo
oK L (4)
—(K 1) Z(K +1-—k) li]r\fljup N Z T“"Gé{i(w) . Tb"Gﬁf,)c(x)
k=1 > n=1

for any K € N. By a theorem of Bourgain (see [Ru| Theorem 1), the limes
superior in (4) is actually a limit and we can use the mean ergodic theorem
w.r.t 7%~ to deduce

N

1
/X ]\}I_I}Cl)o N Z Ta”GS,)C(x) : Tb”Gf’,)f(x) dx

n=1

1 —a)n ~(2 5
/ lim Nz(;g; Te-0nG2 (1) du (5)

N—oo

~ [ 68w B(GRIT) @) do

Now a key step of the proof lies in representing the conditional expectation
E(-|Zy—,) as an integral operator.
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Lemma 4. Let T be the Koopman-operator of an ergodic system

(X, 3, 1, ), m € N and denote by T,,, C L*(X) the subspace of
T™-invariant functions. Then for every f € L*(X)

E(f|T0) / fy ) dy

with some kernel K,,, € L*(X x X).

Let S: L'(X x X) — L'(X x X) be the Koopman-Operator of the
transformation % x ¢’: X x X — X x X. Resuming at (5), we conclude

/X G)(2) - E(GP)Ty0) (z) da
_ /X /X G () - GOUy) - K (x,y) dudy (6)

= | Ko f1@fr (S"f®f-S"hef S H® h)dpo p.

X2

Now set H = K for the parameters in (3) and (4), so that when H tends to
infinity

/ W ()? ds < / (Koo 1 2)( 1)
X

H-1

h k k+h
I}—>00HH+12h;0H+1 V(S f1® f2- SPfL® f2- ST fo)(w,y) du @ p

=:F(z,y)

(7)

It is left to estimate the L>-Norm of F from (7) against the third Host-Kra
seminorm of f.

Lemma 5. Under the standing assumptions, there is a constant ¢ > 0 such
that the inequality

[ e s < cla e
X2
yields.

Since || f1]|s = 0, the claim follows by applying Hélder’s inequality.
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14 A new proof of Szemerédi’s theorem for
arithmetic progressions of length four

After W. T. Gowers [G]

A summary written by Kornélia Héra

Abstract

We give a new proof of Szemerédi’s theorem for arithmetic
progressions of length four, using exponential sums.

14.1 Introduction

The famous theorem of Szemerédi states that, for any positive integer k
and any real number 0 > 0, there exists /N such that every subset of
{1,2,..., N} of cardinality at least 6N contains an arithmetic progression
of length k. The first progress toward the result was obtained by Roth [R],
who proved it for the special case k = 3 using exponential sums. Szemerédi
[SZ] found a more combinatorial proof for the & = 3 case, which he then
generalized for all k. In a very influential paper, Furstenberg [F| used
techniques from ergodic theory to prove Szemerédi’s theorem and certain
extensions.

Despite the presence of a fruitful history of the problem, a natural question
remains to be asked: can Roth’s method of proof for the k = 3 case be
generalized? In this paper, this is carried our for the k = 4 case. The
motivation to generalize Roth’s method does not only stem from the fact
that the argument is natural and nice, but also from the fact that bounds
arising from the known proofs of Szemerédi’s theorem are very weak, and in
general for similar problems the use of exponential sums tend to give strong
bounds. The bound appearing in our theorem below is a significant
improvement over the previously known bounds.

Our theorem is the following.

Theorem 1. There is an absolute constant C with the following property.
If Ais a subset of {1,2,..., N} with cardinality 6N and

N > expexpexp((1/6)Y), then A contains an arithmetic progression of
length 4.

83



As an immediate corollary, we also obtain the following.

Corollary 2. There is an absolute constant ¢ with the following property.
If the set {1,2,..., N} is colored with at most (logloglog N)¢ colors, then
there is a monochromatic arithmetic progression of length 4.

The rough idea of the proof of Theorem 1 is the following. We use a notion
of pseudo randomness, called quadratic uniformity, and use the fact (which
has been proved earlier) that quadratically uniform sets with the
appropriately chosen parameters contain an arithmetic progression of length
4. Then we show that if a set fails to be quadratically uniform then it can
be restricted to a large arithmetic progression where its density increases
noticeably. Using the latter in an iterative fashion, the result will follow.

14.2 Preliminaries
14.2.1 Notation and definitions

Given a positive integer N, let Zy denote the group of integers mod N.
The cardinality of a finite set A is denoted by |A]|.

We write w = exp(27i/N). Given a function f : Zy — C, its Fourier
coefficients are defined as

= Z f(s)w™™ = Z f(s)exp(2mi(—rs)/N), r € Zy.

SELN SELN

Moreover, for f as above and k € Zy, we define

A(fik)(s) = f(s)f(s—k), s € Zn.

Let D denote the closed unit disk in C. Let f: Zy — D, and a > 0. We
say that f is quadratically a-uniform, if

ZZ|Zf (s —u)f(s —v)f(s —u—0)* <aN™

UELN VELN SELN

A special type of functions that we will use are balanced functions. Let
A C Zy with size 6 N. The balanced function of A is defined as

fA<s>={1_;5 o
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A set A is quadratically a-uniform, if its balanced function f, is.
Our last definition is the following. Let B C Zy and let ¢ : B — Zx be an
arbitrary function. We say that (a, b, c,d) € B* is an additive quadruple of

¢, if a+b=c+dand ¢(a) + ¢(b) = ¢(c) + &(d).

14.2.2 Theorems that have been proved previously

We take the following results for granted.

Theorem 3. /G, Corollary 8] If A C Zy is a quadratically n-uniform set
with |A] = SN where n < 2728512 gnd N > 200673, then A contains an
arithmetic progression of length four.

Theorem 4. /G, Proposition 9] Let « > 0, let f : Zy — D, let B C Zy,
and let ¢ : B — Zy be a function such that

STIA( RGP 2 aN®,

keB
Then ¢ has at least o* N3 additive quadruples.

Theorem 5. /G, Corollary 14] Let B C Zy with |B| = SN, and let
¢ B — Zn be a function with at least coN? additive quadruples. Then
there are constants v and n depending only on [ and cy, a mod-N
arithmetic progression P C Zy with |P| > N7 and a linear function

W P — Zy such that ¢(s) is defined and equal to 1(s) for at least n|P)|
values of s € P.

Moreover, there is an absolute constant K such that we can take v = cf

and 1 = exp(—(1/cy)¥).

14.3 Sketch of the proof of Theorem 1

Let N > expexpexp((1/6)°), A C Zy with |A| = §N, and suppose that A
does not contain an arithmetic progression of length 4.

By Theorem 3, A is not quadratically 2728 2-yniform. Let oo = 2
and let f denote the balanced function of A. An equivalent formulation of
the notion of quadratic uniformity (see |G, Lemma 2|) can be used to check
the following. Since A is not quadratically a-uniform, there is a set B C Zy

_2086112
)
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with |B| > aN/2 and a function ¢ : B — Zy such that
IA(f; k)Y (6(K))| > (a/2)/2N for every k € B. In particular,

DA RI(SR)* = (a/2)* N,

keB

By Theorem 4, the above implies that ¢ has at least (/2)® N3 additive
quadruples. Therefore, the conditions of Theorem 5 are satisfied. We derive

that there is an arithmetic progression P C Zy and a linear function
v : P — Zy such that

DA R((R)* = /2N BN P| = an/2N°|P|

We now use the following theorem.

Theorem 6. /G, Proposition 15] Let f be the balanced function of a set
A CZy. Let P C Zy be an arithmetic progression with |P| =T. Suppose
that there exist A and p such that

STIA( RSOk + p)|? > BN?T.

keP

Then there exist quadratic polynomials vy, ..., Yn_1 such that

>

S

> R = BNT/V2.

z€P+s

In fact, the following slightly different inequality is also proved. There exist
quadratic polynomials )y, ..., 1¥n_1 such that for each s,

Z f(z)w—¢s(z)

z€P+s

> (s)T/V2

for some y(s) with > _~(s) > BN.
Lastly, we will use the following statement.

Theorem 7. [G, Corollary 19] Let ¢ : Zn — Zn be a quadratic polynomial
and let r < N. There exists m < Cri=1/128 (where C' is an absolute
constant) and a partition Py, ..., P, of {0,1,...,r — 1} such that each P; is
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an arithmetic progression, the sizes of the P; differ by at most 1, and if
f:Zyn — D is any function such that

then
Z Zf(a:) > ar/2.

Using Theorem 7 for each of the above P + s and s as well as summing
over s, we obtain the following. We can partition each P + s into further
progressions Pjy, ..., Py, of cardinalities differing by at most 1 and all at
least ¢7"/'23_ such that

YYD f@)| = BNT/(2V2),

s j=1 |z€P;

where 3 = exp(—(1/)%) for some absolute constant K.

Using the definition of the balanced function f, one can then derive that
there exist s and j such that |Py;| > ¢8TY?°% and |AN Pyj| > (6 + c28)| Pyl-
We now repeat the argument, replacing A and {0,1,..., N — 1} by AN P,
and FPy;, and iterate this process. Since the density of the restriction of A
goes up by a multiplicative factor of at least (1 + ¢2f3), one can compute
that the process can be repeated at most 7 = exp((1/§)%) times. In the
replacement process, N is replaced by N?, where 6 = §%. Therefore, we get
that the theorem is proved if N?" is sufficiently large. By Theorem 3, we
need N > 2006-3. A small calculation shows that the theorem follows
since N > expexpexp((1/5)°).
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15 Quantitative bounds in the nonlinear Roth
theorem, part I

After S. Peluse and S. Prendiville [PP22]

A summary written by Guo-Dong Hong

Abstract

We present the quantitative bound for the nonlinear Roth
configuration, which is after Bourgain and Chang [BC17|, over Z in
[PP22]|. In part I, we will highlight an important technique: the
degree lowering method, to implement the density increment
argument.

15.1 Introduction

Bergelson and Leibman [BL96| studied the polynomial progression over Z
for sets with positive upper density, while it leaves the question of obtaining
the quantitative bound for such polynomial progression. Bourgain and
Chang [BC17] studied one specific polynomial progression, or nonlinear
Roth configuration, over the finite field. However, it seems their method
cannot be easily generalized to the integer setting.

The goal in this paper [PP22] is to obtain the first quantitative bound for
this specific configuration over Z:

Theorem 1. If A C [N] does not contain the following nonlinear Roth
configuration

z, r+y, r+y° (y#0),
then |A| < N(loglogN)=¢ for some constant ¢ > 0.

The approach in [PP22] is the density increment argument. However, there
are certain difficulties to be overcome when one considers the nonlinear
configuration over Z, and we will discuss more in the subsequent sections.
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15.2 Density increment argument

The main idea in the density argument is that if a subset A C [N] is large,
then one can find a sub-progression P C [N] in which A has an increased
density. After the proper affine transformation, we can run the argument
again if P is still large. However, this process can only proceed within a
finite time since the density cannot exceed 1. Therefore, this means up to a
certain step, the subset we are considering is no longer large, and this gives
us the information on the size of the original set A.

Lemma 2. If A C [N] has the density at least § and does not contain the
following general nonlinear Roth configuration

z, r+y, T+qy® (y#0),
then at least one of the following situations happens:
o N < ¢?67 00

o there exists ¢ < 67 °W and N’ > §°Mg=32NY2 such that A has the
increased density § + Q(6°M) when restricted in the progression
{a +qq - [N']} for some a € [N].

Once we have this density increment lemma, the main theorem then follows

immediately.

15.3 Inverse theorem for nonlinear Roth

In order to obtain the needed density increment lemma, we need the
following strong inverse theorem for the nonlinear Roth configuration:

Theorem 3. Let {f; : Z — C}2, be 1-bounded functions with
supp(fi) C [N]. If

S @)+ y) fale+q?)| 26> ) @) (@ +y) v (e +qy”),
z€Z yeN z€Z yeN

then at least one of the following situations happens:

o N < ¢?67 00
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o there exists ¢ < 6 9N and N’ > §°Wq=3/2NV?2 such that for any
1=0,1,2 we have

2.

TEZ

> filz+dqy)| > CUNN

yeN/

Motivated by Gowers’s work in [G98] and [G01], Prendiville in [P17]
showed that the following two ingredients are enough to deduce the density
increment lemma:

e Local von Neumann theorem
e Modified Gowers’s local inverse theorem

The first ingredient is how to use Gowers norm to control the counting
operator, and Prendiville was able to use ideas from [BL96| to control the
homogeneous polynomial progressions, even for the nonlinear Roth
configuration. However, the inverse theorem for Gowers norm is only able
to deal with the homogeneous polynomial progressions case. Therefore, the
degree lowering method is developed to substitute the use of the inverse
theorem for higher-order Gowers norm.

When we use the degree lowering method, some difficulties occur in
adapting Prendiville’s local von Neumann theorem. Hence, we need another
variant of this local von Neumann theorem, which will be discussed more in
part II.

For the sake of completeness, we include the result below:

Theorem 4. Let {f; : Z — C}2, be 1-bounded functions with
supp(fi) C [N]. If

SN @ file+ ) fole+qr®)| = 0D Iw(@) (@ +y) v+ qy°)
z€Z yeN z€Z yeN
then at least one of the following situations happens:

e N<Kyq

5
o Zue[q] HF’ U®(u+q-Z) > 50(1) Zue[q} Hl[N]|‘2U5(u+qZ)
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15.4 Degree lowering method

Degree lowering method was originated from [P19] in order to study the
polynomial progression in the finite field. As we mentioned in the previous
section, degree lowering method can be regarded as a substitution for the
inverse theorem of higher-order Gowers’s norm.

To be more precise, one can control the U*-Gowers norm by the
U*~1-Gowers norm with the unerstanding of the two-term progression and
the only inverse theorem used in this approach is the U2-inverse theorem,
which is comparatively easier to understand.

However, unlike the finite field case in [P17], in order to generalize the
degree lowering method to the integer setting, we had to pass to the "dual"
formulation with the help of Cauchy-Schwarz inequality.

Lemma 5. Let {f; : Z — C}2_, be 1-bounded functions with
supp(f;) C [N]. Define the dual function

F(x) = Eyepn fo(z — q’) @ +y — qv?),

where M = \/N/q.

If for s > 3, we have

Z”F 2USS(u—&-qZ) = 0 ZHl[N]

u€(q] u€lq]

28
Us(u+q-Z)»

then at least one of the following situations happens:

o N <, ¢?6-9M)

i Zue[q]HF

Repeating this process, with the control for the U®-Gowers norm from the

variant of the local von Neumann theorem, will give us the control for the

U'-Gowers norm in the end, and this is the desired inverse theorem for the
nonlinear Roth configuration.

s—1

251 2
Us—1(u+q-Z)’

Os
Ui turqz) s 07 Lergllm
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16 Norm-variation of ergodic averages with
respect to two commuting transformations

After P. Durcik, V. Kovaé, K.A. Skreb, and C. Thiele[1]

A summary written by Martin Hsu, Fred Lin

Abstract

We present a quantitative result on the norm convergence of
double ergodic averages with respect to two commuting
transformations. In [1], the authors first reduce the estimate of a
discrete model to the estimate of a continuous model. Then the
estimate of the continuous model can be done with the aid of the
twisted technology, a method which first developed to estimate some
multilinear singular integrals with entangled structure.

16.1 Introduction

Let (X, F,u) be a o-finite measure space and let S, T : X — X, be two
commuting measure-preserving transformations. For two measurable
functions f, g on X and a positive integer n we define the double ergodic
average:

Ma(f0)(a) =+ Y F(S'R)g(T's) 0

In [2], Conze and Lesigne show the L? convergence of the sequence of
double ergodic averages {M,(f,g)},cy on a probability space (X, F, u) for
functions f,g € L>°(X). The main result in this paper [1] is to quantify
such convergence through a norm-variation estimate on {M,(f, g)},cn-

Theorem 1. For every choice of increasing sequence
ng <mng <---<n; <---, we have the following bound

Z HMnJ (fa g) - Mnj—l (f7 g)”iﬂ(){) 5 ||f||i4(X) Hg”i‘l(){) (2)
j=1

with the implicit constant independent of m and the choice of the sequence.
The proof of Theorem 1. can be summarized as follow:

e Three main reduction steps to a continuous model

e Two key estimates on the continuous model via twisted technology
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16.2 Reduction to Continuous Model

The series of reduction steps go through several models, including the
following: for F',G € (*(Z?), F,G € L* (R?), and ¢ € L' (R), we define

e Discrete Bilinear Average:
e e~ 1t
An(F,G) —E;F (k+i,0) G (k1 +1) (3)
e Continuous Bilinear ¢-Average:
A7 (F,G) (x,y) :== /RF (z+59)Gry+s)t ot s)ds  (4)

We provide a sketch of the reduction process among the four different
models:

M, (f,9) % A, (F.G) B afer (7,6) % 47 (F,G) with p € S(R). (5)

e Step I: We reinterpret the action of T',.S on a fixed reference point
x € X as two independent shifts on the integer grid Z? by considering
the following two double sequences:

Fy (k1) = f (T*S'z) and G, (k,1) ~ g (T*S'z) . (6)
This allows us to pass the norm-variation estimate on {M, (f,¢g)}
to the corresponding estimate on {/Tn <13z, éx>}

neN

neN
e Step II: We perform two parallel changes of variables:

k+i+n—1

ETL(ﬁ,@)(k:,l):% N FG-1L0)G (ki k)
i=k+1 7
]l[o b 1 r+y+t ( )
AL (F.G) w) =y [ Fls=y)G s = )ds
T4y

The two similar formulations suggest that we set:

F(s—y,y) ZF (@ = L0 Liirnyx a1y (s, )

i,lEZ

(x,8 — ) Z G k) L i1 x ikt 1) (5, )

i,kEZL

(8)
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to derive the following approximation.

A}L[OJ) (F7 G) (xay) ~ Z 2{” (ﬁv é) (k’ l) : ]l[k,k+1)><[l,l+1)(xv y) (9)

klEZ

This allows us to pass the norm-variation estimate on

{An (F , G)} to the corresponding estimate on
neN

{arerra)}

teRy

e Step III: This step causes all the technicality regarding the decay
control on ¢. In short, we perform a Littlewood-Paley
decomposition on 1y to separate information with different
regularity control:

]1[071) = ]1[0’1) * X + Z ]1[0’1) * 02k. (10)
k<0

With careful book-keeping on the dependency of the norm-variation
of {A7(F,G)},cp, on ¢ =1jg1) * x and ¢ = Ljg 1) * O, we derive
bounds that are summable over k. Via triangle inequality, we have

the desired estimate on the norm-variation of {A;L OU(F, G’)} and
teRy

thus, complete the reduction step.
16.3 Key Estimates: Long and Short Variation

We aim to derive the analogous statement of Theorem 1. for
{Af(F7 G)}t€R+:

Theorem 2. For a fived Schwartz function ¢ € S (R) and an arbitrary
chosen increasing sequence to < t; < --- <t; <---in Ry, we have

2

L2(R2

>[4z w e —as, RO, S Il Gl ()
j=1 s

with the implicit constant independent of m and the choice of the sequence
but dependent on ¢ in a controlled manner.
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A standard procedure for norm-variation estimates is to divide the analysis
into two parts: Long variation and Short variation. Roughly speaking,
one can decompose the sequence into dyadic segments:

2k‘i71<“’<t]’71<tj<"'§2ki- (12)

e Long variation controls the long jumps across dyadic segments by
measuring the jumps in the lacunary sequence {2’“}20:

Lemma 3. For a fized Schwartz function ¢ € S (R) and an arbitrary
chosen increasing sequence ko < ky < --- < k; < -+ in Z, we have

2

S|4z w6 - a5, (.6

2 2
L2(R2) § 1N s eey G pagey  (13)

with the implicit constant independent of m and the choice of the
sequence but dependent on ¢ in a controlled manner.

e Short variation controls the overall effect of the short jumps within
the dyadic segments by summing over all norm-variation estimates
within the dyadic segments:

Lemma 4. For a fized Schwartz function ¢ € S (R) and a collection
of increasing sequence

_ k k k
bt <<t <t <t < for ke, (14)

we have the following estimate:

with the implicit constant independent of m and the choice of the
sequence but dependent on ¢ in a controlled manner.

A%, (F,G) — A%, (F,G)

(k)
t

2 2
S IF i@y 1GlLa@e) (15)
©p

it € (k.j) L2(R?)

The proof of the above-mentioned estimates mainly relies on the Twisted
Technology. The rest of the technicality arises from all the bookkeeping
on the dependency of the estimates on the Schwartz function .
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17 Nonconventional ergodic averages and
nilmanifolds

After B. Host and B. Kra [HK]

A summary written by Henrik Kreidler

Abstract

We discuss a proof for the convergence of nonconventional ergodic
averages via a structure theorem for certain factors of a
measure-preserving system.

Motivated by Furstenberg’s seminal work [F| on an ergodic theoretic
approach to Szemerédi’s theorem on arithmetic progressions, the authors
study, for a measure-preserving automorphism ¢x: X — X of a probability
space X and k£ € N, the asymptotic behavior of the nonconventional ergodic
averages

1 N-1
n kn
IS SN
n=0

for fi,..., fr € L®(X) as N — oo, where T, f = f o px for f € L™(X).
To prove convergence of these means for every measure-preserving system
X = (X, px), they use the classical idea to orthogonally decompose L?(X)
into a structured part, which can be identified with the L2-space of a
well-understood factor Zj of X, and a stable part, for which an application
of the so-called van der Corput inequality (see [HK, Appendix D|) shows
convergence to zero. In this case, Zj is called a characteristic factor.
Earlier results (see, e.g., [L]) show convergence for a nilsystem X, i.e., X is
given as the homogeneuous space X = G/H of a nilpotent Lie group G
modulo a discrete cocompact subgroup H with the (normalized) Haar
measure, and px: G/H — G/H, ©H — axH is the rotation by a fixed
element a € GG. Using ergodic decomposition and approximation, it is
therefore enough to show that every ergodic measure-preserving system X
admits a characteristic factor Z; which is an inverse limit of nilsystems.

In their article [HK] (and their book [HK2]), Host and Kra construct such
factors (these even govern the asymptotic behavior of other ergodic
averages).
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To explain their construction, start from a dynamical system X and
consider its invariant factor Xi,y, i.e., the largest factor® of X on which the
dynamics are trivial. We then form the relatively independent joining®
XM= X xx, = X with respect to the invariant factor. One can then apply
the same construction to the system X!, By iterating, we arrive at the
Host-Kra cubes

Xk = x k1] X g [k=1] Xk for ke N and X :=X.
The coordinates of its elements are indexed over the set {0, 1}*. Note that
the construction is functorial: Every factor map 7: X — Y of
measure-preserving systems gives rise to a factor map 7l¥: X — Y,
A short definition of the kth Host-Kra factor Z; of an ergodic system X
for k € Ny is now the following: It is the smallest factor Y of X for which
the factor map 7% is relatively ergodic meaning that on the level of
invariant factors 7" defines an isomorphism from (X)), to (Y*);,,.”
Note that, by ergodicity of X, the factor Z, is trivial.
A further short, but equivalent definition uses the Host-Kra-seminorms,
inspired by seminorms introduced earlier by Gowers in |G]: For f € L*(X)
we form the product f* = ccfo1yr Cl(f) € L=(XM) where C(f) = f

and |e] = S2%_ ¢ for € € {0,1}*. We then set

i=1

oF
b= [ 0
X [¥]

where p*! denotes the measure of the kth cube X*. One can check that
Il fllx > 0 holds precisely when the conditional expectation Ez, . f to the
factor Zg_, is non-zero (see [HK, Lemma 4.3]).

The Host-Kra factors form an increasing sequence

Zo(—Z1<—Z2(—Z3<—"'<—X,

see [HK, Corollary 4.4], and the system X is said to have order k if it
agrees with its kth Host-Kra factor Zg. The first major structural result

5Strictly speaking this is only determined up to isomorphism, but there is a canonical
choice.

50ne can think of this as the measure-theoretic replacement for a fiber product.

"It is a priori not clear that such a factor exists. In fact, Host and Kra use a different
definition for their factors which is equivalent by [HK, Proposition 4.7].

100



now provides a representation of a factor from this sequence with respect to
its predecessor (see |[HK, Subsection 2.1 and remarks after Definition 4.1]
for k =1 and [HK, Proposition 6.3| for k > 2).

Proposition 1. For every k € N the factor map Zy, — Zy_1 is an abelian
group extension: There 1s a compact abelian group U and a measurable map
0: Z_1 — U such that Zy is a skew-product

Zi1 ¥, U= (Zx_1 x U,z _, x0) where

(@Zk—l X Q)(Z7u) = ((IDZI@—l(Z)? Q(Z)u) for (Z’u) € Zp-1 xU.

In particular, Z; is given by a rotation of a compact abelian group. Since
every such group can be writen as a projective limit of factors which are
compact abelian Lie groups, Z; is an inductive limit of nilsystems of 1-step
nilpotent Lie groups.

The idea is now to prove the structure theorem inductively where the order
of the involved nilpotent Lie groups is allowed to grow by one in each step.
To do so, we have to make further progress on the structure of the factor
maps Z, — Z_1 between consecutive factors. For this we need some
cohomological considerations.

For a measure-preserving system X and a compact abelian group U we
write C(X, U) for the equivalence classes of measurable maps o: X — U
(with two such maps being equivalent if they agree almost everywhere).
The elements p € C(X, U) are called cocycles. Given p € C(X,U) we can
form the associated coboundary 9o := (9o px) -0 ! € C(X,U) and we
write JC(X, U) for the subgroup of C(X, U) of all coboundaries arising in
this way. The quotient group

HY(X,U) = C(X, U)/dC(X, U)

is the first cohomology group of X with respect to the group U.® Two
cocycles o1, 09: X — U with [g1] = [02] in HY(X, U) define isomorphic
skew-products X x,, U and X x,, U.

From a cocycle ¢ € C(X, U) we can construct a cocycle Ap € C(X!!, U) via
Ao(z, 21) = o(z0)o(x1) ™" for (w9, 71) € X1, We can apply the same
procedure to cocycles of X[¥ for k € Ny and then obtain a chain of group

8We remark that Host and Kra in [HK] do not explicitly introduce the cohomology
group, but it will be convenient to do so in this summary. Also, in the article, abelian
groups are usally written additively, whereas here multiplicative notation is used.
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homomorphisms
H'(X,U) - H(XY U) - BY(XP U) = HY(XB U) — - -

For k£ € N the composition of the first k& of these maps is explicitly given by

AP HY(X,U) — H1<XW, U), [0~ H (oo pre)(*l)le‘

e€{0,1}F

where pr,_: X* — X is the projection onto the component of e € {0,1}*. A
cocycle p € C(X, U) which is trivialized by this homomorphism, i.e.,

AFlg] = [1], is of type k (see [HK, Definition 7.1]). The following is a
consequence of [HK, Proposition 6.4].

Proposition 2. For every k € N the factor map Zy — Zy_1 is an abelian
group extension by a cocycle of type k.

Proposition 2 is a crucial observation for the structure theorem representing
the Host-Kra factors Z;. We will sketch the proof of this representation
theorem in the case k = 2 which is also discussed in [HK4, Section 4.5], see
also [JST]| (the result for a general k£ € N requires much more work, but its
proof follows similar steps). The idea is to first approximate a system of
order 2 by the following particularly nice ones (see [HK, Definition 8.5]).

Definition 3. A system X of type 2 is toral if Zy is a compact abelian Lie
group and Z s a group extension of Zy by a torus and a cocycle of type 2.

To obtain the desired approximation, one first proves the following
additional result on the structure group (see [HK4, Corollary 8.4]).

Proposition 4. The factor map Zo — 71 is an extension by a connected
compact abelian group and a cocycle of type 2.

As a consequence the extending group U can be represented as a projective
limit of tori. However, in order to obtain toral systems, we also have to find
an approximation for the Kronecker factor Z;. This is done via [HK,
Lemma 8.3|:

Lemma 5. Let Z be an ergodic rotation on a compact abelian group, U a

torus and o € C(Z,U) a cocycle of type 2. Then there is a closed subgroup
Zo C Z such that Z/Zy is a Lie group, and a cocycle o € C(Z/Zo,U) such
that [ o pry, 5] = [o] in HY(Z,U).
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With Proposition 4 and Lemma 5 one readily obtains the following
approximation result (see |[HK, Proposition 8.6]).

Proposition 6. Fvery system of order 2 is an inverse limit of toral
systems of order 2.

The proof of Lemma 5 rests on a number of cohomological considerations.
We highlight one of particular interest (see [HK, Lemma 8.1]). Observe
here that for an ergodic rotation Z on a compact abelian group every s € Z
induces a map

Ly: H(Z,U) - H(Z,U), o] = [Lso]
where Lso(x) = o(sz) for x € Z and ¢ € C(Z,U).

Proposition 7 (Conze-Lesigne equation). Consider an ergodic rotation Z
on a compact abelian group, a torus U and a cocycle o: Z — U of type 2.
Then for every s € Z there is ¢ € U with Ls[o] = [co].

The equation had already been studied earlier in work of Conze and
Lesigne (see [CL|) as well as Furstenberg and Weiss (see [FW]). It
motivates the following definition of a group associated with a toral system.

Definition 8. For a toral system Z x, U we let G be the group of all
skew-rotations s x 9: Z x U — Z x U with Lso = co - 09 for some c € U

Thus, the group consists of those skew-rotations which yield coboundaries
“implementing the Conze-Lesigne equation”. We now represent toral
systems (see |[HK, Lemma 8.8] and [HK3], as well as [JST, Section 4.2|).

Proposition 9. For a toral system X the group G, equipped with the
topology of convergence in probability, is a 2-step nilpotent Lie group.
Moreover, X is isomorphic to a nilsystem induced by G.

The combination of Propositions 6 and 9 finally yields the structure
theorem for k = 2.

Theorem 10. Every ergodic system of order 2 is an inverse limit of 2-step
nilsystems.

9For general k € N the group is constructed more abstractly by using transformations
of X which give rise to measure-preserving transformations of the cube X/ respecting
the invariant factor (X[*);,,, see [HK, Section 5].
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18 Quantitative bounds in the polynomial
Szemerédi theorem: the homogeneous case

After S. Prendiville [5]

A summary written by Borys Kuca

Abstract

We give an exposition of the result of Prendiville that all subsets
of {1,..., N} lacking ¢-term arithmetic progressions with differences
of the form n* have at most O(N/(loglog N)¢) elements.

18.1 Introduction

The celebrated theorem of Szemerédi on arithmetic progressions has
inspired numerous far-reaching generalisations. Among its most famous
extensions is the following result of Bergelson and Leibman.

Theorem 1 (Polynomial Szemerédi theorem [1]). Let py,...,pe € Z[n] be
polynomials with zero constant terms. Then each subset of N of positive
upper density contains a progression

z, x+pi(n), ..., x+p(n) for some n #0.

After Gowers gave his quantitative proof of the Szemerédi theorem [3], the
question of quantifying Theorem 1 has come onto the agenda. For a long
time, no bounds were known for even the simplest polynomial
configurations, as the only existing proofs of Theorem 1 relied on infinitary
methods of ergodic theory. The first such bounds were obtained by
Prendiville about 15 years after Gowers, and the exposition of his result is
the primary goal of this chapter.

Theorem 2 (Bounds for arithmetic progressions with higher power
differences [5]). Let k,¢ € N. There exist C,c > 0 such that for each
sufficiently large N € N, every subset of [N] :={1,..., N} with at least
CN/(loglog N)¢ elements contains

z, x+n" .., x+m" with n#0. (1)
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Prendiville’s argument broadly follows Gowers’ strategy with several
adjustments necessary for the polynomial case. As such, it comprises three
steps that consist in proving the following three statements:

1. (Gowers norm control) For all 1-bounded functions fy,..., fr: Z — C
supported on [N], we have

> D fol@)file+n)- fola + tn) <<mjin||fj||Uf[N]

z€Z nE€[N]
(here, ||-||¢ is the unnormalised degree ¢ Gowers norm,
| fllecay = |If - Lallpe is its localisation to a set A, and < is the

Vmogradov notation?);

2. (Local inverse theorem for Gowers norms) If f : Z — C is 1-bounded
and supported on [N], and || f||yepy > SN@+D/2 then one can
partition [N] into arithmetic progressions P; of average length at least
¢6° N such that

> ¢0¢N.

2.

7

> fl)

xEP;

3. (Density increment) Let 6 > 0 and N > expexp(C§~¢). If A C [N] of
size |A| > 0N contains no (¢ + 1)-term arithmetic progression with
n # 0, then there exists an arithmetic progression P of length
|P| > NoP(=C0%) quch that

|AN P|
1P|

> 6+ ¢,

i.e. A has an increased density on P.

Letting M, = |P| > No®(1/e) P — fgn+r : ne [M]} and

By ={n € [M]: ¢an+r € A}, the density increment allows Gowers to
pass to a set By C [M;] of increased density |B;|/M; > & + ¢§¢. Tterating
this step d times and noting that density cannot exceed 1, Gowers

19Meaning that f < g if there exists C' > 0 such that |f(z)| < C|g(x)| for sufficiently
large x.
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eventually arrives at a set By C [M,] whose density on [M,] is so close to 1
that it has to contain an (¢ 4 1)-term arithmetic progression, as the density
increment step can no longer be performed. Since the set By obtained this
way takes the form By = {n € [My] : qqn + rq € A} for some gy, 74, and the
family of (¢ + 1)-term arithmetic progressions is invariant under the affine
maps n — qqn + rq, it follows that A contains an (¢ + 1)-term arithmetic
progression as well. The bound on the size of A follows from carefully
estimating the size of | P,| from below.

Prendiville’s modifications of steps (ii) and (iii) are straightforward, so we
briefly discuss them first before moving to his more involved adaptation of
step (i). By a Diophantine approximation argument, Prendiville ensures
that the common differences of the progressions appearing in the local
inverse theorem for Gowers norm can be taken to be k-th powers, and so
can be the common difference of the progression obtained in the density
increment step. Thus, the set B, obtained in the last iteration of density
increment takes the form By = {n € [My] : ¢%n + rqy € A} for some qq, rq,
and if (1) is the arithmetic progression with k-th power difference lying
inside By, then

4 +ra; qir+ra+ (qan)®, -, ggr +ra+ €(gan)"

is the arithmetic progression with k-th power difference inside A.
Prendiville’s adaptation of step (i) is the following Gowers norm estimate.

Theorem 3. Let k, ¢ € N. There exist s,d € N and C > 0 such that for
every 6 > 0, integer N > 6~ and 1-bounded functions fo, ..., fo:7Z — C
supported on [N], the lower bound

SN h@filetnt) s fila+ nF)| > SN (2)

€L ng[Nl/k}
implies

S Nfillos @y > 0N M2

TEL
for every 7 € {0,..., 0} and some 0° N'/* < M <« §5~CNV*,

The crucial difference between Theorem 3 and the analogous result of
Gowers is that Prendiville has only managed to control the counting
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operator for (1) by an average of Gowers norms localised to intervals of size
~ Nl/k

The proof of Theorem 3 follows from a variant of the classical PET
induction argument which is the main tool used to control the counting
operators of polynomial progressions by Gowers norms and relies on the
following standard lemma of van der Corput.

Lemma 4 (van der Corput lemma [4, Lemma 4.1|). Let f : Z — C be
1-bounded. Then for any H, M € N, we have

2

% Z}f(n) < MJ\;H S un(h) Y fm)f(n+h),

ne[M heZ ne[MN([M]—-h)

where pg(h) = (1 - %)+ and [M] —h:={m —h: m e [M]}.
The PET argument consists of a number of steps in which one replaces the
counting operator for the original polynomial progression by the
progression which is somehow “less complex”. Each of these steps involves
an application of the Cauchy-Schwarz inequality and Lemma 4 followed by
a change of variables. Repeating this procedure finitely many times'!, one
eventually arrives at a counting operator for a linear configuration that can
be directly controlled using Gowers’ estimates. We illustrate the technically
involved proof of Theorem 3 in the simple case k = ¢ = 2. Starting with (2)
and letting M = | N'/2], we apply the Cauchy-Schwarz inequality and
Lemma 4 to conclude that

Z’f0($)|2'Z<M+H> Z porr (ha) Z fila+n®) f(x + (n+ h1)?)

=/ z€Z h1€Z ne[M]N([M]—h)
fol@ +2n2) folx + 2(n + hy)2) > 6°N?

for some H € N to be chosen later. The 1-boundedness of f, and the fact
that it is supported on [N] imply Y, .| fo(x)]* < N. For the second term,
we shift 2+ 2 — n?, and assume H < §2N'/2/8 so that the condition

U The number of steps, and hence also the degree of the Gowers norm obtained this
way, can be bounded purely in terms of the length and degree of the original polynomial
progression.
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n € [M] N ([M] — h) can be replaced by n € [M], obtaining

ZZ,UH (h1) Z fi(z) fi(z + 2hyn + i)

T€EZ h1€Z

folx +n?) fo(x + n2 4 dhyn + 2h2) > 6> N3/2 /4.

We repeat the same procedure (the Cauchy-Schwarz inequality, Lemma 4
and the change of variables z — x — 2hyn) to remove the first f;, getting

ST mulhaha) > file + B fiw + 2hhy + 13) fo(x + n® — 2hyn)

TEZ h1,h2€Z nE[M]
fo(x + (n+ h2)? — 2hyn) fo(x + n? + 2hin + 2h32)
fo(z + (n+ ho)? + 2hin + 4hyhy + 2h2) > §*N3/? /64

as long as H < §*N'/2/128 (here, g (hi, ... hs) = pwu(hy) - pw(hs)). Since
f1’s do not depend on n, we remove them through one more iteration of the
argument, obtaining

Z HH hl,hg,hg Z Z H feh ZL’—I—Q ) )258N3/2/214

hi,h2,h3€Z z€Z ne[M] e€{0,1}3

for various functions f.,(x) = C fo(x + p.(h)) with p, € Z[h], where Cz =%
and |e¢| = €; 4+ - - - + €;. The polynomials appearing in this new expression
are linear in n, and an argument similar to Gowers’ from [3] gives the
claimed estimate

ZHf?HW(H[M’D > 5CNM/8/27 for some M' > § N2,

TEZ
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19 Norm convergence of commutative ergodic
averages

After T. Tao [T1]

A summary written by James Leng

Abstract

We give a brief summary of Tao’s proof of norm convergence of
commutative ergodic averages.

19.1 Introduction

Theorem 1 (Tao). Let (X, i, B) be a probability space and let
Ti,...,T; : X — X be measure preserving. Then for fi,..., fo € L=(X),

lim EpenT7 fi--- 1) fe
N—o0
CONVETGES.

For the purposes of this note, we shall work on the first non-classical case of
case of £ = 2 in [T1], as the argument for that nearly captures the entire
argument. There is a striking similarity between the argument given in [A],
which will also be presented in the summer school, and the argument in
[T1], and this is no coincidence. According to Tao (private communication),
[A] is very much inspired by [T1], which is inspired by more combinatorial
contexts such as cut norms and hypergraph regularity. Tao’s proof is a
“finitary" proof, with many quantifiers whereas Austin’s proof is infinitary,
which has the advantage of removing many of the quantifiers. One striking
thing about both proofs [A, T1]| is that they avoid the heavy machinary of
nilsystems as previous works of [HK, Z| did. This illustrates that merely
proving norm convergence is much weaker than having a good
understanding of the structure of measure preserving systems as the deep
works of [HK, Z] try to do.

On the way to proving 1, Tao proves a finitary version. In order to state
the theorem, we need some terminology.
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Definition 2. Let ¢, P > 1, and let eq, ..., ey be the standard generators for
Z%. For any functions fi,..., fo: Z% — R, we define

14

AN(frs -5 fo) () = Epepa H fi(z +en).

=1

For the case we will be considering, we have

An(f1, f2) (@) = Epevy f1( + ein) fo(x + ean).

Theorem 3. Let { > 1 and F' : N — N any function, and ¢ > 0. Then
there exists an integer M* > 0 with the following property: if P > 1 and
fi, oy fo: 2% — [=1,1] functions, then there exists an integer

1 < M < M* such that we have the “L*-metastability”

HAN(flw“afE)_AN’<f17"'7fZ)HL2(Z§D) <e
forall M < N,N' < F(M).

Via a simple argument, one can deduce Theorem 1 from Theorem 3.

19.2 Measurability

In the proof, it is convenient to work with a measure space X = (X, X, p).
Given a finite index set I and for each i € I, measure spaces
Y, = (Y;, Vi, v;), we define the measure space X x Y as the space

XxHYi

iel

equipped with the obvious (I-fold) tensor product sigma algebra and
(I-fold) tensor product measure. An integral notion of the proof is the
following;:

Definition 4. Given a measurable function g :Y; x X — [—1,1], we say g
is a primitive function of complexity at most d if g is V. ® X-measurable,
or simply e-measurable for some e C I is of size d. We say that g is of
complezity at most (J,d) if it can be expressed as a sum of at most J many
primitive functions of complexity at most d.
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The proof of Theorem 3 will involve an induction on ¢ and on the
complexity of a function.

Given an additive group (G,+), let G' =[],.; G and given v € G', we
define ¥(v) := > _,.; v;. Recall our setup

An(f1, f2)(v1,v2) = Enepny f1(v1r + n, v2) fa(vr, v2 + )

= Ene[N]fl(—Uz - (n — U1 — U2),U2)f2(?]17 —U1 — (n — U1 = Uz))-

We see here that f; depends only on vy and —v; — vy — n and fy depends
only on v; and —v; — v — n. We define the {2,3} and {1, 3} measurable
functions

9{2,3}(111, Uz,Us) = fl(—Uz - 03702)
9{1,3}(7)1,7)27@3) = f2(U1, i U3)-
Thus
AN(fla f2> = Ene[N]g{1,3}g{2,3}(Ula Vg, —=VU1 — VU2 — n)

Thus, Ay is an average of a product of a {2,3} and a {1, 3}-measurable
function along {(v1, v, v3) : v3 € —v; — ve — [N]}. For the sake of this
exposition, the definition above is sufficient, but for the general case, we
give the following definition:

Definition 5. We define the diagonally averaged projection
Anf(v,2) = Enepy) f((v, =5(v) = n), 2).

.....

where

J#i
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Remark 6. According to [T1], these operations are morally equivalent to
the hypergraph approaches of Szemerédi’s theorem.

Under this notation, [T1]| proves the following theorem:

Theorem 7. Let 1 <d</{, M, >1, J >1 be integers, F : N = N a
function, and € > 0 real. Then there exists an integer M* > M, with the
following property: if P> 1 and (X, X, p) is a probability space, and
g:Z" x X — R is an elementary function of complexity at most (d, J),
then there exists an integer M, < M < M* such that

[ANn(g) — AN’(gl)HL2(Z§j1><X) <e

whenever M < N, N' < F(N).

19.3 A Sketch of the proof of Theorem 7

We shall prove this via induction on d, J, and ¢. Since we are only treating
the case of ¢ = 2, we will make some notational simplifications from [T1].

19.3.1 Base case: d=1

In the base case of d = 1, we make reductions to / =1, M, =1, and J = 1.
Since g has complexity (1,.J), we may write ¢ = g1 + - - - + g; where g; are
basic. We now define X = X x {1,...,J} and §:Z3 x X — [-1,1] by
g(’l}, ({E, k)) = gk(vv x) Thus,

I1AN(9) = AN 12 x2,0) = J2 | An(g) — Anr(9)|l L2 xxzs)-

Hence, we can reduce to the J = 1 case since g is primitive of complexity d.
Thus, we may write g = g{1y9¢239¢3} Where gg;y is {i} x X-measurable, it
follows that we may discard gy for i # 3, since they don’t change under
any terms of the averaging operator Ay. Thus, we may just focus on a
single function g;sy. Since

AN(Q{ZS})(“M VU2, U3, CL‘) = Ene[N]9{3}(—U1 — U2 — VU3 —MN, x)

which only depends on vy + v9 + v3, we may quotient by vy + v9 + v3 = 0 so
that g3 only depends on Zp. We have thus reduced to the case of £ = 1.
Thus it remains to prove the following:
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Theorem 8. Let F: N — N a function, and ¢ > 0 real. Then there exists
an integer M* > 1 with the following property: if P > 1 and (X, X, 1) is a
probability space, and g : Z x X — R, then there exists an integer

1< M < M* such that

1SN (9) — SN’(Q/)HLz(zfjlxX) €
whenever M < N,N' < F(N) where Sy(f)(z,v) = Enevy f(v +n, )

This can be deduced via some quantitative Lebesgue dominated
convergence theorem [T1, Theorem A.2| from the following (using the

function fN’N/(.I) = HSNg(,ﬂC) - SN’('7$)|’L2(ZP)):

Theorem 9. Quantitative convergence of a single ergodic average Let

F :N — N a function, and € > 0 real. Then there exists an integer M* > 1
with the following property: if P > 1 and (X, X, 1) is a probability space,
and g : Zp — R, then there exists an integer 1 < M < M* such that

1SN (9) — SN’(g,)HL?(Zf;LlXX) se
whenever M < N, N' < F(N) where Sn(f)(z,v) = Eneny f(v+n).

The proof of this theorem proceeds via an energy increment argument. To
see a similar argument, see [T2, Chapter 1.2]. To save space, we only
provide a sketch. We encourage the reader to compare this proof with the
proof of the von Neumann ergodic theorem. First, a definition:

Definition 10. Basic {1}-anti-uniform function Let M > 1. A basic
{1}-anti-uniform function on scale M is any function ¢ : Zp — R of the
form

p(v) = Eneppnb(v —n)

for some function b: Zp — [—1,1].

These anti-uniform functions satisfy a Lipschitz bound of
lo(v+n) — )| < % The point is that if ¢ is {1}-anti-uniform on scale
My, then expressing

9(v) = Enepan)b(v —n)

F(M))

SNg_SN’g = EnE[N]EmE[Ml]g(n_m)_EnG[N’]EmG[Ml]g(n_m) =0 ( Ml
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so choosing M; sufficiently large, we obtain the desired inequality. One can
then use the energy increment argument to prove that each g can be
decomposed as a sum of {1}-anti-uniform-measurable function V" and a
“uniform part" ¢V, for which

HSNQU - SNgU”L2

is small anyways.

19.3.2 Induction Step (i.e., / =2 and d = 2)

For the ¢ = 2 case, we can once again reduce to M, =1 and J =1, so we
may assume that f takes the form

f(Uh V2, Vs, x) = 9{1,2}(1117 V2, x)g{z,s}(w, Vs, x)g{l,s}(m, V3, 95)
Under this identification, we see that
AN(f) = Ene[N}g{m}(Ul, 02)9{2,3}(02, —V1 — V2 — n)g{1,3} (1)1, —V1 — V2 — n)

As before, we can pull out the gg; 2y term so we may assume it is constant.
If gi23) and g1 3y can be written as a tensor products

9123} (v, v3) = oy (v2)hysy(vs), gq1,33(v1,v3) = kqry(vi)kysy(vs)
then the average simplifies to
9i1.21hq2y (V2) ki (V1) Ene v sy ks (—v1 — v2 — )

which can be taken care of by the base case.
If, however, g2 3y is “orthogonal" to these tensor products, i.e., for “most"
wsy, w3, We have

E’L}Q ew2+[N']Ev3 cws+[N19{2,3} (U27 U3)h2 (02)h3 (03)

are small, then we are analogous to the “weakly mixing case" in the ergodic
theoretic proofs, and so

IAN(F)I72 = Eop o An(f) (01, v2) Engya sy (v2, —v1—v2—n)gq1,3) (01, —01—02—n)

is small since we may rewrite the above as
Ky, 02,05 -5 (0)e[N1942,3} (V2, V3) An ( f ) (V1, v2) 913,13 (v3, v1).
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Similarly to the base case, one may also decompose g2 33 as of tensor
products of {2}-measurable and {3}-measurable functions (i.e., a
“structured" piece), and an “orthogonal" piece (i.e., a “random" piece). By
treating the tensor piece similarly as the anti-uniform case in the above
base case, and the “orthogonal" piece similarly with the “uniform part," we
may conclude the case for { = 2 and d = 2. The general case follows a
similar procedure.
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20 Bourgain’s return time theorem

After D. Rudolph [R]

A summary written by Zi Li Lim

Abstract

Bourgain’s return time theorem investigates the correlation of the
time average of two dynamical systems. Rudolph had given a
simplified proof of the return time theorem based on the machinery
of joinings. This is a sketch of Rudolph’s proof.

20.1 Introduction

Let (X, F,u,T) be a dynamical system, i.e., (X, F, u) is a Lebesgue
probability space and T is a measure preserving transformation on X.
Bourgain’s return time thoerem states that the correlation of time average
of (X, F,u,T) and any other dynamical systems is well-defined. More
precisely, we have the following theorem.

Theorem 1. Let (X, F,pu,T) be a dynamical system and f € LP(u) for
some 1 < p < oo. There exists a subset X(f) C X of full measure such that
for any dynamical system (Y,G,v,S) and g € LU (v) with 1/p+1/q =1, for
any x € X(f) and for v-a.e. y,

converges as n — oQ.

Recall the Birkhoff pointwise ergodic theorem says that the time average
along the orbit of a typical point is well-defined. Intuitively, Bourgain’s
return time theorem tells us that the correlation of the time average of two
dynamical systems is also well-defined to a great extent. In fact, it is
well-defined in a universal sense, the subset X (f) does not depend on the
other dynamical system (Y, G, v, S).

Bourgain’s return time theorem was first proved by Bourgain in [B1].
Furstenberg, Katznelson and Ornstein gave a different proof in the
appendix to [B2]. Later, Rudolph found a proof based on the machinery of
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joinings in [R]. We were hoping to present a sketch of Rudolph’s proof in
these expository notes.

The proof consists of three ingredients: the construction of the measures to
keep track of the orbits, the reduction to the good enough dynamical
system, and building the measures inductively that lead to a contradiction.

20.2 Construction of the measures

Instead of working with the orbits of the typical points, working with
measures is much more flexible. In this section, we will explain the
dictionary that allows us to pass from the orbits to the measures on certain
spaces.

Let D = {z € C: |z| <1} be the closed unit disk in the complex plane.
Define Z = D%>0 be the countable product of the unit disk and

Z®) = Zy x Zy x -+ x Zs_1, where each Z; is a copy of Z, that is, Z*) is
the k-fold product of Z. The space of all Borel probability measures on Z®*)
could be regarded as a weak™ compact subset of the dual space of the space
of all continuous functions on Z®*).

Let (X, F,u,T) be a dynamical system and fy, f1, ..., fr_1 be complex
functions on X with |f;| < 1, the dynamic of X could be kept track by
considering the map F : X — ZW®)

F(z) = ((fo(T"(2))), (fu(T"(2))), ., (fr-1(T"(2))))
and we would denote the push-forward of the measure p with respect to F

by m(<X7 fa 1, T>7 f07 flv [ES) fk—1>‘
Given an element (dg,dy, ..., d,_;) in (D®)™ et m(dy,d,, ..., d,—1) be the
atomic measure on Z®) uniformly supported on the subset

{Z(t) € Z(k) : Z(t)z = dt+i mod n}

Informally speaking, these measures could keep track of the orbits. For
example, assume the dynamical system (X, F, u,T) is ergodic, by Birkhoff
pointwise ergodic theorem, for a.e. x € X, the measures

m(f(@), F(T(2)), ., fT"(x))) converges to m((X, F, . T), for fiswos fr1)
in weak* topology as n — oc.

To summarise, if we are interested in the asymptotic behaviour of f(T%(z)),
we shall investigate the weak™® limit of the associated measures
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m(f(z), f(T(x)),..., f(T"(z))). These measures can ‘detect’ the orbits,
and we could recover the information about orbits by integrations:

/ zwdm s / Ziyozj’odm
Z(k) Z(k)

where z; o is the zero-th coordinate of the i-component function.

20.3 Reduction to the best case

Fix a dynamical system (X, F, u,T) and f € LP(u), given any other
arbitrary dynamical system (Y, G,v,S) and g € L4(v), we were hoping to
reduce the proof to the ‘best’ case. What is the best scenario that the
dynamical systems are sufficiently good enough?

First, we can assume the dynamical systems (X, F,u,T) and (Y, G, v, 5)
are ergodic just like many other proofs in ergodic theory. This is reasonable
since ergodic dynamical systems are the building blocks of the general
systems, thanks to ergodic decomposition.

Next, we shall assume the test functions f and g are good enough, that is,
they decay sufficiently fast. Let’s assume that f and g are in L*°(u) and
L>(v) respectively. In fact, we could even normalize the functions such
that |f], |g] < 1.

What are some other reasonable assumptions that could simplify the
situation? Through normalization, we might assume the space average

| + fdu =0 as well. In order to consider the correlation of time average
with arbitrary systems, we should pretend that we understand the self
correlation of the function f well enough, say

an (T (1)) (T (3)) — 0

as n — oo for u x pra.e. (x1,x2) € X x X. In this ideal case, we have a
suitable canditate for X (f), let G(f) consists of the points z; € X such that

1 n—1

=D [T @) =0

as n — 0 and
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n—1

LS ST )T ) 0

i=0
as n — 0 for p-a.e. xo. Now, we have reduced the proof to the following
proposition.

Proposition 2. Suppose the Bourgain’s return time theorem is false, then
there exist ergodic dynamical systems (X, F,u,T) and (Y,G,v,S), the
functions f and g as above, a point ' in G(f), a positive measure subset
B CY and a positive real number a such that

n—oo

im sup | z FTH )T W) > a

forally € B.

20.4 The key step

Suppose the Bourgain’s return time theorem is false, we could construct a
sequence of measures inductively based on the machinery introduced in
previous sections. For any integer k > 2, there exists a measure m®) on
Z®) such that

1. The projection of m™®) to Z, is some fixed measure, say my.

2. The projection of m™® to other coordinate Z; is another fixed
measure, say mq, for all 1 <7 <k — 1.

3. fZ(k> Zi’02j70dm(k):() for all 1 < ’L,j < k — 1,2 §£ ]

4| [ 200%i0dm™| > a for all 1 <i <k —1.

Heuristically, the condition f ) zivozj,odm(k):O holds since the self
correlation of f is zero and the condition | f Z(0) zo,ozi,odm(k)] > a holds due
to the reduction to the best case in last section. Choose constants ¢; with
|c;] = 1 such that [, ci20020dm*) > a. Note that

k
H Z CiZi0
i=1

|2 (msiy = VE||20]| 220m1)
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and

k
< E CiZi 0, Z0,0>L2(m(’€+1)) > ka

=1

However, by Cauchy-Schwartz inequality, we have

k
(Z Cizi,OazO,O>L2(m(k+l)) < \/El‘ZOHLQ(ml)HZOHLQ(mO)

i=1

this leads to a contradiction when k is sufficiently large.

References

[R] Rudolph, D., A joinings proof of Bourgain’s return time theorem.
Ergodic Theory Dynam. Systems, 14 (1994), no.1, 197-203.

[B1] Bourgain, J., Return time sequences of dynamical systems. IHES
Preprint (3/1988).

[B2| Bourgain, J., Pointwise ergodic theorems for arithmetic sets. Inst.
Hautes Etudes Sci. Publ. Math.(1989), no.69, 5-45.

Z1 LI LIM, UCLA

ematl: zi1ilim@math.ucla.edu

122



21 On the convergence of multiple Ergodic
averages

After G. Karagulyan, M. Lacey and V. Martirosyan [KLM]

A summary written by Gevorg Mnatsakanyan

Abstract

Let U :={U;: j=1,...,n} be a sequence of invertible,
commuting measure preserving transformation on a measureable
space (X, du). We prove the almost everywhere convergence of

averages
s1—1 Sn—1

K v,

" ji=0  jn=0

as mins; — oo, for f in Llogd*1 L where d < n is the rank of U.

21.1 Introduction

Let (X, B, du) be a probability space and T" be a measure-preserving
transformation. The famous ergodic theorem of Birkoff states that for
f € L'(X) the averages
n—1

LN p(ri) (1)

n<=
converge almost everywhere to a 1" invariant function. A generalization of
this result for multiple transformations goes back to Dunford [D] and
Zygmund |Z]. Let us first introduce the spaces Llog" L. For a
non-decreasing function ® : R, — R, we define the class Lg(X) of B
measurable functions f on X so that ®(|f|) € L'(X). The class
corresponding to the function Log,t := (1 + max(0, log™ ¢)) will be denoted
by Llog" L, for n > 1.
Henceforth, U := {U; : j =1,...,n} will be a sequence of invertible
measure-preserving transformations on X. Then, Dunford and Zymgund
independently proved that for f € Llog L™ ! the averages

s1—1 Sn—1

D > FU e Ulra) (2)

" j1=0  jn=0

1

S1...8
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converge almost everywhere as min; s; — +oo. Hagelstein and Stokolos
[HS| proved that the class of functions above is sharp in the following sense.
If U is additionally commuting and non-periodic, i.e. for any non-trivial
collection of integers py, k=1,...,n,

p{U o Uy 0 -0 Uprw = a} = 0, (3)

then, for any non-decreasing function ® : R, — R, such that

® = o(tlog" 't) as t — 400, there exists a function f € Lg(X) so that the
averages (2) unboundedly diverge at almost every point.

It turns out that if the transformations U are not independent, then the
class Llog" ™' L can be improved.

Definition 1. A set of commuting transformations U is called independent,
if for any non-trivial collection of integers py, k =1,...,n we have

p{U oU o+ oUlx =2} < 1. (4)

The rank of U, denoted rank(U), is the largest integer r < n so that there is
an independent subset of U of cardinality r.

Note, that non-periodicity implies independence. Let us also introduce the
following maximal function

s1—1 sp—1
1 , .
Myf(w) = sup ——=3 -3 |f(U] - Upra)l (5)
S]'E njl—O jnZO

The following theorem is the main result of [KLM].

Theorem 2. Let U be also commuting and of rank d. Then, for any
function f € Llog® ' L(X) and X\ > 0, we have

o € X+ Myf(z) > A} <u /X Logd1<|i)\|). (6)

The convergence (2) follows from the above maximal estimate by a
standard density argument.

We will reduce Theorem 2 to a bound for a strong maximal function in the
Euclidean setting. Let A : R — R? be a linear operator. We consider

Maf(x) = s%p ’_;ﬂ /Rf(x + At)dt, v € R%, (7)
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where the sup is taken over all symmetric intervals
R={t=(t1,...,ty): t; € [—rj,rj] for j = .,n} CR" (8)

Theorem 3. If rank(A) = r, then for any f € Llog" ' L(R?) and X > 0

]{xeRd:MAf(:c)>/\}|§A/ Log,_ 1<|f|) ()

When n =d =r and A = I,,, the identity matrix, this is a well-known
theorem of Guzman [G|. The general case will be reduced to the latter.

21.2 Sketch of proof of Theorem 2 assuming Theorem
3

The maximal inequality (9) has a discrete analog, that is easily deduced
from it. Let ¢ : Z? — R and let A = {axj,1 < j <n,1 <k <d} be an
integer matrix. We consider the maximal operator

s1—1 Sn—1
Daop(n) = su (n+ Ak), n € Z¢, 10
o) = 5 10
then
. g 9|
#{n € Z": Dag(n) > A} Sa > Logr ) (11)
nezd
As rank of U is d, let us assume Uy, ..., U, are independent, and
Uk =U" o oU*™, d<k<n. (12)

Assume [, = 1. The general case can be deduced from this. We write

fU oo Upa)

ki1+a kgy1+--+aink kq+a kqy1+-+aqgnk
:f <U11 1,d+1%d+1 1,nRkn 0-.-0 Udd d,d+1R~d+1 d,n n> — gb(l‘, A i k),

where

¢(v,n) = f(UM o---oUjz), v € X, n € Z%, (13)
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and

1 0 -+ 0 a1g41 -+ Qin
e R (14)
00 ... 1 Qdd+1 --- QAdn

We consider the truncated and translated maximal function

s—1
fi(x,n) := max Z |op(x,n + Ak)|. (15)
k=0

1<s; <M

Then, My f(x) = limp—00 f1(2,0). Now let
Ey(z) ={n: 1<n; <N and fy(z,n) > A},
Fx(n) ={x: fi(xz,n) > A}, n € Z"

So the inequality (6) would following from

n(FO) S [ Logaa () (16)

where the implicit constant is independent of M.
In (15), the coordinates of Ak may vary in [—R, R] where R = R(A, M). So
by the discrete inequality (11), we have

s s X o (). (17

1<n;<N+R

Since U; are measure preserving F(n) have the same measure for all n,
hence

WRO) =57 3 wAm) =55 [ #5@

1<n; <N

xr,n d
S N Y (e LRy

1<n;<N+RYX

In the last line we again used that U; are measure preserving. Fixing M
and letting N — 400 we get the desired bound (16).
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21.3 Reducing Theorem 3 to the case n=d =r

Let 4= {u;: j=1,...,n} be a set of vectors in R? and

Ry := span(i) C RY We call a parallelipiped in R? a set of the form
R={z eR?: z=tyus + -+ tyun,t; € [—rj,rj]}. The family of such
paralleipipeds is denoted by Py. Further, let us associate a probability
measure pp with R. Let p; be the uniform probability measure on
one-dimensional parallelipiped {tu; : t € [—7;,r;]}. Then, we define ug by
a convolution, namely,

pr(E) = /R . ./]R 1p(vy + -+ vy)dug(vy) ... dpn(vy). (18)

Let fr be the density of ugr. Observe, that if 4 is indepedent, then

fale) = {1/;3\, if v € R (19

0, otherwise.

The following lemma can be proved by some not very difficult geometric
considerations and is somewhat intuitive.

Lemma 4. Let i be arbitrary and R € Py. Then, there exists an
independent subset 0 C U of maximal rank and a parallelipiped R’ € Py
such that

IR Sy R (20)

Let u; be the jth column of the matrix A and Y = {u; : 1 <j <n}, so
rank(A) = rank(il). We abuse the notation and write My for M,. The
integral in (7) can be rewritten through the measure g, namely, we have

1
o [t aniae= [ 1ol Su [ ol S Mef @)
[B| Jr R R
(21)
wherethe first inequality follows from the lemma above. So we conclude

Myf(x) < Sgp My f(x). (22)

If we assume the theorem in the case n = d = r, then Mgy satisfies the
bound (9) in Ry and there are finitely many independent subset U of 4, so
we are done.
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21.4 The Theorem of Guzman

We call R C 2®" a differentiation basis if for each € R" there is an
arbitrarily small R € R that contains x. The maximal function with
respect to R is defined by

Mrf (o) s=sup s [ 1 1(0)ldm ). (23)

Roz My

For a strictly increasing continuous function ¢ : Ry — R, with ¢(0) =0,
we say that Mz has type ¢ if it satisfies the following weak type bound

mo(tef > A 5 [0 () d o), 24

Theorem 5. Let R;, i = 1,2, be two differentiation bases in R™ with
mazimal operators M;. Let M; have type ¢;. Consider in R = R™ x R"2
the differentiation bases R = Ri X Ro. Then, the corresponding maximal
operator M satisfies the following inequality

mn({z: Mf(z) > A} < ¢2(1)/¢1 <M) dm, ()

M
1T o (M)

Applying the above inequality with R;, ¢ = 1, ..., n, the family of bounded
intervals in R, and using the weak-L! bounded of the one-dimensional
Hardy-Littlewood maximal function we arrive at Theorem 3 with n =d =r
and A = I,,. Then, the equivalence of the paralleipiped and rectangular
bases imply the result for general invertible A.
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22 Joint ergodicity of sequences

After N. Frantzikinakis [Frl]

A summary written by Andreas Mountakis

Abstract

A collection of integer sequences is jointly ergodic if for every
ergodic measure preserving system the multiple ergodic averages,
with iterates given by this collection of sequences, converge in the
mean to the product of the integrals. We give necessary and
sufficient conditions for joint ergodicity that are flexible enough to
recover the known examples of jointly ergodic sequences and also
allow us to answer some related open problems. An interesting
feature of our arguments is that they avoid deep tools from ergodic
theory that were previously used to establish similar results. Our
approach is primarily based on an ergodic variant of a technique
pioneered by Peluse and Prendiville in order to give quantitative
variants for the finitary version of the polynomial Szemerédi theorem.

22.1 Introduction

The study of multiple ergodic averages was initiated in the seminal work of
Furstenberg [Ful|, where an ergodic theoretic proof of Szemerédi’s theorem
on arithmetic progressions was given. Since then, the study of different
types of multiple ergodic averages has been a central object in ergodic
theory, resulting in many more combinatorial consequences. A rather
general family of problems is as follows: We are given a collection of integer
sequences ari, ..., ay : N — Z and an invertible measure preserving system
(X, 1, T). We would like to understand the behaviour, as N — oo, of th