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1 A remark on gradients of harmonic functions

After W. Wang [Wa]

A summary written by Anna Skorobogatova

Abstract

Given any C1,α domain D in Euclidean space, we show that there
exists a non-trivial harmonic function that is C1 up to the boundary,
such that both the function and its gradient vanish on a set of positive
measure in the boundary. This extends the result Bourgain and Wol�
[BW] from the upper half space to general C1,α domains.

1.1 Introduction

In [Wo], it was shown that it is possible to construct a non-zero C1+ε har-
monic function on the upper half space Rd

+, d ≥ 3, whose gradient vanishes
on a positive measure set of the boundary Rd−1 ≡ ∂Rd

+. Subsequently, in
[BW], this was sharpened to the existence of a harmonic function, C1 up to
the boundary, that vanishes along with its gradient on a positive measure set
of the boundary Rd−1.

We discuss the extension of this to general C1,α domains in Rd. More
precisely:

Theorem 1 ([Wa]). Let D ⊂ Rd, d ≥ 3, be a C1,α domain for some α > 0.
Then there exists a harmonic function u ∈ C1(D̄) such that

Hd−1(∂D ∩ {u = 0, ∇u = 0}) > 0.

Remark 2. 1. The aforementioned results fail in the plane, since for any
planar harmonic function u, the function log |∇u| is subharmonic.

2. If instead one asks for a non-zero harmonic map u to vanish on an
open subset of ∂D (say, C1 domain), then Tolsa in [T] showed that
one has

Hd−1(∂D ∩ {u = 0, ∇u = 0}) = 0.

Under better regularity assumptions on D (namely, C1,Dini), it was
shown that the boundary singular set ∂D ∩ {u = 0,∇u = 0} has Haus-
dor� dimension at most d − 2 ([AE]) and has locally �nite (d − 2)-
dimensional Minkowski content ([KZ]).
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1.2 Notation

We henceforth �x a large constant M > 0 arbitrarily. Let DM be the class
of domains Ω ⊂ Rd such that

Ω = {X = (x, xd) : xd > ϕ(x)},

where ϕ ∈ C1,α with ϕ(0) = 0, ∇ϕ(0) = 0, and

‖∇ϕ‖∞ + [∇ϕ]C0,s ≤ e−M .

BR(X) will denote a d-dimensional ball of radius R centered st X in Rd,
while BR(x) will denote a (d − 1)-dimensional ball centered at x in Rd−1.
Q(0, `) denotes a (d− 1)-dimensional cube in Rd−1. We will denote by `(Q)
its side length when it is not speci�ed.

ν will denote the (outward) normal vector (taken either at x ∈ Rd−1 or
X ∈ ∂Ω). TX∂Ω will denote the tangent space to ∂Ω at the point X.

We will use the notation .� to demonstrate that the left-hand side of
the given inequality is controlled by the right-hand side, up to a constant
dependent on the quantities �.

1.3 Preliminary lemmas

Lemma 3. If p > 0 is su�ciently small and M > 0 is su�ciently large, then
for every Ω ∈ DM , there exists η = η(d) > 0 such that for every ε > 0 and for
each cube Q = Q(0, `) ⊂ Rd−1, `(Q) < 1, there exists a harmonic function
hQε ∈ C1(Ω̄) with supphQε

∣∣
∂Ω
⊂ ϕ(Bε`(0)) with the following properties:

(a)
1

|ϕ(Q)|

ˆ
ϕ(Q)

(
|1 + ∂νh

Q
ε |p − 1

)
dHd−1 .d,p −ηe−(d−1)M ,

(b)

|∇hQε (X)| .d min

{
ε−d, e(d− 1

2
)M

∣∣∣∣X`
∣∣∣∣−d
}
.

Proof. For X = (x, xd) ∈ Ω and a > 0, one can consider the function

F a
ε (X) := −a ε+ xd

a∣∣X
a

+ εed
∣∣d ,
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which in [AK] is shown to satisfy
ˆ
Rd−1

(|1 + ∂νF
a
ε (x)|p − 1)dHd−1 ≤ −2ηad−1.

Letting ρ = 1 −∑j ψj for a Littlewood-Paley partition of unity {ψj}j≥0

supported on the annuli {2j−1` ≤ |x| ≤ 2j+1`} ⊂ Rd−1, de�ne hQε := ρF a
ε

∣∣
∂Ω
,

with a = e−M`. One can check, using standard Littlewood-Paley estimates,
that this function satis�es the desired conclusion. We refer to [BW] or [Wa]
for the details.

Corollary 4. Let p, M and ε be as in Lemma 3 and let Ω ∈ D2M . Let
XQ = (xQ, ϕ(xQ)) ∈ ∂Ω, let s0 > 0 and let Q ⊂ Bs0(xQ) ⊂ Rd−1. There
exists β = β(d,M) > 0 such that the following holds.

Suppose that J : Ω → R is a function with suppJ ⊂ ϕ(Ω), J(XQ) 6= 0
and

|J(X)− J(XQ)| ≤ η

2
e−(d−1)M |J(XQ)|. (1)

Then the map h̃Qε := h
Q(0,`)
ε ◦ τ−xQ, for hQ(0,`)

ε from Lemma 3 and τ−xQ the
translation by −xQ in Rd−1, satis�es

(a) (
1

|ϕ(Q)|

ˆ
ϕ(Q)

|J(X) + J(XQ)∂νh
Q
ε (X)|pdHd−1(X)

) 1
p

≤ e−2β|J(XQ)|,

(b)

|∇hQε (X)| .d min

{
ε−d, e−(d− 1

2
)M

∣∣∣∣X −XQ

`

∣∣∣∣−d
}
.

Proof. Let Ω̃ be the translation of Ω by −XQ (so that XQ is the new origin),
followed by a rotation so that TXQ∂Ω̃ = Rd−1. Then Ω̃ ∈ DM and so we
can apply Lemma 3. Combining this with the fact that one can replace 1 by
J̃ := J

J(XQ)
up to a negative exponential error term and letting β > 0 be such

that
e−2β = 1− η

2
e−(d−1)M ,

the result follows.
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1.4 Proof of localized version of Theorem 1

In order to prove Theorem 1, we will �rst prove the following weaker, localized
version:

Theorem 5. Suppose that M is as in Lemma 3 and let Ω ∈ D2M . Then for
every s0 > 0 su�ciently small, there exists a harmonic map u ∈ C1(Ω̄) with

Hd−1 ({X ∈ ∂Ω ∩Bs0(0) : u(X), ∇u(X) = 0}) > 0. (2)

Sketch proof. We will proceed to construct u via a recursive procedure, start-
ing with a function û0 that vanishes on an open subset of ∂Ω and correcting
it in such a way that

� we decrease the normal derivative on a large measure subset of ∂Ω with
each step;

� we keep û0 unchanged on a large measure subset.

If this is done carefully enough, in a quantitative manner, clearly it will yield
the desired result in the limit as we increase the number of iterations.

Let Q0 = Q0(0, s0) ⊂ Rd−1. Let δn = 2−kns0, kn ∈ Z, kn ↗ +∞ to be
determined later. Let Kn → +∞, εn → 0, both to be determined later also.
Let

Fn := {disjoint cubes Q ⊂ Q0 with `(Q) = δn and vertices in δnZd−1}.

Note that #Fn = δ
−(d−1)
n . We will now create �good" families of cubes

Gn ⊂ Fn and functions un inductively as follows.
Let δ0 = s0, G0 = {Q0} and let û0 be the harmonic extension into Ω of

the boundary data u0 ∈ C1,α
0

(
ϕ
(

1
100
Q0

))
. Given Q ∈ Gn, subdivide it into(

δn
δn+1

)d−1

cubes. For each of these new cubes Q′, place it into Gn+1 if

(
1

|ϕ(Q)| |
ˆ
ϕ(Q)

∂νun|pdHn−1

) 1
p

≤ Kn+1e
−βn. (3)

Note that in particular, for any Q′ ∈ Gn+1, its parent cube Q ∈ Fn, Q ⊃ Q′,
must be in Gn. Now given un and Gn+1, de�ne the boundary datum

un+1 = un +
∑

Q∈Gn+1

∂νun(XQ)h̃Qεn+1
,
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for h̃Qεn+1
as in Corollary 4. In particular, (4) in Corollary 4 tells us that for

X = (x, xd) ∈ ∂Ω,∑
Q∈Gn+1

|x−xQ|>r

|∇h̃Qεn+1
(X)| ≤ Ce−(d− 1

2
)M δn+1

r
if r > Cδn+1. (4)

This, combined with the de�ning property (3) of cubes Q ∈ Gn+1 and the
continuity of ∂νun yields the following estimate for each X ∈ ∂Ω:

|∇un+1(X)−∇un(X)| .d Kn+1e
−βnε−dn+1 for δn+1 su�ciently small. (5)

In addition, we can inductively show that for each n we have

‖∂νun‖
Lp
(
ϕ
( ⋃
Gn
Q
)) ≤ Ae−βn, (6)

by decomposing the cubesQ ∈ Gn+1 into �type I" cubesQ with |∂νun+1(XQ)| >
e−4β(n+1) and �type II" cubes Q with |∂νun+1(XQ)| ≤ e−4β(n+1), and treating
each one separately. We refer to [BW] or [Wa] for the details.

Thus, for each X ∈ ∂Ω we have∑
n

|∇un+1(X)−∇un(X)| .d
∑
n

Kn+1ε
−d
n+1e

−βn,

and so, as long as we choose Kn, εn so that the sum on the right-hand side
is �nite, the harmonic extensions ûn of the boundary data un converge in
C1(Ω̄) to a limiting harmonic function û ∈ C1(Ω̄) with boundary datum u.

Now let us check that u satis�es the desired property (2). Indeed, we
have

Hd−1(ϕ(Q0) ∩ {u 6= 0}) ≤
∑
n

Hd−1({un+1 6= un})

≤
∑
n

Hd−1
(
ϕ(Bεn+1`(Q)(xQ))

)
.d
∑
n

δ
−(d−1)
n+1 εd−1

n+1`(Q)d−1

.d
∑
n

εd−1
n+1

≤ |ϕ(Q0)|
10

.
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provided that we rede�ne εn appropriately if necessary. Moreover, we have

Hd−1(ϕ(Q0) ∩ {∂νu 6= 0}) ≤
∑
n

Hd−1
(
ϕ
(⋃
Gn
Q
)
\ ϕ
( ⋃
Gn+1

Q
))

≤
∑
n

∑
Q∈Gn\Gn+1

Hd−1(ϕ(Q))

(6)

≤
∑
n

eβnpK−pn+1

ˆ
ϕ
( ⋃
Gn
Q
) |∂νun|p

≤
∑
n

ApK−pn+1

≤ |ϕ(Q0)|
10

for Kn further amended if necessary. This completes the proof.

1.5 Proof that Theorem 5 implies Theorem 1

Firstly, suppose in addition that D is bounded. Then we may choose our
coordinate system so that 0 ∈ ∂D, Rd−1 = T0∂D and D ⊂ Rd

+. We may
�nd s0 > 0 small enough and Ω ∈ D2M such that ∂Ω ∩Bs0 = ∂D ∩Bs0 and
D ⊂ Ω. We can then apply Theorem 5 and restrict the resulting map to D
to conclude.

If D is unbounded, �rst of all apply the proof of Case 1 to D ∩ B for
some ball B ⊂ Rd centered at a point X0 ∈ ∂D to yield a harmonic map
v1 ∈ C1(D∩ B̄). Then �nd a harmonic map v2 ∈ C1(Ω̄ \B) that agrees with
v1 on D ∩ ∂B via the Kelvin transform X 7→ X−X0

|X−X0|2 .
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2 Unique continuation at the boundary for har-

monic functions in special Lipschitz domains

After X. Tolsa [T]

A summary written by Giovanni Covi

Abstract

Consider a function u harmonic in a Lipschitz domain Ω ⊂ Rn with
small Lipschitz constant, continuous in Ω, and such that u = 0 in Σ ⊂
∂Ω and ∂νu = 0 in E ⊂ Σ, with Σ relatively open and E of positive
measure. This paper shows that, under the stated assumptions, umust
vanish identically on Ω.

2.1 Introduction

The work [BW] showed that there exists a nontrivial function u which is
harmonic in Rn

+ with n ≥ 3, C1 up to the boundary, and vanishes together
with its normal derivative on a set E ⊂ ∂Rn with positive measure. This is
still true if Rn

+ is substituted by a C1,α domain Ω ([W]), but it is unknown
whether the conditions u = 0 in an open set Σ ⊂ ∂Ω and ∂νu = 0 in E ⊂ Σ,
where E has positive measure, su�ce to deduce u ≡ 0 in Ω when Ω is
Lipschitz and the dimension is arbitrary ([L, AEK]). The paper [T] we study
here proves the conjecture for Lipschitz domains with small local Lipschitz
constant:

Theorem 1 (Theorem 1.1 from [T]). Let Ω ⊂ Rn be a Lipschitz domain, let
B be a ball centered in ∂Ω, and assume Σ := B ∩ ∂Ω is a Lipschitz graph
with slope at most τ0, where τ0 > 0 is a small constant depending only on n.
Let u ∈ C(Ω) be such that

∆u = 0 in Ω, u = 0 in Σ and ∂νu = 0 in E,

where E ⊂ Σ has positive measure. Then u ≡ 0 in Ω.

The proof is based on the doubling property of the L2 averages of the
harmonic function u (see Lemma 3), which in turn is derived from a key
result (see Lemma 2) studying the behaviour of Almgren's frequency function
at points close to ∂Ω.
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2.2 Preliminaries

2.2.1 Frequency functions

Let u as in the statement of Theorem 1, and extend it by 0 in Rn \ Ω. For
x ∈ Rn and r > 0 denote

h(x, r) :=
1

σ(∂B(x, r))

ˆ
∂B(x,r)

u2dσ,

where σ indicates the surface measure. The measure in Rn will be indicated
by m. If B(x, r) intersects Ω, the Almgren frequency function is de�ned by

F (x, r) := r∂r log h(x, r).

Assume x ∈ Rn and the closed interval I ⊂ (0,∞) are such that B(x, r)∩
Ω 6= ∅ and B(x, r) ⊂ 2B for all r ∈ I. Then h(x, ·) is of class C1 and F (x, ·) is
absolutely continuous in I (check [T, Lemmas 2.1, 2.2]), and ∂rh(x, r), F (x, r),
∂rF (x, r) can be explicitly computed from u and ∇u. In particular, h(x, r)
is non-decreasing with respect to r, and if (y − x) · ν(y) ≥ 0 for σ-a.e.
y ∈ B(x, r) ∩ ∂Ω, then ∂rF (x, r) ≥ 0.

We call a closed interval I ⊂ (0,∞) admissible for x ∈ Rn if h(x, r) > 0
and ∂rF (x, r) ≥ 0 for a.e. r ∈ I. If I is admissible for x, and a > 1 and
r ∈ I are such that ar ∈ I, then by [T, Lemma 2.3]

F (x, r) ≤ loga
h(x, ar)

h(x, r)
≤ F (x, ar). (1)

Assume I is admissible for x, y ∈ Rn, and r, 2(1 +γ1/2)r ∈ I, where r > 0
and γ is a small constant. If |x − y| ≤ γr and B(x, 5r) ∩ ∂Ω ⊂ Σ, then by
[T, Lemma 2.4] there exists a constant C > 0 such that

F (y, r) ≤ (1 + Cγ1/2)F (x, 2(1 + γ1/2)r) + Cγ1/2. (2)

2.2.2 Geometric constructions and de�nitions

Let B0 be any ball centered in Σ such that M2B0 ⊂ B for some M > 1, and
de�ne Σ0 := ∂Ω ∩ B0. Fix a coordinate system in which Σ0 is a Lipschitz
graph (with small slope τ0) and Ω∩MB0 is above the graph. Let H0 be the
horizontal plane through the origin, and Π the orthogonal projection to H0.
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We consider a Whitney decomposition of Ω by means of a family W of
dyadic cubes in Rn with disjoint interiors such that dist(Q, ∂Ω) ≈ `(Q) for
all Q ∈ W , where `(Q) is the length of the side of Q and xQ is the center.

To each cube Q ∈ W we associate a cylinder C(Q) := Π−1Π(Q).

For all k ∈ N and all R ∈ W we consider a family DkW(R) ⊂ W satisfying⋃
Q

Π(Q) = Π(R), `(Q) = 2−k`(R), Q ∩Q′ = ∅, Q is under R

for all Q,Q′ ∈ DkW(R). We also let DW(R) :=
⋃
k∈NDkW(R).

After a translation, we can make sure to �nd a special cube R0 ∈ W such
that Π(B0) ⊂ Π(R0) and R0 ⊂ M

2
B0. Of course it holds B0 ⊂ C(R0). We

also let ΠΣ0 : C(R0) → RΣ0 := C(R0) ∩ Σ0 be the projection on RΣ0 in the
direction perpendicular to H0, and consider the measure µ := mn−1 ◦ Π−1

Σ0
.

If A,K,N0 are positive constants and j ∈ N, de�ne

GK(R) := {Q ∈ DKW(R) : F (xQ, A`(Q)) ≤ F (xR, A`(R))/2}

and also Tj :=
⋃
Q∈T ′j ΠΣ0(Q), Tj := ΠΣ0(T ′j ), where

T ′j := {Q ∈ DjKW (R0) : F (xQ, A`(Q)) ≤ N0}.

Moreover, we let D̃j(RΣ0) := ΠΣ0(DjKW (R0)) and D̃(RΣ0) :=
⋃
j∈N D̃j(RΣ0).

If R ∈ D̃j(RΣ0), let R′ ∈ DjK(RΣ0) be such that R = ΠΣ0(R′), and de�ne
the good set

G(R) :=

{⋃
Q′∈GK(R′) ΠΣ0(Q′) if F (xR′A`(R

′)) ≥ N0

R otherwise,

and for all j ≥ J ≥ 0 the functions fj :=
∑

R∈D̃j(RΣ0
) fR, where

fR :=

{
µ(R)

µ(G(R))
χG(R) − χR if 6 ∃R̃ ∈ ⋃j≥J Tj : R ⊂ R̃

0 otherwise.

Probabilistic considerations (check [E]) ensure that for µ-a.e. x ∈ RΣ0

lim
m→∞

1

m

m∑
j=J+1

fj(x) = 0. (3)
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2.2.3 The Key Lemma

Assume that T,A are two positive constants, M > T,A and τ0 is small
enough (depending on T,A). If x ∈ Ω and R ∈ DW(R0) are such that
dist(x,R) ≤ T`(R) and dist(x, ∂Ω) ≥ T−1`(R), then the interval (0, A`(R))
is admissible for x (check [T, Remark 3.3]). According to the properties
of frequency functions, for this to be true one has to verify the condition
(y − x) · ν(y) ≥ 0 for σ-a.e. y ∈ B(x, r) ∩ ∂Ω, which is granted by the
smallness of τ0.

Proving the admissibility of intervals allows us to use the results of for-
mulas (1) and (2), which compare di�erent values of the frequency function.
Eventually, this lets us bound the set where the frequency function is large:

Lemma 2 (Key Lemma 3.1 from [T]). Let N0 > 1 be �xed and large enough.
There exists a constant δ0 > 0 such that for all A, M = M(A) big enough,
τ0 = τ0(A) small enough, and R ∈ DW(R0) satisfying F (xR, A`(R)) ≥ N0

there exists K = K(A) such that

1. mn−1(
⋃
Q∈GK(R) Π(Q)) ≥ δ0mn−1(Π(R)),

2. F (xQ, A`(Q)) ≤ (1 + CA−1/2)F (xR, A`(R)) for all Q ∈ DKW(R).

2.3 Proof of Theorem 1

We want to show that, if u ∈ C(Ω) is harmonic in Ω, not identically 0, and
vanishes in Σ, then there is no E ⊂ Σ with positive measure where ∂νu = 0.

Since |u| is subharmonic, for all x ∈ Rn and all small enough r > 0

h(x, r) =
1

σ(∂B(x, r))

ˆ
∂B(x,r)

|u|2dσ .
(

1

m(B(x, 2r))

ˆ
B(x,2r)

|u|dm
)2

.

On the other hand, since h(x, ·) is non-decreasing,(
1

m(B(x, 12r))

ˆ
B(x,12r)

|u|dm
)2

≤ 1

m(B(x, 12r))

ˆ
B(x,12r)

|u|2dm . h(x, 12).

Therefore,

lim inf
r→0

h(x, 12r)1/2

h(x, r)1/2
& lim inf

r→0

m(B(x, 2r))
´
B(x,12r)

|u|dm
m(B(x, 12r))

´
B(x,2r)

|u|dm. (4)
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Assume for the sake of contradiction that there exists E ⊂ Σ with positive
measure such that ∂νu = 0 holds in E. Then by [AE, Lemma 0.2] the right
hand side of (4) diverges whenever x ∈ Σ is a density point for E, which in
turn implies

lim
r→0

h(x, 12r)

h(x, r)
=∞. (5)

However, we have the following:

Lemma 3 (Lemma 4.1 from [T]). For σ-almost every x ∈ Σ0 ∩ C(R0),

lim inf
r→0

h(x, 12r)

h(x, r)
<∞. (6)

Since B0 is arbitrary, (6) holds almost everywhere in Σ, and the density
set of E has vanishing measure by (5). Since this is a contradiction, the proof
will be complete as soon as we prove the doubling property from Lemma 3.

Proof of Lemma 2. If x ∈ Tj, then there exists Q ∈ T ′j such that x ∈ ΠΣ0(Q),
and thus F (xQ, A`(Q)) ≤ N0. Using this, formula (1) and the subharmonicity
of |u|, for A large enough we have

h(x,A`(Q)/2)

h(x,A`(Q)/24)
.

h(xQ, A`(Q))

h(xQ, A`(Q)/48)
≤ 48N0 ,

with `(Q) ≈ 2−jK`(R0). Therefore, formula (6) holds for all x ∈ lim supj→∞ Tj,
and by the mutual absolute continuity of µ and σ we only need to prove
µ(RΣ0 \ lim supj→∞ Tj) = 0. It su�ces to show µ(RΣ0 \

⋃
j≥J Tj) = 0 for all

J ∈ N. To this end, assume x ∈ RΣ0 \
⋃
j≥J Tj. For each j ≥ J there exists

Q′j ∈ DjKW (R0) such that x ∈ Qj := ΠΣ0(Q′j). However, since x /∈ Tj for all
j ≥ J , necessarily Q′j /∈ T ′j , and thus F (xQ′j , A`(Q

′
j)) > N0. This means that

Lemma 2 can be applied, and so we deduce

1. µ(G(Qj)) = mn−1(
⋃
Q∈GK(Q′j)

Π(Q′j)) ≥ δ0mn−1(Π(Q′j)) = δ0µ(Qj),

2. F (xQ′j+1
, A`(Q′j+1)) ≤ (1 + CA−1/2)F (xQ′j , A`(Q

′
j)).

Moreover, if x ∈ G(Qj), then Q′j+1 ∈ GK(Q′j) by the de�nition of G, and

3. F (xQ′j+1
, A`(Q′j+1)) ≤ 1

2
F (xQ′j , A`(Q

′
j)).
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If (3) holds for x, then for m large enough
∑m

j=J+1 χG(Qj)(x) ≥ δ0m/2,
where we used the �rst estimate above. This ensures that we can use the
third estimate at least δ0m/2 times, and we get

F (xQ′m+1
, A`(Q′m+1)) ≤ 2−δ0m/2(1 + CA−1/2)m.

If A is large enough, clearly F (xQ′m , A`(Q
′
m))→ 0 asm→∞, which is absurd

because x /∈ ⋃j≥J Tj. Thus (3) does not hold for x, and µ(RΣ0 \
⋃
j≥J Tj) =

0.
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3 Monotonicity Properties of Variational Inte-

grals, Ap Weights and Unique Continuation

After N. Garofalo and F.H. Lin [GL]

A summary written by Valentina Ciccone

Abstract

Following [GL] we study unique continuation for solutions of equa-
tion (3).

3.1 Settings

Assume that Ω is an open and connected subset of Rn, n ≥ 3, and that A(x)
is a symmetric n×n matrix-valued function on Ω. Moreover, assume that A
satis�es the following

(i) there exists Γ > 0 such that for every x, y ∈ Ω it holds

|aij(x)− aij(y)| ≤ Γ|x− y| i, j = 1, ..., n , (1)

where aij(·) denotes the entry in the i−th row and j−th column of
A(·);

(ii) there exists λ ∈ (0, 1) s.t. for all x ∈ Ω and for all ξ ∈ Rn it holds that

λ|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ λ−1|ξ|2. (2)

Let u be the solution of

Lu = div(A(x)∇u(x)) = 0 on Ω . (3)

That is, u ∈ H1,2
loc (Ω) and for all φ ∈ H1,2

0 (Ω) it holds that
ˆ

Ω

〈A(x)∇u(x),∇φ(x)〉dx = 0 .

It is known that if A satis�es the hypothesis (i) and (ii) then u ∈ H2,2
loc (Ω).

Also throughout we will assume that Ω strictly contains B2, namely the
closure of the ball centered at the origin and of radius 2.
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3.2 Overview of the main results

The �rst main result of the paper is the following.

Theorem 1. Let u ∈ H1,2
loc (Ω) be a solution of (3).

(a.) If u 6= 0 there exist a p > 1 and a constant C > 0 such that for all ball
BR centered at the origin and such that B2R ⊂ B1 it holds that(

1

|BR|

ˆ
BR

|u|dx
)(

1

|BR|

ˆ
BR

|u|−1/(p−1)dx

)p−1

≤ C . (4)

Here, C and p depend on u, Γ, λ, n but not on BR.

(b.) If u is not identically equal to a constant there exist a q > 1 and a
constant B > 0 such that for any ball BR as in (a.) it holds that(

1

|BR|

ˆ
BR

|∇u|dx
)(

1

|BR|

ˆ
BR

|∇u|−1/(q−1)dx

)q−1

≤ B . (5)

Here, B and q depend on u, Γ, λ, n but not on BR.

Theorem 1 is telling us that, under the considered assumptions, |u| and |∇u|
are, respectively, Ap and Aq weights of Muchenhoupt in B1.

Our focus for the summer school is on the following two results. The �rst
concerns strong unique continuation.
We recall that a function u ∈ L2

loc(Ω) vanishes of in�nity order at x0 ∈ Ω if
for R > 0 su�ciently small it holds that

ˆ
|x−x0|<R

u2dx = O(RN) for all N ∈ N .

Theorem 2. Let u ∈ H1,2
loc (Ω) be a solution of (3).

(i) If u vanishes of in�nite order at x0 then u is identically zero on Ω.

(ii) |∇u| cannot vanish of in�nite order at x0 ∈ Ω unless u is identically
equal to a constant on Ω.

The following is needed in the proof of Theorem 1 and Theorem 2 and is
a further main result of the paper.
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Theorem 3 (Doubling condition). Let u ∈ H1,2
loc (Ω) be a solution to (3).

Then there exists a constant C > 0, which depends on u, Γ, λ, n, such that
for any ball BR, such that B2R ⊂ B1, we have that

ˆ
B2R

u2dx ≤ C

ˆ
BR

u2dx. (6)

To get a rough intuition of some of the ideas behind the proof of Theorem
3 we consider the following simpli�ed setting. Assume that L = ∆, that is,
the Laplace operator in Rn, and, therefore, that u is an harmonic function
on Ω. For a ball Br centered at the origin de�ne the quantity

H(r) =

ˆ
∂Br

u2dHn−1

where dHn−1 is the (n − 1)−dimensional Hausdor� measure on ∂Br. H(r)
can be shown to be related to the integral

D(r) =

ˆ
Br

|∇u|2dx .

Set N(r) = rD(r)/H(r). The key claim is the following

N(r) is a decreasing function of r.

This, for the case L = ∆, was observed by [Al]. He called N(r) the frequency
of u.

The idea is to extend the outlined approach to the general setting of (3).
To this end, suitable modi�cations of H(r) and D(r) are introduced and
it is shown that if u solves (3) then a modi�ed generalized frequency is a
monotonically non-decreasing function of r. All of this will be used to prove
Theorem 3.
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4 The stability for the Cauchy problem for el-

liptic equations

After G. Alessandrini, L. Rondi, E.Rosset, and S. Vessella [1]

A summary written by Dimas de Albuquerque

Abstract

We study the ill posed Cauchy problem for elliptic equations of
divergence form. More precisely, we provide stability results for solu-
tions of such equations, and the results obtained are based on a central
technique: the three spheres inequality.

4.1 Introduction

A problem in partial di�erential equations is well posed when the following
three conditions are satis�ed: the problem has a solution, the solution is
unique, and the solution depends continuously on the data (stability).

As it turns out, the Cauchy problem for Laplace's equation is not well
posed, and this comes from the fact that this problem does not satisfy the
third condition. In [2], Hadamard provided his now classical example of
instability, which indicates the above. More precisely, he considered the
following problem:

∆u = 0 in R2
+ = {(x, y) ∈ R2; y > 0}

u(x, 0) = 0
uy(x, 0) = An sin(nx)

(1)

The solution to (1) is given by un(x, y) = An sin(nx) sinh(ny). As a result,
if An = n−1, for example, it follows that (un)y(x, 0) → 0 uniformly in x as
n→∞, whereas |un(x, y)| → ∞ as n→∞ for any positive y.

This issue can be �xed provided an a priori bound (on some norm) for
the solution u is known from the beginning. Under this extra assumption,
the problem becomes well posed, and the problem of interest is to obtain the
so called stability estimates, which consist on bounding some other norm of
u by corresponding bounds on the Cauchy data.

In order to proper state the Cauchy problem we'll work with and the
results associated to it, we need some de�nitions. These are mainly related

24



to the regularity of the domain and operators we shall consider. In what
follows, Ω is a bounded open connected set of Rn.

Let Σ be an open subset of ∂Ω, and let Σ′ = ∂Ω\Σ. For P ∈ Σ, set

r(P ) = dist(P,Σ′) ; ρ(P ) = min

{
ρ0,

r(P )M0√
1 +M2

0

}
(2)

De�nition 1. An open subset Σ ⊂ ∂Ω is said to be an open Lipschitz portion
of ∂Ω with constants M0, ρ0 > 0 if for every P ∈ ∂Ω there exists a rigid
motion taking P to the origin, such that

Ω ∩ Γ ρ(P )
M0

,ρ(P )
= {(x′, xn) ∈ Rn | xn > Z(x′)} (3)

where Z : B′ρ0
M0

⊂ Rn−1 → R is a Lipschitz function satisfying

Z(0) = 0 ; ‖Z‖C0,1 ≤M0ρ0 (4)

Here Γa,b(x) is the cylinder {(y′, yn) ∈ Rn||x′ − y′| < a and |yn − xn| < b}.

De�nition 2. The portion Σ has size at least ρ1 ∈ (0, ρ0] if there exists
P ∈ Σ such that ρ(P ) ≥ ρ1.

The elliptic operators that we are going to consider are of the form

Lu = div(A∇u) + cu (5)

where A is a symmetric matrix satisfying the ellipticity condition: K−1|y|2 ≤
A(x)x · y ≤ K|y|2 ∀ x, y ∈ Rn(K ≥ 1). Moreover, we'll assume that A has
Lipschitz regularity:

|A(x)− A(y)| ≤ L

ρ0

|x− y| (6)

and the lower order coe�cient is essentially bounded:

‖c‖L∞(Rn) ≤
κ

ρ2
0

(7)

The Cauchy problem that will be on our minds is the following: given f ∈
L2(Rn), F ∈ L2(Rn;Rn), g ∈ H

1
2 (Σ), ψ ∈ H−

1
2 (Σ), we would like to �nd

u ∈ H1(Ω) such that u|Σ = g in the trace sense and
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ˆ
Ω

(A∇u ·∇φ− cuφ) dx =

ˆ
Σ

ψφ−
ˆ

Ω

fφ−F ·∇φ dx ∀ φ ∈ H1
co(Ω∪Σ) (8)

Note that the above is a generalization of the rigorous weak formulation of
the Cauchy problem given by

div(A∇u) + cu = f in Ω
u = g in Σ
A∇u · ν = ψ in Σ

(9)

4.2 Main result

In what follows, we are going to assume that:

‖f‖L2(Rn) +
1

ρ0

‖F‖L2(Rn;Rn) ≤
ε

ρ2
0

(10)

and also the following bounds on the Cauchy data:

‖g‖
H

1
2 (Σ)

+ ρ0‖ψ‖H− 1
2 (Σ)
≤ η (11)

Bearing the above in mind, we have the:

Theorem 3 (Stability in the interior). Let u ∈ H1(Ω) be a (weak) solution to
(8), and Σ be a Lipschitz portion of Ω satisfying the conditions in De�nition
1 and De�nition 2. Suppose also that we assume the a priori bound:

‖u‖L2(Ω) ≤ E0 (12)

There exists h such that for every 0 < h < h, and for every G ⊂ Ω such that:

dist(G, ∂Ω) ≥ h ; dist(P,G) <
ρ1

8M0

(13)

where P ∈ Σ is the point appearing in De�nition 2, we have:

‖u‖L2(G) ≤ C(ε+ η)δ(E0 + ε+ η)1−δ (14)

for some constantes δ ∈ (0, 1) and C > 0.
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4.3 Ideas of the proof

The proof is strongly based on a single building block: the three spheres
inequality. The proof of (14) happens in four steps:

(i) Three spheres inequality

We prove the above mentioned three spheres inequality, which for our
situation comes modelled as follows:

Theorem 4 (Three spheres inequality). Let u ∈ H1(BR) be a weak
solution to the inhomogeneous elliptic equation

div(A∇u) + cu = f + divF in BR (15)

Then, for every r1 < r2 < r3 < R, there exist constants α ∈ (0, 1) and
C > 0 such that

‖u‖L2(Br2 ) ≤ C(‖u‖L2(Br1 ) + ε)α(‖u‖L2(Br3 ) + ε)1−α (16)

The proof for this fact in turn happens again in four steps, where we
obtain several versions of three spheres inequality, each corresponding
to an equation which is a particular case of (15). These equations are
as follows:

� (Homogeneous in pure principal part) div(A∇u) = 0 in BR

� (Complete homogeneous equation) div(A∇u) + cu = 0 in BR

� (Complete equation with right hand side) (15)

It should be noted however that the three above results are only guar-
anteed with the restriction that the radii must satisfy r1 < r2 <

r3
K
≤ r3.

Nevertheless, the last result above will be enough for us to prove the
second step below, and using the second step itself we remove the re-
striction on the radii and conclude the proof of Theorem 4.

(ii) Estimates of propagation of smallness

As a consequence from the proof of (i), we obtain estimates on how
smallness propagates for solutions of (15), that is, we assume that u
is small in some ball Br0(x0) inside the domain, and then we estimate
how small u is in some larger connected open set G ⊂ Ω.
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(iii) Extension

Given u solution to a Cauchy problem with data on a portion Σ of
Ω, we extend u to a larger open set containing Ω obtaining a new
function ũ. The extension is such that ũ also solves an equation in the
augmented domain, but now with a di�erent right hand side, which in
turn is controlled by the original Cauchy data.

(iv) Conclusion

We apply the estimates of propagation of smallness to the extended
function on the new open set.
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5 Quantitative propagation of smallness for so-

lutions of elliptic equations

After Alexander Logunov and Eugenia Malinnikova [LM1]

A summary written by Gautam Neelakantan Memana

Abstract

In this section we show that smallness for solutions to ellitpic PDE
in divergence form with Lipschitz coe�cents can be propogated to a
larger set by proving a logarithmic convexity property like the classical
three spheres theorem.

5.1 Introduction

It is a classical result that log |f | of a holomorphic function f on C is sub-
harmonic (and hence for gradients of real valued harmonic functions in R2).
But this does not hold in higher dimensions. However, for a harmonic func-
tion (also solutions to reasonable uniformly elliptic PDE Lu = 0) we have
a logarithmic convexity property, known as the three spheres theorem. The
theorem claims that

sup
B
|u| ≤ C

(
sup
1
2
B

|u|
)γ (

sup
2B
|u|
)1−γ

, (1)

where B = {x ∈ Rn; |x| ≤ 1}, the constants C > 0 and γ ∈ (0, 1) depend
only on the elliptic operator L and do not depend on u.

The main aim of this paper is to prove the the three spheres lemma for
much more general sets than spheres, which will imply the propogation of
smallness of a solution to an elliptic PDE in divergence form with Lipschitz
coe�cients. Moreover, the paper proves a similar three spheres theorem for
gradients of the solutions, which was not even known for a harmonic function
in Rn, n ≥ 3.
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The setting.

De�nition 1. The Hausdor� content of a set E ⊂ Rn is

CdH(E) = inf

{∑
j

rdj : E ⊂ ∪jB(xj, rj)

}
, (2)

and the Hausdor� dimension of E is de�ned as

dimH(E) = inf
{
d : CdH(E) = 0

}
.

One of the reasons why the Hausdor� content is used over Hausdor�
measure in the main theorem is that it is always �nite for bounded sets.
Moreover, the Hausdor� content of order n is equivalent to the lebesgue
measure.

De�nition 2. For a cube Q in Rn let s(Q) denote its side length and let tQ
be the cube with same centre as Q and such that s(tQ) = ts(Q). Suppose that
20nQ ⊂ Ω. We de�ne the doubling index of a function u in the cube Q by

N(u,Q) = sup
x∈Q,r≤s(Q)

log
supB(x,10nr) |u|
supB(x,r) |u|

.

This de�ntion is slightly di�erent from the standard de�nition of doubling
index for balls as we take the supremum over all cubes contained in Q. The
de�nition implies the following useful estimate. Let q be a subcube of Q and
K = s(Q)

s(q)
≥ 2. Then

sup
q
|u| ≥ cK−CNsup

Q
|u|, (3)

where N = N(u,Q), c and C depend only on n. Assume that u is a solution
of an elliptic equation in the diveregence form in a bounded domain Ω ⊂ Rn,

div(A∇u) = 0, (4)

where A(x) = [aij(x)]1≤i,j≤n is a symmetric uniformly elliptic matrix with
Lipschitz entries,

Λ−1
1 ||ζ||2 ≤ 〈Aζ, ζ〉 ≤ Λ1||ζ||2, |aij(x)− aij(y)| ≤ Λ2|x− y|. (5)
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Let m, δ, ρ be positive numbers. Suppose a set E ⊂ Ω satis�es

Cn−1+δ
H (E) > m (see (2)), dist(E, ∂Ω) > ρ.

Let κ be a subset of Ω with dist(κ, ∂Ω) > ρ . Then, the main result the
paper is the following

Theorem 3. There exist C, γ > 0, depending on m, δ, ρ, A,Ω only such that

sup
κ
|u| ≤ C

(
sup
E
|u|
)γ(

sup
Ω
|u|
)1−γ

(6)

for any solution u of div(A∇u) = 0 in Ω.

Remark 4. Now, if sup
Ω
|u| = 1 and sup

E
= ε, then (6) can be rewritten as

sup
K
|u| ≤ Cεγ. (7)

The techniques used to prove the above theorem were also used in the
seminal papers [L1], [L2], [LM2].

Main tool. The technique of using doubling indices developed in [L1],
[L2], [LM2] is the important idea in the proof (see 2). It is very useful
in estimating the Hausdor� measure of zero sets of elliptic equations. The
following lemma about the doubling index is crucially used in the proof of
the main theorem

Lemma 5. ([L2]) Let u be a solution div(A∇u) = 0 in Ω. There exist pos-
itive constants s0, N0, B0 that depend only A,Ω such that if Q is a small
enough cube contained in Ω with sidelength < s0, and Q is divided into
Bn equal cubes subcubes with B > B0, then the number of subcubes q with
N(u, q) ≥ max

(
1
2
N(u,Q), N0

)
is less than Bn−1−c, where c depends only on

the dimension n.

5.2 Reformulation of the main theorem

Theorem 3 is a local result, so we can formulate an equivalent local version
of the same.
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Proposition 6. Let Ω be a bounded domain in Rn, A satisfy (5) and δ
and m be positive. There exists C, γ > 0, depending on A,Ω,m and δ such
that the following holds. Suppose that u is a solution to div(A∇u) = 0 in
Ω ⊃ (10n2)Q and E ⊂ 1

20n
Q satisfy Cn−1+δ

H (E) ≥ ms(Q)n−1+δ, then

sup
Q
|u| ≤ C

(
sup
E
|u|
)γ (

sup
10n2Q

|u|
)1−γ

. (8)

The constants 10n and 20n2 are only for technical purposes. Once we
prove the above proposition we can get the main theorem from standard argu-
ments. First, �nd a suitable cube Q with 10n2 ⊂⊂ Ω and Cn−1+δ

H ( 1
20n

)Q∩E >
0. Now, with the help of Proposition 6 we can propogate the smallnes from
E to the cube Q. Then, with the help of the three spheres theorem and the
standard Harnack chain argument allows us to propogate the smallnes from
Q onto the whole of K ⊂⊂ Ω.

Then, it just remians to prove the Proposition 6 and it follows from the
following lemma. All the important ideas of estimates of zero sets, sub level
sets and the estimates for doubling index are used in the proof of the lemma.

Lemma 7. Suppose that div(A∇u)−0 and supQ |u| = 1. Let N = N(u,Q) ≥
1. Set as above

Ea = {x ∈ 1

2
Q : |u(x)| < e−a}.

Then

Cn−1+δ
H (Ea) < Ce−βa/Ns(Q)n−1+δ,

for some C, β > 0 that depend on A, δ only.

For the talk I will concentrate on trying to prove this lemma.
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6 Nodal sets of eigenfunctions on Riemannian

manifolds

After H. Donnelly and C. Fe�ermann[DF]

A summary written by Germán Miranda

Abstract

We present two results about nodal domains of eigenfunctions on
compact Riemannian manifolds. First result gives an upper bound
of the vanishing order of the eigenfunctions in a Riemannian manifold
with smooth metric. The second main theorem proves Yau's conjecture
in the case of real-analytic compact Riemannian manifolds.

6.1 Introduction

We consider M to be a n-dimensional compact connected Riemannian man-
ifold with C∞ Riemannian metric (in the second result, real-analyticity will
be required). Let −∆ be the Laplace-Beltrami operator on M , then ∆ is a
negative de�nite, self-adjoint and elliptic operator. Moreover, its spectrum
consists of negative isolated eigenvalues of �nite multiplicity accumulating
only to −∞. We assume that M has no boundary.

De�nition 1. Let F be a real eigenfunction of −∆ with eigenvalue λ > 0,
the nodal set N of F is de�ned as follows

N := {x ∈M : F (x) = 0}. (1)

The �rst theorem follows the ideas introduced in [A] to give a vanishing
order upper bound of Laplace-Beltrami eigenfunctions.

Theorem 2. LetM be a n-dimensional compact connected Riemannian man-
ifold with C∞ Riemannian metric, and F be a real eigenfunction of −∆, then
F vanishes at most to order c

√
λ, for any point in M , where c is a suitable

positive constant.

The second main result is the proof of Yau's conjecture for real analytic
manifolds.
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Theorem 3. Let M be a real analytic n-dimensional compact connected Rie-
mannian manifold with real analytic metric, then the nodal set N of a real
eigenfunction F of −∆ with eigenvalue λ sastis�es

c1

√
λ ≤ Hn−1(N) ≤ c2

√
λ,

where c1, c2 are positive constants and Hn−1(N) denotes the n−1 dimensional
Hausdor� measure of N .

Below, we will present the main tools and ideas needed to prove Theorem
2 and Theorem 3.

6.2 Proof sketch of Theorem 2

The main idea of the proof is the usage of inequalities relating the growth of
the eigenfunctions on large balls to their vanishing order in small balls. We
will �rst get local results which will be extended using the compactness of
M .

As before, let F be an eigenfunction of −∆ with eigenvalue λ > 0. We
consider some geodesic ball B(p, h0) and work on geodesic polar coordinates
(r, t).

Using a suitable local conformal change in the metric and volume element,
and doing partial integrations in the radial and spherical variables one can
obtain the following stronger version of a Carleman estimate. Let u be a
smooth function supported in δ

2
< r < h, with h < h0 small enough,

ˆ ˆ
r̄2(2−β)|(∆ + λ)u|2r−1drdt

≥ B9β
2

ˆ ˆ
r̄2−2βu2r−1drdt+ C9δβ

2

ˆ ˆ
r̄−1−2βu2r−1drdt, (2)

where r̄ is a weight function comparable to the geodesic distance r from
p in B(p, h0) (related to the conformal change mentioned before) and β >
a1

√
λ+ a2 with a1, a2 being su�ciently large constants. Jacobi �elds' theory

guarantees that all the constants appearing in (2) depend only on h0 and an
upper bound for the absolute values of the sectional curvatures in B(p, h0).

In order to apply equation (2) to F , we introduce a cut o� function sup-

ported in an annulus δ
(

1− 1
10β

)
< r̄ < 2

3
h, and de�ne u = θF . Assuming
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also that β > a3 log
(
maxr≤h |F |/maxh/10≤r≤h/5 |F |

)
and using standard el-

liptic theory to bound the L∞ norm of F by a multiple of its L2 norm, one
gets

D1β
3δ−2β max

(1− 1
β

)δ≤r̄≤(1+ 1
β

)δ
|F |2 + (D2λ+D3)

(
h

2

)2(2−β)

max
h/4≤r̄≤3h/4

|F |2

≥ (D4λ+D5)−n/2
(
h

3

)2(2−β)

β2 max
h/12≤r̄≤h/4

|F |2. (3)

The additional assumption on β allows us to absorb the second term on the
left hand side on the right hand side and obtain

D1β
3δ−2β max

(1− 1
β

)δ≤r̄≤(1+ 1
β

)δ
|F |2 ≥ 1

2
(D4λ+D5)−n/2

(
h

3

)2(2−β)

β2 max
h/12≤r̄≤h/4

|F |2,

which applying standard estimates leads to

max
r≤δ
|F | ≥ (C13δ)

D13β max
h/10≤r≤h/5

|F |. (4)

By similar arguments, if β > a1

√
λ+ a2 + a3 log

(
maxr≤h |F |/maxr≤h/5 |F |

)
,

|F | ≤ 1 for r ≤ h, and maxr≤h/5 |F | ≥ exp(−D15

√
λ− C14) we have

max
r≤h/10

|F | ≥ exp(−D16

√
λ− C15). (5)

Finally, normalizing F to have ‖F‖∞ = 1, we obtain that |F | ≤ 1 and
F (x0) = 1 for some x0 ∈ M . Since M is connected, for an arbitrary x ∈ M
we can construct a chain of overlapping balls joining x0 and x with radius
h/5, whose centers at separated at most h/10. By compactness of M this
chain has a �nite number of balls. Using (5) inductively and replacing h by
h/20 we obtain

max
B(x,h/200)

|F | ≥ exp(−C4

√
λ− C5),

for any x ∈ M . This inequality tells us that β > a4

√
λ + a5 is enough to

ful�ll the conditions we had to obtain (5) for any point x ∈ M . Combining
(4) and (5) for an arbitrary point x ∈M we have for δ < ah,

max
B(x,δ)

|F | ≥ (C6δ)
C7

√
λ+C8 max

B(x,h/5)\B(x,h/10)
|F |. (6)

Theorem 2 from this inequality follows from this inequality.
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6.3 Proof sketch of Theorem 3

To prove Theorem 3 the main idea will be that an eigenfunction F of −∆,
with eigenvalue λ, on a real analytic manifold behaves like a polynomial of
degree c3

√
λ.

• Upper bound: Let P (x) be a non-zero polynomial of degree c3

√
λ

de�ned on Rn. Let V := {|x| < 1 : P (x) = 0} and L be the set of lines in Rn

intersecting |x| < 1, then we have that

Hn−1(V ) ≤
ˆ
L
|L ∩ V |dµ(L),

where L ∈ L and dµ is a measure on L. It is clear that |L∩V | ≤ c3

√
λ almost

everywhere (|L ∩ V | denotes the cardinality of L ∩ V ). Hence, Hn−1(V ) is
bounded by a a multiple of

√
λ.

F is not a polynomial but since −∆ is an elliptic operator with analytic
coe�cients, if we assume that our metric continues analytically into the com-
plex ball |z| < 2 we can extend F to an analytic function to |z| < 1 in Cn.
Moreover, we get the estimate

max
|z|<1
|F (z)| ≤ ec5

√
λ max
|x|<2
|F (x)|. (7)

Using an argument similar to the one used to prove Theorem 2, one can show
that

max
|x|<2
|F (x)| ≤ ec6

√
λ max
|x|<1/5

|F (x)|,

and combining the two previous equations we obtain an important growth
condition

max
|z|<1
|F (z)| ≤ ec4

√
λ max
|x|<1/5

|F (x)|. (8)

Integral geometry methods can be used to prove the upper bound. Again we
will use di�erent coordinate patches where our assumptions are ful�lled and
then use compactness of M to see that we need only a �nite number of them
to cover our manifold.
• Lower bound: By a maximum principle argument, we know that

every ball of radius d1/
√
λ contains a zero of F . Thus, we can get a family of

pairwise disjoint balls Bν = B(xν , d2/
√
λ) covering a �xed portion ofM , with

F vanishing at the centers xν . The number of balls is at least of magnitude
d3λ

n/2.
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The methods presented below can be discussed in a more intuitive way for
harmonic functions on Rn because the arguments are similar to the ones used
for eigenfunctions F on Bν . In our case, one can see that Bν is su�ciently
small with respect to the operator ∆ + λ, and this implies that Hn−1(Bν ∩
N) ≥ d5λ

−(n−1)/2 provided
ˆ
Qν
|F |2 ≤ c9

ˆ
Bν

|F |2, (9)

where Qν is a cube containing the double of Bν and with side a2

√
λ. Note

that (9) follows from the fact that a real analytic function G satisfying a
growth estimate like (8) and non-negative for real x ∈ Q, |xj| ≤ 1, where Q
is the standard cube centered at the origin, satis�es the following inequality

|logG(x)− logAvQνG| ≤ d8, (10)

where x ∈ Qν \ S and S ⊂ Q is a set of measure less than ε. The proof
of this is done by reducing it to the case when G is a polynomial and using
induction on the dimension n. The base case n = 1 turns out to be more
interesting than the induction step, since the weak type (1, 1) inequality for
the Hilbert transform is the key of the proof.

Applying (10) to G = F 2 we obtain (9) for at least half of the balls. Then

Hn−1(N) ≥
∑
Qν∈S

Hn−1(N ∩Bν) ≥ E9

√
λ,

where S is the set of cubes Qν such that Bν satis�es (10). This gives the
desired lower bound.
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7 Nodal sets of Laplace eigenfunctions: esti-

mates of the Hausdor� measure in the di-

mensions two and three

After A.Logunov, E.Malinnikova [1]

A summary written by Fred Lin

Abstract

We study the Hausdor� measure of the zero sets of the eigenfunc-
tion u of ∆M : ∆Mu + λu = 0. In [1], with a new combinatoric argu-

ment, they gave a upper bound in two dimension H1({u = 0}) . λ 3
4
−β

and lower bound in three dimension H2({u = 0}) & λα.

7.1 Introduction

Let ∆M be the Laplace operator on a compact n-dimensional Riemannian
manifold without boundary. Yau conjectured that the Hausdor� measure of
Nodal sets Eλ := {uλ = 0} of Laplace eigenfunctions uλ,∆Mu + λu = 0,
satisfy the following bound

Hn−1(Eλ) ∼ λ
1
2

The conjecture was proved by Donnelly and Fe�erman [2] under the assump-
tion that the Riemannian metric is real-analytic. As for the non-analytic
setting, in dimension two, Donnelly and Fe�erman [3] established the bound

H1(Eλ) . λ
3
4

Following the idea of Donnelly and Fe�erman, with a new combinatoric argu-
ment, Logunov and Malinnikova improved the upper bound a bit (This upper
bound is independent to the polynomial upper bound introduce later.)

H1(Eλ) . λ
3
4
−β

As for the lower bound, using the same combinatoric argument, in dimension
three, Logunov and Malinnikova showed that

H2(Eλ) & λα

39



7.2 Lower bound in three dimension

Here's a well-known trick. Let u be the solution to ∆M : ∆Mu + λu = 0,

consider h(ξ, t) := u(ξ)eλ
1
2 t, then h is harmonic on the product manifold

M := M × R. We work in a local geodesic coordinate, then the metric is
locally equivalent to the Euclidean one. Here we De�ne an important quan-
tity: Doubling index. For a function h and a cube q, we de�ne doubling
index N(h, q) by

ˆ
lq

|h(x)|2dx = 2N(h,q)

ˆ
q

|h(x)|2dx

We can establish some properties for this doubling index, for example, L∞ es-
timate, monotonicity of doubling index and estimate doubling index by wave-
length. Most of the properties of doubling index we take from other paper
such as [3]. We also de�ne maximal doubling index Ñ(h, q) := supq′⊆qN(h, q).
Next, we will establish a local Nodal set estimate

Hn−1{|x| ≤ r

2
, u(x) = 0} & rn−1N2−n

The last lemma we need is a estimation on the number of cubes with large
doubling index. Suppose we partition the cube q into B equal subcubes,

then at least half of these subcubes q' satisfy Ñ(h, q′) ≤ Ñ(h,q)
Bδ

, where δ is a
constant only depend on dimension.

The combinatoric argument is as following, we divide q into Y subcubes in
the �rst step. Let N0 := Ñ(h, q). We can show that if Y is large enough, then
at least one subcube q′ will have Ñ(h, q′) ≤ N0

2
, and the other bounded by

N0. Continue this process j times, then the number of cubes whose maximal
doubling index bounded by N0

2k0
is

∑
k≥k0

(
j

k

)
1k · (Y − 1)j−1

Let ξ1, ..., ξj be i.i.d random variable such that P (ξ1 = 1) = 1
Y
and P (ξ1 =

0) = 1− 1
Y
. Then since the expextation is 1

Y
and by the law of large number,

we have

P (

∑j
i=1 ξi
j

>
1

2Y
)

j→∞
−→ 1
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Hence, for j large enough, we have

1

2
≤ P (

j∑
i=1

ξi ≥
j

2Y
) =

∑
k≥ j

2Y

(
j

k

)
(Y − 1)j−k

Y j

That is, half of the subcubes whose Ñ is bounded by N0/2
j

2Y . Actually, we
can take δ to be the constant such that Y δ ≤ 2

1
4Y , then 2

j
2Y ≥ (Y j)δ, then

we have the desired result.
Now combine every estimate together. For Q ⊆ M where M is a three

dimension manifold. Let Q̃ := Q × I where the side length of I is equal to
the side length of Q. By Doubling index estimate, we have Ñ(h, Q̃) . λ

1
2 for

Q small enough. We then partition Q̃ into B small subcubes with side length
λ−

1
2 . Then |q̃| ∼ (λ−

1
2 )4 and B ∼ 1

|q̃| ∼ λ2. And by combinatoric argument

above, half of the small cube have doubling index bounded by λ
1
2

Bδ
∼ λ

1
2
−2δ.

In the scale of λ−
1
2 , the doubling index of h is comparable to doubling index

of u. Let q′ be the projection of q̃ on M . Then by the local nodal estimate,
we have

H2({u = 0} ∩ q′) & r2N−1 & (λ−
1
2 )2 · (λ 1

2
−2δ)−1 = λ−

3
2

+2δ

Note that now we are in the projection to a three dimension manifold. |q′| ∼
(λ−

1
2 )3. The number of such cubes are 1

2
cλ

3
2 . Hence,

H2({u = 0}) & (λ−
3
2

+2δ) · λ 3
2 = λ2δ

7.3 Upper bound in two dimension

The argument is roughly the same to the previous case. We �rst need a local
lower estimate for nodal set from [3]. For a square q with side length λ−

1
4 ,

we have
H1({u = 0} ∩ q) . Ñ(u, 100q)

1
2

Then we can play the similar combinatoric argument. Let Q be a cube and
we can partition Q into small cube q of side length λ−

1
4 . Again, consider

the harmonic extension h(ξ, x) := eλ
1
2 ξu(x) of u on Q̃ = Q × I. Choose an

integer j such that Y j ∼ λ
3
4 . Now we partition Q̃ into Y j subcubes with

sidelength λ−
1
4 . (This make sense since (λ−

1
4 )3 · λ 3

4 = 1.) Then with the fact
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that there are λ
1
4 q̃ project to the same q and N0 . λ

1
2 , we may play the

same combinatoric argument as above.

H1({u = 0} ∩Q) .
∑
q⊆Q

Ñ
1
2 (u, 100q) . λ−

1
4

∑
q̃⊆Q̃

Ñ
1
2 (h, 100q̃)

. λ−
1
4 (

j∑
k=0

(
j

k

)
(Y − 1)k(

N0

2j−k
)

1
2 )

= λ−
1
4 (

j∑
k=0

(
j

k

)
(Y − 1)kλ

1
4 (2−

1
2 )j−k)

= [(Y − 1) + 2−
1
2 ]j

Notice that Y j ∼ λ
3
4 and we may take a constant δ such that Y −1+2−

1
2 =

Y 1−δ. Hence
(Y − 1 + 2−

1
2 )j = λ

3
4

(1−δ) = λ
3
4
−β

which is the desired result.
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8 Nodal sets of Laplace eigenfunctions: poly-

nomial upper bounds for Hausdor� measure

After A. Logunov [Lo]

A summary written by Josep M. Gallegos

Abstract

We prove a polynomial upper bound for the (n−1)-Hausdor� mea-
sure of the zero set of eigenfunctions of n-manifolds.

8.1 Introduction

The main motivation of this work is to show the following upper bound on
the measure of the zero sets of eigenfunctions of compact C∞ manifolds.

Theorem 1. Let (W, g) be a compact C∞ smooth Riemannian n-manifold
without boundary. For a Laplace eigenfunction ϕ on W with ∆ϕ + λϕ =
0 de�ne its nodal set Zϕ := {ϕ = 0}. There exist C = C(W, g) and α,
depending only on the dimension n of W , such that

Hn−1 (Zϕ) ≤ Cλα

where Hn−1 is the (n− 1)-Hausdor� measure.

This result is a weak version of the upper bound in Yau's conjecture,
which states that α should be 1/2 for every dimension n.

8.2 Laplace eigenfunctions and harmonic functions

Although our motivation concerns eigenfunctions in manifolds, we will only
work with solutions of divergence form elliptic PDEs in Rn. Indeed, we will
use a standard trick to pass from Laplace eigenfunctions on the manifold W
to harmonic functions in the product manifold M = W × R, by

u(x, t) := ϕ(x) exp(
√
λt), x ∈ W, t ∈ R.

Note that Zu = Zϕ × R, so it su�ces to understand the behavior of nodal
sets of harmonic functions.
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Also, to work in Euclidean space, we will only consider small geodesic balls
Bg(O,R) and identify the Laplace operator of the manifold with a divergence
form elliptic operator in a �xed domain in Rn.

Now we introduce a very useful quantity for the study of growth proper-
ties of solutions of divergence form elliptic PDEs with Lipschitz coe�cients
(which is the case of the function u once we consider it in Rn).

De�nition 2. The doubling index of a ball B(x, r) ⊂ Rn is

N(x, r) = log2

(
sup2B |u|
supB |u|

)
.

The doubling index of a cube Q ⊂ Rn is

N(Q) = sup
x∈Q,

r∈(0,diamQ)

N(x, r).

Note that the de�nitions of doubling indices for balls and cubes are dif-
ferent! The doubling index of cubes is monotone which makes it more conve-
nient, but the doubling index of balls also satis�es some almost monotonicity
properties related to those of the frequency function (see [GL]).

8.3 Outline of results

In order to prove Theorem 1, we will prove the following result.

Theorem 3. There exist positive numbers r = r(M, g,O), C = C(M, g,O),
and α = α(n) such that for any harmonic function u on M and any cube
Q ⊂ B(O, r),

Hn−1(Zu ∩Q) ≤ C (diamQ)n−1Nα
u (Q),

where Nu(Q) is the doubling index of Q for the function u.

The proof of Theorem 1 follows from the Donnelly-Fe�erman doubling
index estimate (see [DF] ) which bounds the doubling index of u(x, t) =
ϕ(x) exp(

√
λt) by C1

√
λ, Theorem 3, and a �nite covering of the manifold

W by balls.
For the proof of Theorem 3, we require two (very important on its own)

lemmas: the simplex and hyperplane lemmas. These lemmas exploit some
additivity properties of the doubling index.
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Let x1, . . . , xn+1 be vertices of simplex S in Rn and x0 its barycenter.
Assume the simplex is not degenerated: there exists a > 0 such that width
of S divided by its diameter is larger than a.

Lemma 4 (Simplex lemma). Let Bi be balls with centers at xi and radii not
greater than K

2
diam(S), i = 1, . . . , n + 1, where K = K(a, n). There exist

positive numbers c = c(a, n), C = C(a, n) ≥ K, r = r(M, g,O, a), N0 =
N0(M, g,O, a) such that if S ⊂ B(O, r) and if N(Bi) > N for each xi, i =
1 . . . n + 1, where N is a number greater than N0, then N(x0, C diam(S)) >
N(1 + c).

This lemma states that if the doubling index of small balls centered at
the vertices of a non-degenerate simplex are all large (N(Bi) > N), then the
doubling index of a large enough ball B centered at the barycenter of the
simplex must be even larger (N(B) > (1 + c)N).

Lemma 5 (Hyperplane lemma). Let Q be a cube [−R,R]n in Rn. Divide Q
into (2A+1)n equal subcubes qi with side-length

2R
2A+1

. Consider the cubes qi,0
that have nonempty intersection with the hyperplane xn = 0. Suppose that for
each qi,0 there exists xi ∈ qi,0 and ri < 10 diam(qi,0) such that N(xi, ri) > N ,
where N is a given positive number. Then there exist A0 = A0(n), R0 =
R0(M, g,O), N0 = N0(M, g,O) such that if A > A0, N > N0, R < R0 then
N(Q) > 2N .

Let's discuss what this lemma states. Suppose you have a cube Q divided
into many, equally sized, small cubes (qi)i. Consider the set of cubes that
touch the hyperplane {xn = 0} and suppose all these cubes have large dou-
bling index (at least N). Then the original big cube must have much larger
doubling index (at least 2N).

Combining both lemmas, we can prove a result on the number of subcubes
of a cube with large doubling index, which is crucial for the proof of Theorem
3.

Theorem 6. There exist constants c > 0, an integer A depending on the
dimension d only, and positive numbers N0 = N0(M, g,O), r = r(M, g,O)
such that for any cube Q ⊂ B(O, r) the following holds: if we partition Q into
An equal subcubes, then the number of subcubes with doubling index greater
than max(N(Q)/(1 + c), N0) is less than 1

2
An−1.

45



The proof of Theorem 3 is now a consequence of Theorem 6 using as
starting point the Hardt-Simon exponential bound (see [HS]) which states
that

Hn−1(Zu ∩Q) ≤ C1N(Q)C2N(Q).

References

[DF] H. Donnelly and C. Fe�erman. Nodal sets of eigenfunctions on Reiman-
nian manifolds. Inventiones Math.(1998);93.

[GL] N. Garofalo and F.-H. Lin. Monotonicity properties of variational in-
tegrals, Ap weights and unique continuation. Indiana Uni. Math. J.
(1986);35(2):245�268.

[HS] R. Hardt and L. Simon. Nodal sets for solutions of elliptic equations.
J. Di�erential Geom.(1989);30 (2) 505 - 522.

[Lo] A. Logunov. Nodal sets of Laplace eigenfunctions: polynomial upper
estimates of the Hausdor� measure. Ann. of Math. (2) (2018);187 , no.
1, 221�239.

Josep M. Gallegos, Universitat Autònoma de Barcelona
email: jgallegos@mat.uab.cat

46



9 Nodal sets of Laplace eigenfunctions: proof

of Nadirashvili's conjecture and of the lower

bound in Yau's conjecture

After A. Logunov [L1]

A summary written by Lars Becker

Abstract

Let u be a harmonic function or an eigenfunction of the Laplace
operator on Rn. We prove lower bounds for the n − 1 dimensional
Hausdor� measure of the zero set of u.

9.1 Introduction

Let M be a C∞-manifold of dimension n and let B be a geodesic ball on M
of radius 1. We have the following theorem:

Theorem 1. There exists a constant c > 0, depending on M and B only,
such that for every harmonic function h on M that vanishes at the center of
B the following estimate holds:

Hn−1({h = 0} ∩B) ≥ c .

Consider an eigenfunction u of the Laplace operator onM with eigenvalue
−λ. Then h(x, t) = u(x) exp(

√
λt) is harmonic on B × [−1, 1]. By the

Harnack inequality the zero set of h is c/
√
λ dense in B× [−1, 1]. Combining

this with a scaled version of Theorem 1 one obtains the following lower bound
for the measure of the zero set of u:

Theorem 2. There exists c > 0 and λ0, depending on M and B only, such
that if λ > λ0 and u solves −∆u = λu then

Hn−1({u = 0} ∩B) ≥ c
√
λ .

For simplicity we will prove Theorem 1 only for M = Rn.
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9.2 The frequency function

For a harmonic function u we set H(x, r) =
´
∂B(x,r)

|u|2 dHn−1 and de�ne the
frequency function

β(x, r) =
rH ′(x, r)

2H(x, r)
=
r

2
log(H(x, r))′ . (1)

The frequency function β is increasing in r, see [M] Theorem 2.1. Using this
one can �nd a layer of size ∼ 1/ log2N where it is comparable to N :

Lemma 3. Let B(p, 2r) ⊂ B and assume that β(p, r) > 10. Then there
exists s ∈ [r, 3

2
r] and N ≥ 10 with

N ≤ β(p, t) ≤ eN

for all

t ∈ I := (s(1− 1

1000 log2(N)
), s(1 +

1

1000 log2(N)
)) .

9.3 Estimates near a maximum on a sphere

Let p, r, s and I be as in Lemma 3. In most of the proof we will work on
the spherical layer {|y − p| ∈ I}. We now collect some estimates that hold
there. Let x be a maximizer of |u| on ∂B(p, s) and de�ne K = |u(x)|. Fix
A = 106, δ ∈ [ 1

A log100N
, 1
A log2 N

] , s−δ = s(1− δ) and sδ = s(1 + δ).
By (1) we have for all r1 ≤ r2 ∈ I that(

r2

r1

)2N

≤ H(p, r2)

H(p, r1)
≤
(
r2

r1

)2eN

.

Using the mean value property of harmonic functions and the estimate of an
L2-norm by an L∞-norm this inequality implies estimates for the suprema of
|u| on balls:

Lemma 4. There exists c > 0 and C > 0 such that

sup
B(p,s−δ)

|u| ≤ CK2−cδN

and
sup
B(p,sδ)

|u| ≤ CK2cδN .
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The doubling index N (x, r) is de�ned by

2N (x,r) =
supB(x,2r)|u|
supB(x,r)|u|

.

We will use without proof the following fact from [L2]: For every ε > 0 there
exists C > 0 such that for every 2r1 ≤ r2 with B(x, r2) ⊂ B it holds that(

r2

r1

)N (x,r1)(1−ε)−C
≤

supB(x,r2)|u|
supB(x,r1)|u|

≤
(
r2

r1

)N (x,r2)(1+ε)+C

. (2)

Combining this with the previous lemma one obtains:

Lemma 5. There exists C > 0 such that

sup
B(x,δs)

|u| ≤ K2CδN+C

and for any x̃ with |x− x̃| ≤ δ
4
s

N (x̃,
δ

4
s) ≤ CδN + C

and
sup

B(x̃, δs
10N

)

|u| ≥ K2−CδN logN−C .

9.4 The doubling index

Given a cube Q we call

N(Q) = sup
x∈Q,r≤diamQ

log
supB(x,10nr)|u|

supB(x,r)|u|
the doubling index ofQ. We will need to �nd many cubes with small doubling
index. Iterating a result from [L1] one obtains the following statement:

Theorem 6. There exist constants c1, c2, C,N0 > 0 and a positive integer
A0, depending on the dimension only, such that for any cube Q ⊂ B the
following holds: If we partition Q into An equal subcubes, where A > A0,
then the number of subcubes with doubling index greater than

max
(
N(Q)2−c1 log(A)/ log log(A), N0

)
is less then CAn−1−c2.
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9.5 A tunnel with controlled growth

The next theorem is the main ingredient in the proof of Theorem 1.

Theorem 7. For B(p, 2r) ⊂ B and every harmonic function u on B the
following holds: If β(x, r) is su�ciently large then there is a number N with

β(p, r)/e ≤ N ≤ β(p,
3

2
r)

and at least b
√
Ncn−12c3 logN/ log logN disjoint balls B(xi,

r√
N

) ⊂ B(p, 2r) with

u(xi) = 0.

We sketch the proof of Theorem 7. Fix s,N from Lemma 3 and let
x be a maximizer of |u| on ∂B(p, s). We will always assume that N is
su�ciently large. Put δ = 1

108n2 log2N
. Consider a point x̃ ∈ ∂B(p, (1 − δ)s)

with |x − x̃| = δs, i.e. the nearest point to x on ∂B(p, (1 − δ)s). Let T be
a box such that x and x̃ are the centers of opposite sites of T and T has
one side of length |x − x̃| and n − 1 sides of length |x−x̃|

blogNc4 . We divide T

into b
√
Ncn−1 boxes Ti such that each has one side of length |x − x̃| and

n − 1 sides of length |x−x̃|
blogNc4b

√
Nc . Finally we decompose each Ti into cubes

qi,t, t = 1, . . . , blogNc4b
√
Nc, arranged so that d(x, qi,t) ≥ d(x, qi,t+1). The

boxes Ti are called tunnels.
Using Lemma 4 and Lemma 5 one can show that there exist c, C > 0

such that for all i

sup
1
2
qi,blogNc4b

√
Nc

|u| ≥ 2
c N

log2 N
−C

sup
1
2
qi,1

|u| . (3)

We partition T into equal cubes Qi, i = 1, . . . , blogNc4 with side length
|x−x̃|
blogNc4 . From Lemma 5 and (2) it follows that N(Qi) ≤ N for all i. Ap-

plying Theorem 6 with A = b
√
Nc to all cubes Qi then yields that the

total number of cubes qi,t with N(qi,t) > max
(

N
2c1 logN/ log logN , N0

)
is at most

Cb
√
Ncn−1−c2blogNc4 < 1

2
b
√
Ncn−1. We conclude that at least half of the

tunnels Ti have the following property:

N(qi,t) ≤ max

(
N

2c1 logN/ log logN
, N0

)
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for all t = 1, . . . , blogNc4b
√
Nc. We call such tunnels good. For each good

tunnel we have

log
sup 1

2
qi,t+1
|u|

sup 1
2
qi,t
|u| ≤ log

sup4qi,t+1
|u|

sup 1
2
qi,t
|u| ≤

N

2c1 logN/ log logN

for t = 1, . . . , blogNc4b
√
Nc − 1. If u has no sign change in qi,t ∪ qi,t+1

then the same estimate holds with C on the right hand side, by the Harnack
inequality. On the other hand, by (3) we have that

log
sup 1

2
qi,blogNc4b

√
Nc
|u|

sup 1
2
qi,t
|u| ≥ c

N

log2N
− C .

Combining this one �nds that there exists c3 > 0 such that if Ti is a good
tunnel, then there are at least 2c3 logN/ log logN closed cubes qi,t that contain
a zero of u. Denote by x̃i,t a zero of u in qi,t. The cubes qi,t have diameter
∼ r/(

√
N log6N), hence each ball B(x̃i,t,

r√
N

) intersects at most CblogNc6n
other such balls. Choosing a maximal disjoint collection we thus �nd at least
2c
′
3 logN/ log logN balls B(x̃i,t,

r√
N

) with u(xi) = 0.

9.6 Conclusion of the proof of Theorem 1

In this section we complete the proof of Theorem 1. De�ne the function

F (N) = inf
Hn−1({u = 0} ∩B(x, ρ))

ρn−1
,

where the in�mum is taken over all balls B(x, ρ) ⊂ B and all harmonic
functions u on B such that u(x) = 0 and N(B) ≤ N . Here we denote by
N(B) the supremum of β(x, r) over all B(x, r) ⊂ B.

Theorem 8. There exists c > 0 with F (N) ≥ c for all positive N .

Proof. We �x u, ρ where the in�mum is almost attained: Hn−1({u = 0} ∩
B(x, ρ)) ≤ 2F (N)ρn−1. In [LM] it is shown that

Hn−1({u = 0} ∩B(x, ρ))

ρn−1
≥ c1

β(x, ρ
2
)n−1

≥ c2

Nn−1

if N(B(x, ρ
2
)) ≤ N , by inscribing a ball of radius ∼ ρ

N
in B(x, ρ

2
) where u is

positive and a ball of the same radius where u is negative.
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This estimate is good enough if N is bounded, hence we may assume
that N is su�ciently large. We will show that β(x, ρ

2
) is bounded, which

completes the proof by the last display. If β(x, ρ
2
) is su�ciently large, then we

can apply Theorem 7 for the ball B(x, 2r) = B(x, ρ) and �nd a number Ñ ≥
β(x, ρ

2
) and b

√
Ñcn−12c3 log Ñ/ log log Ñ disjoint balls B(xi, r/

√
Ñ) contained in

B(x, 2r) such that u(xi) = 0. For each i we know that

Hn−1({u = 0} ∩B(xi, r/
√
Ñ)) ≥ F (N)

(
r/
√
Ñ
)n−1

,

hence

Hn−1({u = 0} ∩B(x, ρ)) ≥ 2c3 log Ñ/ log log Ñ−c4F (N)ρn−1 .

This contradicts our choice of u and ρ if β(x, ρ
2
) is su�ciently large.
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10 The sharp upper bound for the area of the

nodal sets of Dirichlet Laplace eigenfunc-

tions

After A. Logunov, E. Malinnikova, N. Nadirashvili and F. Nazarov
[LMNN]

A summary written by Mario Stip£i¢

Abstract

It is conjectured that the Hausdor� measure of the zero set of the
Dirichlet Laplace eigenfunction in a domain Ω with eigenvalue λ can be
bounded with C(Ω)

√
λ. This paper proves that for a bounded domain

with C1 boundary. In fact, it strengthens this result to the Lipschitz
domain (and a non-analytic boundary).

10.1 Introduction

Let uλ be a solution of the equation ∆uλ + λuλ = 0 and Z(uλ) be its zero
set. If we were able to estimate the Hausdor� measure of this set, it would
be reasonable to expect

Hn−1(Z(uλ)) ∼
√
λ, (1)

where the constants from the upper and lower bound depend only on the
manifold where the Laplace operator is de�ned. The main result of these
authors is the upper bound of this type, given the Euclidean Laplace operator
and the Dirichlet boundary condition.

Theorem 1. Let Ω be a bounded domain in Rn with C1 boundary and let uλ
satisfy ∆uλ + λuλ = 0 and uλ|∂Ω = 0. Then,

Hn−1(Z(uλ)) ≤ C(Ω)
√
λ.

Donnelly and Fe�erman [DF] proved (1), where they observed compact
connected manifolds and the domains with real C∞-smooth boundary. From
their result, one can obtain the lower bound Hn−1(Z(uλ)) ≥ c(Ω)

√
λ given
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the setting from Theorem 1, for a su�ciently large λ and while not assuming
the Dirichlet boundary condition.

In comparison with the previous work of Logunov and Malinnikova, this
paper generalizes the result by working with a non-analytic boundary ∂Ω.
Speci�cally, the authors turn their attention to Lipschitz domains, de�ned
as follows.

De�nition 2. Let Ω be a domain in Rd, τ ∈ (0, 1), and let B = B(x, r)
be a ball centered on ∂Ω. We say that ∂Ω is τ -Lipschitz in B if there is an
isometry T : Rd → Rd and a function f : Bd−1(0, r)→ R such that T (0) = x,
f is a Lipschitz function with the Lipschitz constant bounded by τ , f(0) = 0,
and

Ω ∩B = T
(
{(y′, y′′) ∈ Bd(0, r) ⊂ Rd−1 × R : y′′ > f(y′)}

)
.

In this case we write ∂Ω ∩B ∈ Lip(τ).
We say that Ω is a Lipschitz domain with local Lipschitz constant τ if

there exists r > 0 such that ∂Ω ∩B(x, r) ∈ Lip(τ) for any x ∈ ∂Ω.

In several instances throughout the proof, as one observes a local property,
it is possible to assume that the operator T is the identity, and x+ εed ∈ Ω
for each 0 < ε < r, where ed is the unit vector in the direction of the last
coordinate axis.

The following theorem is a restatement of Theorem 1 in the context of
a Lipschitz domain. We can readily verify that it is also its generalization,
which is why we can focus on proving this statement.

Theorem 3. For each n, there exists τn > 0 such that the following state-
ment holds. Let Ω be a bounded Lipschitz domain in Rn with local Lipschitz
constant τn and let uλ satisfy ∆uλ + λuλ = 0 and uλ|∂Ω = 0. Then,

Hn−1(Z(uλ)) ≤ C(Ω)
√
λ.

10.2 Useful estimates

Let us state a few estimates that give us the control of the numerical values
that are a part of the proof of Theorem 3.
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10.2.1 Doubling index and its (almost) monotonicity

A doubling index Nh(x, r), of a non-zero harmonic function h ∈ C(Ω) in
B(x, r), x ∈ Ω, r > 0 is de�ned as

Nh(x, r) = log

´
B(x,2r)∩Ω

h2(y)dy´
B(x,r)∩Ω

h2(y)dy
.

When B(x, r) ⊂ B(x,R) ⊂ Ω, one can show the monotonicity property

Nh(x, r) ≤ Nh(x,R). (2)

We also have the almost monotonicity property in the Lipschitz domain.

Lemma 4. For any ε > 0 there exists τε > 0 such that if τ < τε, ∂Ω ∩
B(x,R) ∈ Lip(τ), x ∈ ∂Ω, and h ∈ C(Ω) is a non-zero harmonic function in
Ω that vanishes on ∂Ω∩B(x,R), then, for any x0 ∈ Ω∩B(x, R

4
) and r < R

16
,

Nh(x0, r) ≤ (1 + ε)Nh(x0, 2r).

10.2.2 Three ball inequalities

When B(x, 4r) ⊂ Ω, the inequality (2) implies

sup
B(x,3r/2)

|h| ≤ 2d( sup
B(x,r)

|h|)1/2( sup
B(x,4r)

|h|)1/2.

In case of the τ -Lipschitz boundary, the similar inequality follows by the
application of Lemma 4.

Theorem 5. Let B be a ball centered on ∂Ω such that ∂Ω ∩ B ∈ Lip(τ),
where τ is small enough. Then for any function h ∈ C(Ω) harmonic in Ω
and vanishing on ∂Ω ∩B, we have

sup
3
2
B0∩Ω

|h| ≤ 3d( sup
B0∩Ω

|h|)1/3( sup
4B0∩Ω

|h|)2/3

for any ball B0 with the center in Ω ∩ 1
4
B and such that 16B0 ⊂ B.
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10.2.3 Estimates of the Hausdor� measure of a restricted zero set

The desired inequality from Theorem 3 will follow from a somewhat di�erent
estimate, by observing the zero set localized on the ball and by the upper
bound expressed with the doubling index.

Theorem 6. Let Ω ⊂ Rd, x ∈ ∂Ω and r > 0 be such that ∂Ω∩B(x, 128r) ∈
Lip(τ), where τ is small enough. Then there exists C such that

Hd−1(Z(h) ∩B(x, r)) ≤ C(Nh(x, 4r) + 1)rd+1. (3)

for any non-zero function h ∈ C(Ω) that is harmonic in Ω and vanishes on
∂Ω ∩B(x, 128r).

The same inequality has been obtained by Donnelly and Fe�erman in
[DF] with the only assumption on Ω being B(x, 8r) ⊂ Ω and without the
requirement on the value of h on ∂Ω.

Interestingly, the inequality (3) is obtained by introducing the maximal
doubling index of h in the closed cube Q. In particular, if ∂Ω ∩B ∈ Lip(τ),
B is a ball centered on ∂Ω, h ∈ C(Ω) is a function harmonic in Ω and equals
zero on ∂Ω ∩B, for a closed cube Q ⊂ 1

32
B, Q ∩ Ω 6= ∅ we de�ne

N∗h(Q) = sup
x∈Q∩Ω,

diam(Q)
2
≤r≤diam(Q)

Nh(x, r).

For a particularly chosen number N , we can obtain an estimate for the
Hausdor� measure of a zero set restricted to the cube,

Hd−1(Z(h) ∩Q) ≤ C max{N∗h(Q), N}s(Q)d−1, (4)

where s(Q) is a side length of the cube Q.

10.3 A sketch proof of Theorem 3

The proofs of Theorems 6 and 3 involve introducing the construction of
additional objects in the following way.
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10.3.1 Boundary and inner cubes

Let k ≥ 3, let B be a ball centered in ∂Q and let Q ⊂ B be a cube with
sides parallel to the coordinate axes. Let us denote with π a projection onto
the hyperplane Rd−1 × {0}, and with {q1, . . . , qk(d−1)} a family of cubes of
side length 2−ks(Q) such that they partition π(Q) (we allow the nontrivial
intersection of their boundaries). A triple

(Q,Bk(Q), Ik(Q))

is called a standard construction and de�ned as follows. Each π−1(qi) is
a superset of a unique cube of a side length of 2−ks(Q) and a center in
∂Ω ∩Q; these cubes form a family Bk(Q) of boundary cubes. Also, each set
(π−1(qi) ∩ Ω ∩ Q)\(∪Q′∈Bk(Q)Q

′) can be covered with at most 2k cubes with
the same side length 2−ks(Q) and such that those cubes are also subsets of
the same set. The union of all of the covers is a family of inner cubes Ik(Q).

This construction helps us prove Theorem 6. Once we cover the ball
B(x, r) from (3) with cubes inside B(x, 2r), we apply (4) for the boundary
cubes, and Lemma 4 with a variant of Theorem 6 already proven in [DF]
for the inner cubes. The maximal doubling index for a boundary cube that
arose from (4) is controlled with the hyperplane lemmas. Depending if the
index is large enough, we can obtain a boundary cube of a smaller maximal
doubling index, or such that it does not intersect the zero set of h.

10.3.2 The harmonic extension of uλ

We will turn our attention to the extended function of uλ, de�ned as

h(x, t) = uλ(x)e
√
λt.

Clearly, h is a harmonic function with a domain Ω × R, and its zero set
is Z(h) = Z(uλ) × R. One of the reasons of studying h as the next step
is that, while estimating its doubling index in the ball, we can obtain the
multiplication factor

√
λ required in the estimate from Theorem 3.

The goal is to obtain a cover of a bounded set Ω × [−1, 1] ⊆ Rn+1 with
open balls for which we can apply Theorem 6. We choose the su�ciently
small balls Bj, 1 ≤ j ≤ J , centered in ∂Ω× [−1, 1] and that cover the closed
neighbourhood of the boundary ∂Ω × [−1, 1]. Also, we select small enough
balls B′k, 1 ≤ k ≤ K, that cover (Ω× [−1, 1])\(∪Jj=1Bj). The boundary balls
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Bj, just as the inner balls B′k, have the same radii, respectively, r1 and r2,
that depend only on the radius from the De�nition 2. Similarly, J and K
depend on the same radius, as well as Ω and the dimension n.

For each B(x, r) ∈ {Bj, B
′
k : 1 ≤ j ≤ J, 1 ≤ k ≤ k} we can show

Nh(x, 4r) ≤ C0(r,Ω)
√
λ.

This inequality and the estimate (3) give us

Hn(Z(h) ∩ (Ω× [−1, 1])) ≤
J∑
j=1

Hn(Z(h) ∩Bj) +
K∑
k=1

Hn(Z(h) ∩B′k)

≤ C(C0

√
λ+ 1)(Jrn1 +Krn2 ) ≤ C1

√
λ.

This gives

Hn−1(Z(uλ) ∩ Ω0) = Hn(Z(h) ∩ (Ω× [−1, 1])) ≤ C1

√
λ,

which is the inequality required in Theorem 3.
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11 On the continuity behaviour of the varia-

tional eigenvalues of the p-Laplace operator

After M. Degiovanni, M. Marzocchi [DM] and P. Lindqvist [PL]

A summary written by Sebastian Gietl

Abstract

We study the continuity behaviour of the variational eigenvalues of
the p-Laplace operator for varying p. We gonna see that that for an
arbitrary bounded domain we just have continuity from the right and
in the end will charaterize the continuity from the left.

11.1 Introduction

Throughout this summary let Ω be a bounded, open and connected subset of
Rn and 1 < p <∞. We are interested in the (non linear eigenvalue) problem−div(|∇u|p−2∇u) = λ|u|p−2u in Ω ,

u = 0 on ∂Ω .
(1)

We de�ne

λp = inf
u∈W 1,p

0 (Ω)

´
Ω
|∇u|pdx´

Ω
|u|pdx (2)

as the minimum of the Rayleigh quotient. When we interpret problem 1
in the weak sense with λ = λp it is equivalent to the minimization problem
given by 2. For p = 2 the value λp is the smallest possible eigenvalue of the
Laplace operator. For arbitrary p this leads to following generalized notion
of eigenvalues.

De�nition 1. We say λ ∈ R is an eigenvalue if there exists a continuous
u ∈ W 1,p

0 (Ω) with u 6= 0 s.t.ˆ
Ω

|∇u|p−2∇u · ∇v dx = λ

ˆ
Ω

|u|p−2uv dx ∀v ∈ W 1,p
0 (Ω) .

The function u is called an eigenfunction.

The eigenfunctions corresponding to λp are essentially unique (i.e. they
are constant multiples of each other). We will denote by up the unique
eigenfunction corresponding to λp which is positive and normalized ||up||Lp =
1.
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11.2 Limit from the right

In order to prove the continuity from the right we need the following propo-
sition.

Proposition 2. We have pλ
1
p
p ≤ sλ

1
s
s , when 1 < p < s <∞.

Proof. Choose any ψ ∈ C∞c (Ω) and de�ne φ = ψ
s
p . Then plugging in φ in

the Rayleight quotient together with the Hölder inequality gives us

λ
1
p
p ≤

(
´

Ω
|∇φ|pdx)

1
p

(
´

Ω
|φ|pdx)

1
p

=
s

p

(
´

Ω
|ψ|s−p|∇ψ|pdx)

1
p

(
´

Ω
|ψ|sdx)

1
p

≤ s

p

((
´

Ω
|ψ|sdx)1− p

s (
´

Ω
|∇ψ|sdx)

p
s )

1
p

(
´

Ω
|ψ|sdx)

1
p

=
s

p

(
´

Ω
|∇ψ|sdx)

1
s

(
´

Ω
|ψ|sdx)

1
s

.

Taking the in�mum over all admissible ψ yields the claim.

Now we can proof the continuity from the right.

Theorem 3. We have lims→p− λs ≤ λp = lims→p+ λs.

Proof. By Proposition 2 the quantity sλ
1
s
s is a monoton function in s, so it

has one-sided limits, therefore also the one-sided limits of λs exist. So we
have lims→p− λs ≤ λp ≤ lims→p+ λs. Now consider φ ∈ C∞c (Ω), then we have

lim
s→p+

λs ≤ lim
s→p+

´
Ω
|∇φ|sdx´

Ω
|φ|sdx =

´
Ω
|∇φ|pdx´

Ω
|φ|pdx .

Taking the in�mum over all admissible φ gives us lims→p+ λs ≤ λp and there-
fore also lims→p+ λs = λp

11.3 A domain with lims→p− λs < λp

In order to �nd a domain with lims→p− λs < λp we need a little bit of prepa-
ration. For any open set A ⊆ Rn and any compact set K ⊆ A we de�ne

capp(K,A) = inf
φ

ˆ
A

|∇φ|pdx,

where the in�mum is taken over all φ ∈ C∞c (Ω) s.t φ ≥ 1 in K, and call it
the p− capacity of (K,A).
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Now let x0 ∈ ∂Ω, we consider the auxiliary quantity

γp(x0, r) =
capp(Br(x0) \ Ω, B2r(x0))

capp(Br(x0), B2r(x0))

and de�ne the Wiener integral Wp(x0) =
´ 1

0
γp(x0, r)

1
p−1 r−1dr. The point x0

is called p-regular when Wp(x0) = ∞ and p-irregular otherwise. We need
the following two results. The Wiener criterion tells us that limx→x0 up(x) = 0
and the Kellog property gives us that the set of all irregular boundary points
has zero p-capacity.

Lemma 4. Suppose that 1 < p ≤ n. Then there is a compact set Fp ⊆ [0, 1)n

s.t. cappFp > 0 and capsFp = 0, when s < p. Moreover Fp can be constructed
as a Cantor set.

Now let Q = (−1, 1)n and consider Ω = Q \ Fp, therefore Fp lies in
the boundary of Ω. We want to show that for the domain Ω it holds that
lims→p− λs < λp.

To this end we will show that for s < p we have λQs = λΩ
s and λQp < λΩ

p ,
then because Q is regular we get lims→p− λ

Ω
s = lims→p− λ

Q
s < λΩ

p .
Now we want to see that λQs = λΩ

s . We always have that λQs ≤ λΩ
s . We

gonna show that because capsFp = 0 it holds that uQs ∈ W 1,s
0 (Ω), which

means that uQs is a admissable function for the Rayleigh quotient so we have
λΩ
s ≤ λQs .
Because capsFp = 0 it follows that for any ε > 0 there is φε ∈ C∞c (Q)

s.t. 0 ≤ φε ≤ 1, the function φε = 1 in an open neighborhood of Fp and
||∇φε||s < ε. From this we derive that (1− φε)uQs ∈ W 1,s

0 (Ω) and

||uQs − (1− φε)uQs ||W 1,s
0 (Ω) = ||φεuQs ||W 1,s

0 (Ω) → 0, ε→ 0.

Therefore uQs lies in W 1,s
0 (Ω).

It remains to show that λQp < λΩ
p . By the Kellog property the p-capacity

of those points in ∂Ω which are p-irregular is zero, but by construction the
p-capacity of Fp ⊆ ∂Ω is bigger than zero. So there has to be a point x0 ∈ Fp
which is regular, by the Wiener criterion this implies limx→x0 u

Ω
p (x) = 0.

Therfore we can modify uΩ
p (in a neighborhood of x0) s.t the modi�ed function

lies inW 1,p
0 and its Lp-norm gets strictly bigger than that of uΩ

p which implies,
by using the Rayleigh quotient, that λQp < λΩ

p .
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11.4 A characterization for continuity from the left

We want to prove the following theorem.

Theorem 5. We have, lim
s→p−

λs = λp if and only if

lim
s→p−

ˆ
Ω

|∇us −∇up|s dx = 0. (3)

The necessity of 3 for the continuity from the left was proven in [PL], however
for the other direction it was just proven that for each increasing sequence
(pk) of real numbers converging to p there is a subsequence and a function u
in

W
1,p−
0 (Ω) = W 1,p(Ω) ∩

(
∩1<s<pW

1,s
0 (Ω)

)
.

s.t. the integral in 3 converges. Now the trick in [DM] is to show that also
for this larger space similar things as for the space W 1,p

0 hold. Which enable
us to show that all those limits must coincide and u = up.

We have the following facts. The space W 1,p−
0 (Ω) is a closed subspace of

W 1,p(Ω), W 1,p
0 (Ω) ⊆ W

1,p−
0 (Ω) and (

´
Ω
|∇u|p dx)1/p is a norm on W

1,p−
0 (Ω)

equivalent to the one induced by W 1,p(Ω). When we de�ne

λp = inf
u∈W 1,p−

0 (Ω)

´
Ω
|∇u|pdx´

Ω
|u|pdx ,

then there exist a unique up ∈ W 1,p−
0 (Ω) s.t.

up ≥ 0 a.e. in Ω ,

ˆ
Ω

upp dx = 1 ,

ˆ
Ω

|∇up|p dx = λp. (4)

Similary to Proposition 2 we have that for 1 < s < p <∞ it holds that

sλ1/s
s ≤ sλ1/s

s < pλ1/p
p ≤ pλ1/p

p . (5)

With those facts we are ready to prove theorem 5

Proof. Now assume lims→p− λs = λp. Let (pk) be a sequence strictly increas-
ing to p and let 1 < t < p. We can assume that (upk) is weakly convergent
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to some u ∈ W 1,t
0 (Ω), because up to a subsequence pk > t and upk is uni-

formly bounded in W 1,t
0 (Ω). It follows u ∈ ⋂1<s<pW

1,s
0 (Ω). Moreover, it

holds u ≥ 0 a.e. in Ω ,
´

Ω
up dx = 1 and for every s < p,

ˆ
Ω

|∇u|s dx ≤ lim inf
k→∞

ˆ
Ω

|∇upk |s dx ≤ Ln(Ω)1− s
p

(
lim
k→∞

λpk

) s
p
.

By the arbitrariness of s, we infer that u ∈ W 1,p(Ω), hence u ∈ W 1,p−
0 (Ω),

with λp ≤
´

Ω
|∇u|p dx ≤ limk→∞ λpk . It follows, since by the inequalities in

5 it is clear that lims→p− λs ≤ λp, thatˆ
Ω

|∇up|pdx = λp = lim
s→p−

λs = λp =

ˆ
Ω

|∇u|p dx .

Because the properties 4 determine the function uniquely we have u = up.
Therefore lims→p− us = up weakly in W 1,t

0 (Ω) for any t < p. In particular, it
holds lims→p−

´
Ω
|us+up

2
|s dx = 1 , whence lim infs→p−

´
Ω
|∇us+∇up

2
|s dx ≥ λp .

Using Clarkson's inequality we can derive

lim
s→p−

ˆ
Ω

|∇us −∇up|s dx = 0.

When we assume 3, by using the Hölder inequality, it follows for any t < p

ˆ
Ω

|∇up|tdx = lim
s→p−

ˆ
Ω

∇|us|tdx ≤ Ln(Ω)1− t
p

(
lim
s→p−

λs

) t
p

.

Now taking the limit t → p gives us λp ≤ lims→p− λs, which because of
theorem 3 implies the continuity from the left.
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12 A nodal domain property for the p-Laplacian

After M. Cuesta, D.G. De Figueiredo and J.-P. Gossez [CFG00]

A summary written by Lars Niedorf

Abstract

We show that any eigenfunction u ∈ W 1,p
0 (Ω) associated with the

second eigenvalue of the p-Laplacian on some bounded domain Ω ⊆ RN
admits exactly two nodal domains.

12.1 Introduction

Let Ω ⊆ RN be a bounded domain. Courant's nodal domain theorem [CH,
p. 451] states that the zero set of any eigenfunction u ∈ H1

0 (Ω) associated with
the k-th eigenvalue (counted with multiplicity) of the Laplacian −∆ divides
the domain Ω in at most k connected components, the nodal domains. For the
p-Laplacian ∆pu = div(|∇u|p−2∇u), Anane and Tsouli [AT, Cor. 1] proved
that any eigenfunction u ∈ H1

0 (Ω) associated with an eigenvalue λ smaller
than the k-th eigenvalue of ∆p, the number of associated nodal domains is
smaller than k.

For the second eigenvalue λ2 of the Laplacian, Courant's theorem implies
that any eigenfunction u admits exactly two nodal domains. In [CFG00],
Cuesta, De Figueiredo and Gossez proved an extension of that result for
eigenfunctions of the p-Laplacian. In fact, they proved a more general result
for points on a certain curve C along the Fu£ik spectrum Σp ⊆ R2 of the
p-Laplacian, which they constructed in a previous work [CFG99].

12.2 Preliminaries

Let 1 < p <∞. The Fu£ik spectrum Σp ⊆ R2 of the p-Laplacian on W 1,p
0 (Ω)

is the set of all (α, β) ∈ R2 such that{
−∆pu = α(u+)p−1 − β(u−)p−1 in Ω,

u = 0 on ∂Ω
(1)

has a nontrivial solution u ∈ W 1,p(Ω). Then λ ≥ 0 is an eigenvalue of the
p-Laplacian if and only if (λ, λ) ∈ Σp. Integrating the �rst equation of (1)
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against u shows that the �rst eigenvalue λ1 of the p-Laplacian is given by

λ1 = inf
u∈W 1,p

0 (Ω)\{0}

´
Ω
|∇u|p´
Ω
|u|p . (2)

The eigenvalue λ1 is simple, and admits an eigenfunction ϕ1 ∈ W 1,p
0 ∩C1(Ω)

with ϕ1 > 0 on Ω and
´

Ω
ϕp1 = 1. Thus the Fu£ik spectrum Σp clearly

contains the two lines {λ1} × R and R × {λ1}. Those two lines are isolated
from the rest of the Fu£ik spectrum Σp [CFG99, Prop. 3.4].

The construction of the curve C along the Fu£ik spectrum in [CFG99] is
carried out as follows. For s ≥ 0, we consider the functional Js : W 1,p

0 (Ω)→ R
given by

Js(u) =

ˆ
Ω

|∇u|p − s
ˆ

Ω

(u+)p, u ∈ W 1,p
0 (Ω),

and its restriction J̃s to the C1 Banach manifold

S =
{
u ∈ W 1,p

0 (Ω) :

ˆ
Ω

|u|p = 1
}
.

In the sense of the Lagrange multiplier theorem, we consider critical points of
J̃s. A function u ∈ S is called a critical point of J̃s if the (Fréchet) derivatives
satisfy J ′s(u) = tI ′(u) for some t ∈ R, i.e.,ˆ

Ω

|∇u|p−2∇u∇v − s
ˆ

Ω

(u+)p−1v = t

ˆ
Ω

|u|p−2uv (3)

for all v ∈ W 1,p
0 (Ω). This is equivalent to (1) for α = s + t and β = t, i.e.,

(s+t, t) ∈ Σp. Taking v = u in (3) yields that necessarily t = J̃s(u) whenever
u is a critical point. As an upshot, points in Σp on the parallel to the diagonal
passing through (s, 0) are exactly those of the form (s+ J̃s(u), J̃s(u)) with u
being a critical point of J̃s(u) (cf. Lemma 2.1 of [CFG99]).

To construct the curve C, the idea of [CFG99] is to �nd critical values of
J̃s by a mountain pass type theorem [CFG99, Prop. 2.5], which asserts that
a critical value of J̃s is given by the real number

c(s) = inf
γ∈Γ

max
u∈γ

J̃s(u) > λ1,

where Γ is the set of all continuous paths in S going from −ϕ1 to ϕ1, with
ϕ1 being the eigenfunction associated with λ1 from above. Varying s ≥ 0
yields a curve s 7→ (s + c(s), c(s)). The curve C is given by all those points
(s + c(s), c(s)), together with their symmetric counterparts (c(s), s + c(s))
with respect to the diagonal, which then of course also lie in Σp.
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R× {λ1}

{λ1} × R

Σp

(s+ c(s), c(s))

s

C

12.3 Results

The main results of [CFG00] are the following.

Theorem 1. Let u ∈ W 1,p(Ω) be a nontrivial solution of (1) with (α, β) ∈ C.
Then u admits exactly two nodal domains.

Corollary 2. Any eigenfunction u ∈ W 1,p
0 (Ω) associated with the second

eigenvalue λ2 of the p-Laplacian admits exactly two nodal domains.

Since C passes in particular through the point (λ2, λ2), cf. [CFG99, Thm 3.1],
Corollary 2 is an immediate consequence of Theorem 1.

12.4 Structure of the proof

The proof works by contradiction. Suppose that Ω admits at least three
nodal domains Ω1,Ω2,Ω3 such that u > 0 on Ω1 ∪ Ω3 and u < 0 on Ω2.
We can assume α ≥ β without loss of generality by passing from u to −u
if necessary. Let s = α − β. In view of the mountain pass type theorem in
[CFG99, Prop. 2.5], we seek to construct a path γ ∈ Γ such that

max
u∈γ

J̃s(u) < β = c(s). (4)

This would lead to a contradiction by the de�nition of c(s). The construction
of that path works in two steps.
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Step 1

Using the fact that the decomposition of Ω into nodal domains arises from the
zero set of a C1 function, the implicit function theorem provides a connected
open subset

Ω2 ( Ω̃2 ⊆ Ω

which is disjoint of Ω1 or Ω3 [CFG00, Claim 3.1]. Since Ω2 ( Ω̃2, we have
λ1(Ω̃2) < λ1(Ω2) [CFG99, Lem. 5.7], where λ1(O) denotes the �rst eigenvalue
associated with the p-Laplacian on a bounded domain O. Hence, since Ω1

and Ω2 are nodal domains, we have

λ1(Ω1) = α and λ1(Ω̃2) < λ1(Ω2) = β

Then we pass to two new open disjoint subsets Ω̃1 and
≈
Ω2 by decreasing Ω̃2

and increasing Ω1 a little bit so that

λ1(Ω̃1) < α and λ1(
≈
Ω2) < β.

Let v1 and v2 be the positive eigenfunctions associated with those eigenvalues.
Put v = v1 − v2. Then, by (2),´

Ω
|∇v+|p´
Ω
|v+|p < α and

´
Ω
|∇v−|p´
Ω
|v−|p < β.

Step 2

In the second step, we use the function v to construct the desired path γ
from −ϕ1 to ϕ1 satisfying (4). The path γ is given by

− ϕ1
−ν
 
−v−
‖v−‖p

γ3 
v

‖v‖p
γ1 

v+

‖v+‖p
γ2 

v−

‖v−‖p
ν
 ϕ1. (5)

The paths γ1, γ2, γ3 are given by a convex combination of the respective
endpoints. For instance,

γ1(t) =
tv + (1− t)v+

‖tv + (1− t)v+‖p
, t ∈ [0, 1].

Then the functional J̃s evaluated on each of the paths γ1, γ2, γ3 is < β, with
being < β − s at the endpoint v−/‖v−‖. On the other hand, by Lemma 3.6
of [CFG99], any connected component of the sublevel set

O = {u ∈ S : J̃s(u) < β − s}
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contains a critical point, which can only be ±ϕ1, since by Theorem 3.1 of
[CFG99], the point (s+ c(s), c(s)) is the �rst non-trivial point on the parallel
to the diagonal through (s, 0) (see the picture). Using the fact that any
connected component of O is pathwise connected [CFG99, Lem. 3.5] yields
a path ν from v−/‖v−‖p to −ϕ1 or ϕ1 (say ϕ1 without loss of generality).
In particular, the functional J̃s evaluated on the path ν is < β − s. Since
|J̃s(u)− J̃s(−u)| ≤ s for all u ∈ S,

J̃s(−u) ≤ Js(u) + s < β − s+ s = β.

Hence J̃s stays < β along the path −ν from −ϕ1 to −v−/‖v−‖p. As an
upshot, the functional J̃s along the path γ in (5) stays at level < β, which is
(4), and �nishes the proof.
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13 Nodal Domains via Di�usion Processes

After Georgiev and Muckherjee [2]

A summary written by Jacob Denson

Abstract

We describe the theory of Itô di�usions on compact manifolds,
and it's application by Georgiev and Muckherjee to the study of the
geometry of nodal sets to the Laplace-Beltrami operator on manifolds.

Let Md be a compact Riemannian manifold, and let eλ ∈ C∞(M) be
an eigenfunction for the Laplacian, such that ∆eλ = −λ2eλ. Our goal is
to use the theory of stochastic di�usions to study asymptotic properties of
nodal domains Dλ, open connected components of {x ∈ M : eλ(x) 6= 0}, as
λ→∞. In particular, we show it is impossible to �t Dλ in a O(λ−1) tubular
neighborhood of a `�at' embedded surface Σλ ⊂ M . Steinerberger [6] gave
the �rst version of this result using di�usion. Here we discuss a more robust
result, using similar techniques, due to Georgiev and Muckherjee [2].

Theorem 1. Let M be a Riemannian manifold. Then there exists c > 0
such that for any λ > 0, if Σλ is a smooth surface in M of dimension k such
that for any x ∈ M with d(x,Σλ) ≤ λ−1, there exists a unique point on Σλ

closest to x, then no nodal domain Dλ is contained in a c · λ−1 neighborhood
of Σλ for all λ > 0.

Why should we expect the theory of di�usions to give us information
about nodal sets? A major reason is that eigenfunctions to the Laplace-
Beltrami operator behave well under the heat equation, i.e. if et∆ are the pro-
pogators for the heat equation ∂t = ∆ on M , then (et∆eλ)(x) = e−λ

2teλ(x).
The heat equation mathematically describes the distribution of particles dif-
fusing through a medium in which they are subject to random molecular
bombardments. The theory of di�usions in probability gives an alternate
mathematical model of this situation, so it is reasonable that applying the
theory will bring light upon the theory of eigenfunctions. In particular, we
will see that it gives us a theory of exit times, that give us a way to study
the rate of propogation of a di�usion process.
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13.1 Probabilistic Tools

Let us begin by introducing the probabilistic machinery required to describe
Itô di�usions. We work over a �xed probability space S, and study a con-
tinuous stochastic process on S, valued in a space M . There are three useful
ways to think of such a process. The �rst is as a Borel-measurable function
X from S to C([0,∞),M), intuitively, a random continuous path on M .
The second is as a family of variables {Xt : t ∈ [0,∞)}. The third is as a
law which describes how random variables in the `future' depend on random
variables in the past, which leads to the study of the conditional operators
Ex[f(X)], de�ned for x ∈ M and a random statistic f(X) associated with
the process X, which give the average value of the statistic given that we
start the process at the state x, i.e. we let X0 = x, and then let the process
evolve according to the law de�ning the process.

The most basic Itô di�usion is Brownian motion. A one-dimensional
Brownian motion B is a continuous stochastic process on R such that for
any interval I = [t, s], the increments ∆IB = Bs − Bt are mean zero, vari-
ance s− t Gaussian random variables, and for any almost disjoint family of
intervals {I1, . . . , In} in [0,∞), the random variables {∆I1B, . . . ,∆InB} are
independent. A Brownian motion on Rd is precisely a continuous process
whose coordinates are independent one-dimensional Brownian motions.

By tweaking Brownian motion locally, we end up with a more general
Itô di�usion. Suppose that for each x ∈ Rd, we are given a d × d positive
semide�nite symmetric matrix A(x). Then we obtain a continuous process
X de�ned by the law given by the stochastic di�erential equation

dX = A(X)dB.

The formal de�nition of this di�erential equation is quite technical, but for
our purposes, the equation means that there a Brownian motion B such that

Xt+δ = Xt + A(Xt) · [Bt+δ −Bt] + o(δ),

where the o(δ) term is a random variable with mean o(δ), and with L3 norm
O(δ). As one might expect, one can analogously de�ne Itô di�usions on
a compact manifold M given a section A of Hom(TM), which will satisfy
analogous formulae. Thus the di�usion acts like Brownian motion, except
that instead of acting radially, it spreads out unevenly from a point x in the
directions dictated by the extent of the matrix A(x).
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Now we connect di�usions to semielliptic di�erential operators. For any
di�usion X, we can associate such an operator L, known as the generator
of the di�usion, and this is a one to one correspondence. As an example,
Brownian motion on Rd has ∆/2 as it's generator. This motivates us to
de�ne Brownian motion on a manifoldM as a process generated by ∆/2, i.e.
half the Laplace-Beltrami operator. This correspondence becomes useful in
several scenarios. First, for any f ∈ C2(M), we have

lim
t→0

Ex[f(Xt)]− f(x)

t
= (Lf)(x).

To see how L emerges, use the approximation Xt = x + A(x)Bt + o(t) and
expand f(Xt) in a Taylor series about x. On a sample by sample basis,
the �rst order terms in the expansion of f(Xt) will behave badly, on the
order of O(t1/2), since Brownian motion is non-di�erentiable everywhere. But
thankfully these terms vanish in the expectation since B is highly oscillatory.
The second order terms will involve squares of Brownian motion, and the
fact that E0[B2

t ] = t implies that these terms will have expected value O(t).
Higher order terms will be O(t3/2), and thus not a�ect the value of the limit
as t → 0. Dynkin's formula follows formally from this calculation by time-
homogeneity and the fundamental theorem of calculus, implying that for any
time T (possibly a random time, provided it is an `integral stopping time'),

Ex[f(XT )] = f(x) + Ex
[ˆ T

0

(Lf)(Xs) ds

]
.

To test Dynkin's formula, if B is a Brownian motion on Rn, T is the �rst
time that B exits an open ball of radius R about the origin (an exit time,
which will always be an integrable stopping time for any bounded open set),
and if f(y) = |y|2, then f(XT ) = R2 and (∆/2)f = n, so

R2 = Ex[f(XT )] = f(x) + Ex
[ˆ T

0

n ds

]
= n · Ex[T ].

Thus we see that on average Brownian motion di�uses a distance O(R) in R2

units of time. It is interesting to note that if R is su�ciently small, one can
perform a similar calculation for Brownian motion on a Riemannian manifold
with the exit time of a geodesic ball. If x is �xed, and f(y) = d(x, y)2 is
the geodesic distance to x, then one can show (see Section 2.4 of [5]) that
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(∆/2)f(x)−n is proportional to the rate of volume expansion in the manifold
at the point x. Thus we expect Brownian motion to di�use more slowly in
positively curved regions (with a negative rate of expansion), and faster in
regions of negative curvature (with positive rate of expansion).

The correspondence also applies in the reverse manner, giving the Feynman-
Kac formula and it's variants; if f is a function on M , and we de�ne
u(x, t) = Ex[f(Xt)], then u is the solution to the partial di�erential equation
∂tu = Lu on M , with initial conditions f . We can also consider boundary
value problems. IfD is a bounded region of Rd, and τD = inf{t > 0 : Xt 6∈ D}
is the exit time for D, then the Dynkin formula tells us that the unique so-
lution to the Dirichlet problem Lv = −h on D with boundary conditions φ
on ∂D is given by

v(x) = Ex[φ(XτD)] + Ex
[ˆ τD

0

h(Xt) dt

]
.

One can also solve the heat equation ∂tu = Lu with absorbing boundary
conditions u(x, t) = 0 for x ∈ ∂D, and initial condition u(x, 0) = f(x) by
setting u(x, t) = Ex[f(Xt)χt], where χt = 1 if t < τD, and χt = 0 otherwise
(we kill paths that reach the boundary and are `absorbed'). There is also a
way to consider solutions to the heat equation with an insulating boundary,
i.e. �nding a solution to ∂tu = ∆u such that ∂u/∂η = 0 on ∂D by considering
a re�ecting Brownian motion which `bounces o� the boundary' instead of
being killed.

13.2 Nodal Sets Via Brownian Motion

Let us use the theory we have introduced to prove Theorem 1. Let eλ be
an eigenfunction, and Dλ a nodal domain of eλ. We may assume without
loss of generality that eλ is positive on Dλ. Consider two solutions p(x, t)
and u(x, t) to the heat equation on Dλ, with initial conditions p(x, 0) = 0,
u(x, 0) = eλ(x), and with boundary conditions p(x, t) = 1 and u(x, t) = 0 for
x ∈ ∂Dλ. The Feynman-Kac formula tells us that

p(x, t) = 1− Ex[χt] = Px[t > τλ] and u(x, t) = Ex[eλ(Bt)χt].

where χt = I(t ≤ τλ), and τλ = inf{t > 0 : Bt ∈ Dc
λ} is the exit time of Dλ.

If x0 ∈ Dλ maximizes eλ on Dλ, then

e−λ
2teλ(x) = u(x, t) = Ex[eλ(Bt)χt] ≤ eλ(x0)Ex[χt] = eλ(x0)(1− p(x, t)).
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In particular, p(x0, t) ≤ 1−e−λ2t, so Px0 [τλ ≥ tλ−2] ≥ e−t. Thus E[τλ] & λ−2,
and the heuristic di�usion rate of Brownian motion therefore leads us to be-
lieve that x0 lies roughly & λ−1 from ∂Dλ. If we had M = Rd, this would
immediately yield a contradiction if Dλ was contained in a c · λ−1 neighbor-
hood of a k dimensional plane Σ, because we have a strong quanti�cation
of this heuristic; if B′ is the projection of Brownian motion onto the d − k
dimensional plane normal to Σ, then a result due to Kent [3] implies that for
any ε > 0, there is c > 0 such that

P0

(
sup

0≤t≤λ−2

|B′t| ≤ c · λ−1

)
≤ ε.

Letting c corresponding to ε = (1/2)e−1 gives a contradiction, since then

e−1 ≤ Px0 [τλ ≥ λ−2] ≤ P0

(
sup

0≤t≤λ−2

|B′t| ≤ c · λ−1

)
≤ (1/2)e−1.

Extending this to the non-Euclidean setting is not too di�cult. Given a gen-
eral k dimensional hypersurface Σ on a manifold M satisfying the assump-
tions of the result we are trying to prove, we suppose that Dλ is contained
in a c · λ−1 neighborhood Uλ of Σλ. The �atness assumptions imply that
we can �nd a normal coordinate system φ on a 2c · λ−1 neighborhood of Σλ

using geodesics. Then φ(Σλ) is a k dimensional plane, and φ(Uλ) is a c · λ−1

neighborhood of this plane. Because the Euclidean and Riemannian metrics
are comparable, Brownian motion on M should behave in coordinates anal-
ogously to Brownian motion on Rd. The rate of di�usion of both processes
leads us to believe the behaviour should be similar up to times c ·λ−2, before
which both Brownian motions are highly unlikely to leave the neighborhoods
Uλ and φ(Uλ). Thus our proof can be completed by an application of the
following `comparison result' for hitting times, which is Theorem 2.2 of [2].

Theorem 2. Let Md be a compact Riemannian manifold, and consider an
open geodesic ball B ⊂ M around a point x0 with radius r smaller than the
injectivity radius of M . Let (U, φ) be a chart on M with B ⊂ U , and suppose
that the metric of M is comparable to the Euclidean metric in the coordinates
φ. Fix a compact set K ⊂ B. Let B1 be a Brownian motion on M , and B2

be a Brownian motion on Rd. If τ1 denotes the time that B1 exits K, and τ2

denotes the time that B2 exits φ(K), then for any c > 0, there exists C > 0
such that

(1/C) · P(τ2 ≤ cr2) ≤ P(τ1 ≤ cr2) ≤ C · P(τ2 ≤ cr2).
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14 Large time behavior of solutions of Trudinger's

equation

After R. Hynd and E. Lindgren [HL]

A summary written by Ilseok Lee

Abstract

We investigate the large time behavior of the solution of Trudinger's
equation with Dirichlet boundary condition using monotonicity prop-
erties corresponding to Poincare inequality and dual Poincare inequal-
ity.

14.1 Introduction

For p ∈ (1,∞), let v : Ω× (0,∞)→ R be a solution of Trudinger's equation
with Dirichlet boundary condition

∂t(|v|p−2v) = ∆pv in Ω× (0,∞)

v = 0 on ∂Ω× [0,∞)

v = g on Ω× {0}
(1)

where g : Ω→ R is a given initial value function. The large time behavior of
the solution will be investigated by studying its compactness and monotonic-
ity properties and by considering the homogeneity of Trudinger's equation.

The solution of (1) has the following monotonicity property

d

dt

[‖Dv(·, t)‖pLp(Ω)

‖v(·, t)‖pLp(Ω)

]
≤ 0. (2)

Thus it would be expected that the �ow (1) is related to the Poincare in-
equality

λp‖u‖pLp(Ω) ≤ ‖Du‖
p
Lp(Ω) for u ∈ W 1,p

0 (Ω) (3)

where λp is the largest constant c satisfying c‖u‖pLp(Ω) ≤ ‖Du‖
p
Lp for each

u ∈ W 1,p
0 (Ω). Extremal functions satisfy (3) with equality. Also note that a

function u ∈ W 1,p
0 (Ω) is extremal for (3) if and only if u satis�es{

−∆pu = λp|u|p−2u in Ω

u = 0 on ∂Ω
(4)
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Another monotonicity property of the solution of (1) is

d

dt

[ ‖|v(·, t)|p−2v(·, t)‖qLq(Ω)

‖|v(·, t)|p−2v(·, t)‖qW−1,q(Ω)

]
≤ 0 (5)

where q = p
p−1

is the Holder conjugate of p. (5) implies that (1) improves
how |v(·, t)|p−2v(·, t) satis�es the inequality

µp‖f‖qW−1,q(Ω) ≤ ‖f‖
q
Lq(Ω) for f ∈ Lq(Ω) (6)

as t increases where µp := λ
1
p−1
p . (6) is called the dual Poincare inequality as

equality holds if and only if f = |u|p−2u where u is extremal for the Poincare
inequality (3).

De�nition 1. Assume g ∈ Lp(Ω). A weak solution of (1) is a function
v : Ω× [0,∞)→ R that satis�es:
(i) v ∈ L∞([0,∞);Lp(Ω)) ∩ Lp([0,∞);W 1,p

0 (Ω));
(ii)

´∞
0

´
Ω
|v|p−2vψtdxdt =

´∞
0

´
Ω
|Dv|p−2Dv ·Dψdxdt for each ψ ∈ C∞c (Ω×

(0,∞));
(iii) v(·, 0) = g.

Our main result regarding the large time behavior of the solution of (1)
is as follows.

Theorem 2. (i) Assume v is a weak solution of (1). Then the limit

u := lim
t→∞

e(
λp
p−1

)tv(·, t) (7)

exists in Lp(Ω) and u is extremal for (3). If u 6≡ 0, then v(·, t) 6≡ 0 for all

t ≥ 0 and µp = limt→∞
‖|v(·,t)|p−2v(·,t)‖q

Lq(Ω)

‖|v(·,t)|p−2v(·,t)‖q
W−1,q(Ω)

.

(ii) There is a weak solution v of (1) such that the limit (7) exists in

W 1,p
0 (Ω). If u 6≡ 0, λp = limt→∞

‖Dv(·,t)‖p
Lp(Ω)

‖v(·,t)‖p
Lp(Ω)

.

14.2 Sketch of proof of the theorem 2

To claim (i) of the theorem 2, we need a lemmas and a proposition.
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Proposition 3. Assume {vk}k∈N is a sequence of weak solutions of (1) with
vk(·, 0) = gk and supk∈N

´
Ω
|gk|pdx < ∞. There is a subsequence {vkj}j∈N

and v satisfying (i) of the de�nition 1 such that

vkj → v in Lploc([0,∞);W 1,p
0 (Ω)) and vkj → v in Cloc((0,∞);Lp(Ω))

∂t(|vkj |p−2vkj)→ ∂t(|v|p−2v) in Lqloc([0,∞);W−1,q(Ω))

Moreover, v is a weak solution of (1) with v(·, 0) = g, where |g|p−2g is a
weak limit of {|gkj |p−2gkj}j∈N in Lq(Ω).

Proof. See Proposition 2.8 of [HL].

Lemma 4. Suppose that for l, C > 0, select δ = δ(l, C) > 0 such that v is a
weak solution of (1) which satis�es

(i) ep(
λp
p−1

)t‖v(·, t)‖pLp(Ω) ≥ l for t ≥ 0, (ii) ‖v(·, 0)‖pLp(Ω) ≤ C,

(iii) ‖v+(·, 0)‖pLp(Ω) ≥ 1
2
l, and (iv)

‖|v(·,0)|p−2v(·,0)‖q
Lq(Ω)

‖|v(·,0)|p−2v(·,0)‖q
W−1,q(Ω)

< µp+δ.

Then ep(
λp
p−1

)t‖v+(·, t)‖pLp(Ω) ≥ 1
2
l for t ≥ 0.

Proof. See Corollary 3.3 of [HL].

By Corollary 2.3 of [HL], S := limτ→∞ e
p(

λp
p−1

)τ‖v(·, τ)‖pLp(Ω) exists. It is
trivial if S = 0. Thus suppose that S > 0. For an increasing sequence {sk}k∈N
of positive numbers converging to∞, de�ne vk(x, t) := e(

λp
p−1

)skv(x, t+sk) for
(x, t) ∈ Ω × [0,∞). Then vk is a weak solution of (1) for each k ∈ N. Also

‖vk(·, 0)‖pLp(Ω) = ep(
λp
p−1

)sk‖vk(·, sk)‖pLp(Ω) ≤ ‖g‖
p
Lp(Ω). Then the proposition 3

implies the existence of a subsequence {vkj}j∈N and weak solution v∞ such
that

vkj → v∞ in Cloc((0,∞);Lp(Ω)) and Lploc([0,∞);W 1,p
0 (Ω)) (8)

as j → ∞. Furthermore, v∞(·, 0) = u where |vkj(·, 0)|p−2vkj(·, 0) ⇀ |u|p−2u
in Lp(Ω). This weak convergence implies that

S = lim
j→∞

ˆ
Ω

||vkj(x, 0)|p−2vkj(x, 0)|qdx ≥
ˆ

Ω

||u|p−2u|qdx = ‖u‖pLp(Ω) (9)

(8) implies that for all t > 0,

S = ep(
λp
p−1

)t lim
j→∞
‖vkj(·, t)‖pLp(Ω) = ep(

λp
p−1

)t‖v∞(·, t)‖pLp(Ω). (10)
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Di�erentiating (10) in time gives

0 = (
p

p− 1
)ep(

λp
p−1

)t(λp‖v∞(·, t)‖pLp(Ω) − ‖Dv∞(·, t)‖pLp(Ω))

for almost every t ≥ 0. As in the proof of Corollary 2.11 of [HL], this actually

holds for every t ≥ 0. Thus v∞(x, t) = e−p(
λp
p−1

)tu for each t ≥ 0 and u is an
extremal for (3) and S = ‖u‖pLp(Ω).

As the collection of extremals of the Poincare inequality (3) is one di-
mensional (see [SS]), it must be either u > 0 or u < 0 in Ω. Without loss
of generality, suppose u > 0. Applying the lemma 4 with l = S > 0 and
C := ‖g‖pLp(Ω). From above results, there exists j∗ such that vkj satis�es
hypotheses (ii)-(iv) in the lemma 4 for each j ≥ j∗. For (i), since S is the

in�mum of ep(
λp
p−1

)τ‖v(·, τ)‖pLp(Ω) over over τ > 0. Thus

ep(
λp
p−1

)(t+skj )‖v+(·, t+ skj)‖pLp(Ω) ≥
1

2
S (11)

for every t ≥ 0 and each j ≥ j∗.
Now suppose there is another increasing sequence {tm}m∈N of positive

numbers converging to ∞ such that limm→∞ e
(
λp
p−1

)tmv(·, tm) = −u in Lp(Ω).
Select a subsequence {tmj}j∈N such that tmj > skj for all j ∈ N. Substituting
t = tmj−skj in (11) gives ep(

λp
p−1

)tmj ‖v+(·, tmj)‖pLp(Ω) ≥ 1
2
S. Then j →∞ gives

‖(−u)+‖pLp(Ω) ≥ 1
2
S which is a contradiction to u being a positive function.

As S is independent of the sequence {sk}k∈N, the limit limt→∞ e
(
λp
p−1

)tv(·, t) =
u exists in Lp(Ω) and

lim
t→∞

‖|v(·, t)|p−2v(·, t)‖qLq(Ω)

‖|v(·, t)|p−2v(·, t)‖qW−1,q(Ω)

=
‖|u|p−2u‖qLq(Ω)

‖|u|p−2u‖qW−1,q(Ω)

= µp.

To prove (ii) of the theorem 2, assume v is a weak solution of (1) satisfying

‖Dv(·, t)‖pLp(Ω) ≤ ‖Dv(·, s)‖pLp(Ω) (12)

for a.e. t, s ∈ (0,∞) with t ≥ s. Let {sk}k∈N and vk as above for each k ∈ N.
From the proof of (i) above,

lim
k→∞

vk(·, t) = e−(
λp
p−1

)tu (13)
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exists in Lp(Ω) for each time t ≥ 0 where u is an extremal of (3). Applying
Corollary 2.11 of [HL] to vk, {‖vk(·, t)‖W 1,p

0 (Ω)}k∈N is bounded for each t ≥ 0

which implies that (13) holds weakly in W 1,p
0 (Ω) for all t ≥ 0. Then by

(8), (13) holds strongly in W 1,p
0 (Ω) for almost every t ≥ 0 for a subsequence

{vkj}j∈N. By (12), t 7→ ‖Dvk(·, t)‖pLp(Ω) is nonincreasing for each k ∈ N in
t ∈ [0,∞). Applying Helly's theorem (Lemma 3.3.3 in [AGS]), there is a sub-
sequence (again labeled) {vkj}j∈N such that h(t) := limj→∞‖Dvkj(·, t)‖pLp(Ω)

holds for every t ≥ 0. Then (13) implies that h(t) = ‖e−(
λp
p−1

)tDu‖pLp(Ω) for

a.e. t ≥ 0 and h(t) ≥ ‖e−(
λp
p−1

)tDu‖pLp(Ω) for all t ≥ 0.
Repeating the steps of part 4 of Proposition 2.8 in [HL], limj→∞‖Dvkj(·, t)‖pLp(Ω) =

‖e−(
λp
p−1

)tDu‖pLp(Ω) for every t ≥ 0. As (13) holds weakly in W 1,p
0 (Ω) at t = 0,

we have limj→∞ e
(
λp
p−1

)skj v(·, skj) = u inW 1,p
0 (Ω). Since {skj}j∈N was any sub-

sequence of arbitrary sequence {sk}k∈N, limt→∞ e
(
λp
p−1

)tv(·, t) = u in W 1,p
0 (Ω).

Finally, if u does not vanish identically then v(·, t) does not vanish identically
for all t ≥ 0 and

lim
t→∞

‖Dv(·, t)‖pLp(Ω)

‖v(·, t)‖pLp(Ω)

=
‖Du‖pLp(Ω)

‖u‖pLp(Ω)

= λp.
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15 Localization of low-lying eigenfunctions of

vibrating systems and landscape function

After M. Filoche and S. Mayboroda [FM]

A summary written by Mingyi Hou

Abstract

It is observed that low-lying eigenfunctions of the Schrödinger op-
erator concentrate on small subregions of the original domain. This
also happens to a wider range of elliptic operators. We will use a newly
de�ned landscape function to explain this phenomena.

15.1 Introduction

A puzzling feature found by physicists is that for certain vibrating systems
standing waves or vibrations are restricted in a small subregion of their orig-
inal domain even in the absence of con�ning force or potential. One famous
example is the so-called Anderson localization discovered in the '50s. Mathe-
matically it is the localization phenomena shown by low-lying eigenfunctions
of the Schrödinger operator. And it has been experimentally demonstrated
in optic or electromagnetic systems.

In general, a vibrating system is governed by a wave equation associated
to a suitable elliptic operator L. In the sequel, we consider a positive self-
adjoint elliptic di�erential operator L and look at its eigenfunctions

Lψ = λψ, ψ|∂Ω = 0. (1)

An amazing fact is that this localization phenomenon can be characterized
by the landscape function which is de�ned to be the solution to the following
Dirichlet problem

Lu = 1, u|∂Ω = 0. (2)

The essential idea is to look for all �valleys� of the landscape and use that
to partition the domain. Then the value of the landscape function on the
boundary of each subdomain is relatively small. Moreover, eigenfunctions
are controlled by this landscape function through the following inequality

|ϕ(x)| ≤ λu(x), ∀x ∈ Ω, (3)
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here ϕ is a normalized eigenfunction, i.e. ‖ϕ‖∞ = 1, and λ is the corre-
sponding eigenvalue. Hence restricted to a subdomain D, the eigenfunction
ϕ, roughly speaking, satis�es Lϕ = λϕ on D but with relatively small bound-
ary data on ∂D. We will show that this controls the behavior of ϕ. If ϕ is
localized in a subdomain D it has to be like an eigenfunction of L on D in
the sense λ almost coincides with an eigenvalue of L on D.

15.2 Discussion on valley networks

In this section, we discuss how to �nd �valleys�. For now assume a positive
landscape function exists. In the original paper, the authors use streamlines
to de�ne valleys, i.e. all �ow lines from saddle points to local minimums.
However, there are two problems here. The �rst is we may not have enough
smoothness for the landscape function. If only requiring bounded measurable
coe�cients we can only expect Hölder continuity. To handle the non-smooth
case, we may mollify the landscape and simply consider valleys from the
molli�ed landscape. Since our original landscape is continuous the value
should stay small in the valley. The Second point is that even if we have
smoothness there would be problems with the geometry, e.g. the landscape
is not necessarily a Morse function. There may exist degenerate critical points
or even �at parts. One possibility is to use the shortest height minimizing
path between two local minimums. While other technicalities would arise.

Another way to work around this problem is to use level sets. We can
imagine �lling water in the landscape. Then mountains will emerge and be
separated by water. While water would also cover some �ne structures of the
landscape. Therefore we should carefully choose a level so that we don't get
a trivial partition, e.g. there is only one mountain. As you will see in later
sections, di�erent partitions won't a�ect our two main results.

Besides, inequality (3) implies for an eigenvalue λ only the part where
u(x) ≤ 1/λ is meaningful. Hence we will de�ne e�ective valley network
N (λ) := {x ∈ Ω : u(x) ∈ N and u(x) ≤ 1/λ} where N is the valley network
discussed above. The connected components of the complement of N (λ) give
us the possible localization regions.

15.3 Constraints from the landscape

In this section we give rigorous proof for the inequality (3) in a more general
setting, i.e. including operators with order higher than 2. Assume Ω a
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bounded open set in Rn and L an elliptic di�erential operator associated to a
symmetric positive bilinear form B. For example the Laplacian L = −∆ with
B[u, v] =

´
Ω
∇u∇v dx and the Hamiltonian L = −∆ +V (x), 0 ≤ V (x) ≤ C,

with B[u, v] =
´

Ω
∇u∇v + V uv dx. In general, L is of order 2m, m ∈ N,

de�ned in the weak sense:ˆ
Ω

Luv := B[u, v], for u, v ∈ Hm
0 (Ω), (4)

where Hm
0 (Ω) is the Sobolev space of functions given by the completion of

C∞c (Ω) in the norm

‖u‖Hm
0 (Ω) := ‖∇mu‖L2(Ω).

Recall that the Lax-Milgram theorem ensures well-posedness, i.e. for
every f ∈ (Hm

0 (Ω))∗ =: H−m(Ω) the boundary value problem

Lu = f, u ∈ Hm
0 (Ω), (5)

has a unique solution in the weak sense.
We also de�ne the Green function of L by

LxG(x, y) = δy(x), where G(·, y) ∈ Hm
0 (Ω) for all y ∈ Ω, (6)

in the weak sense, so thatˆ
Ω

LxG(x, y)v(x) dx = v(y), y ∈ Ω, (7)

for every v ∈ Hm
0 (Ω). The existence of such a function is again guaranteed

by the Lax-Milgram theorem. It's easy to see that for a self-adjoint elliptic
operator, or equivalently a symmetric bilinear form, the Green function is
symmetric, i.e., G(x, y) = G(y, x).

The Fredholm alternative provides the framework to consider the eigen-
value problem so that equation (2) makes sense. Now we can formulate the
theorem

Theorem 1. Let Ω be a bounded open set, L be a self-adjoint operator on
Ω with bounded coercive bilinear form, and assume ϕ ∈ Hm(Ω) is an eigen-
function of L and λ is the corresponding eigenvalue. Then

|ϕ(x)|
||ϕ||L∞(Ω)

≤ λu(x), for all x ∈ Ω, (8)
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provided that ϕ ∈ L∞(Ω), with

u(x) =

ˆ
Ω

|G(x, y)|dy, x ∈ Ω. (9)

If the Green function is non-negative, then u is the solution to the boundary
value problem

Lu = 1, u ∈ Hm
0 (Ω). (10)

Proof. Just observe

ϕ(x) =

ˆ
Ω

ϕ(y)LyG(x, y) dy =

ˆ
Ω

Lyϕ(y)G(x, y) dy =

ˆ
Ω

λϕ(y)G(x, y) dy.

(11)

Remark 2. In particular, equation (9) is the general de�nition of a landscape
function.

Remark 3. The Green function is positive in Ω and eigenfunctions are
bounded if the maximum principle holds for L.

15.4 Localization on subdomains

In this section, we show how an eigenfunction is constrained by relatively
small boundary values. Consider a subregion D of the landscape of u de�ned
in section 2. By construction, u is relatively small along ∂D. Since we are
working with Sobolev functions we should understand this in the following
way: a function v ∈ Hm(D) satis�es v ≤ 0 on ∂D if v+ := max{v, 0} ∈ Hm

0 .
An eigenfunction ϕ of L in Ω with eigenvalue λ satis�es Lϕ = λϕ in D

with the same data as ϕ on ∂D. The smallness of this boundary data is
interpreted in the following way: de�ne the norm of the boundary data by
ε = ‖v‖L2(D), where v ∈ Hm(D) is such that ϕ − v ∈ Hm

0 (D) and Lv = 0
on D. Such v exists by the classical weak existence theory. If a maximum
principle holds for L then ε will be bounded by the norm of boundary data
given by λu which is relatively small. Furthermore, we can show the following
theorem.
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Theorem 4. Let Ω, L, ϕ, λ be as above. Suppose D is a subset of Ω and
denote by ε the norm of the boundary data of ϕ on ∂D. Then either λ is an
eigenvalue of L in D or

‖ϕ‖L2(D) ≤
(

1 +
λ

minλk(D){|λ− λk(D)|}

)
ε, (12)

where the minimum is taken over all eigenvalues of L in D.

Proof. Suppose λ is not an eigenvalue of D. Let v be as above and de�ne
w := ϕ− v then

(L− λ)w = λv on D. (13)

Claim

‖w‖L2(D) ≤ max
λk(D)

{
1

|λ− λk(D)|

}
‖λv‖L2(D). (14)

In our setting the eigenvalues of L are real, positive, at most countable, and
eigenfunctions of L, {ψk,D}k, form an orthonormal basis of L2(D). Moreover,
{ψk,D}k form an orthogonal basis of Hm

0 (D). Also for f ∈ Hm
0 (D) we can

write

f =
∑
k

ck(f)ψk, ck(f) =

ˆ
D

fψk dx. (15)

This series converges both in L2(D) and Hm
0 (D), and with norm ‖f‖L2(D) =

(
∑

k ck(f)2)1/2. These arguments follow from standard functional analysis
theory.

Therefore we have for λ not in the spectrum of L on D

‖(L− λ)w‖L2(D) =

∥∥∥∥∥∑
k

ck((L− λ)w)ψk

∥∥∥∥∥
L2(D)

, (16)

where

ck((L− λ)w) =

ˆ
D

(L− λ)wψk dx =

ˆ
D

w(L− λ)ψk dx (17)

= (λk(D)− λ)

ˆ
D

wψk dx = (λk − λ)ck(w). (18)
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Hence

‖(L− λ)w‖L2(D) =

∥∥∥∥∥∑
k

(λk(D)− λ)ck(w)ψk

∥∥∥∥∥
L2(D)

=

(∑
k

(λk − λ)2ck(w)2

)1/2

≥ min
λk(D)
|λk(D)− λ|

(∑
k

ck(w)2

)1/2

= min
λk(D)
|λk(D)− λ|‖w‖L2(D)

which proves the claim. Absorbing λ and replacing ‖v‖L2(D) by ε �nishes the
proof.

In conclusion, on one hand, if λ is far away from the spectrum of L in D,
the L2 norm of the eigenfunction is smaller than a quantity of order ε. On
the other hand, an eigenfunction can only be substantial in the subregion
when its eigenvalue almost coincides with one of the local eigenvalues of the
operator L in D. Consequently, an eigenfunction with a small eigenvalue
can cross the boundary of two adjacent subregions only if they have similar
local eigenvalues. Another case of delocalization is that, when λ increases,
the valley network will shrink so that subregions can be connected.

It is worth noting that this theorem is only an upper bound so it gives
us a restriction on where the localization can happen. Whether it happens
or not still depends on the operator itself.
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16 A variation estimate for eigenfunctions of

Schrödinger operators

After S. Steinerberger [S]

A summary written by Bruno Poggi

Abstract

A localized variation estimate is shown for the Dirichlet eigenfunc-
tions of Schrödinger operators L = −∆ + V with non-negative po-
tentials on bounded smooth domains, via the use of a probabilistic
interpretation. This estimate is used to give an implicit description of
a con�ning landscape. The relationship between this landscape and
the Filoche-Mayboroda landscape function u is analyzed, and certain
re�nements of the landscape function are considered.

16.1 Introduction

The localization of low-lying eigenfunctions for Schrödinger operators L =
−∆+V with certain random potentials V is a well-established phenomenon,
going back to Anderson [A]; however, understanding where these low-energy
eigenfunctions will localize in space without explicitly computing them has
been di�cult.

In 2012, Filoche and Mayboroda [FM] introduced the landscape function
u, which is the solution to the equation Lu = 1 in Ω with 0 Dirichlet bound-
ary conditions, and provided a simple computational method that strongly
suggests where the localization of the low-energy eigenfunctions can occur,
based on the locations of the critical points of u. Let us be a bit more detailed:
consider the graph of u over the domain as a landscape with many �peaks�
and �valleys�; then the valleys may be understood to induce a partition on
the domain. There is strong numerical evidence [FM] that the low-energy
eigenfunctions localize in one or at most a few elements of this partition in-
duced by the valleys of the graph of u. The numerical results further suggest
that the eigenfunctions undergo exponential decay when crossing from one
element of the partition to another.

The present paper [S] aims to re�ne these observations. In this paper,

� a localized variation estimate for eigenfunctions is shown,
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� it is studied how the landscape function u �ts into this framework,

� some possible re�nements of the landscape function are discussed.

16.2 A variation estimate for eigenfunctions

Let us state the main results more precisely now. Let Ω ⊂ Rn be a bounded
smooth domain and V : Ω→ R a non-negative function. Assume furthermore
that V ∈ C2(Ω) ∩ C(Ω); although this qualitative assumption technically
excludes �block potentials� which are merely L∞, the �rst few eigenfunctions
do not change too much if V is replaced by a suitable molli�cation of V .
Now let φ be an eigenfunction of L = −∆ + V , so that{

−∆φ+ V φ = λφ, in Ω
φ = 0, on ∂Ω,

for some λ > 0. Under our assumptions, we have that φ ∈ C2(Ω) ∩ C(Ω),
and the identity Lφ = λφ is true pointwise in Ω.

Theorem 1. Let Ω, V , φ be as above. There exists a universal constant
cn (depending only on dimension) so that the following holds: if, for some
c > 0,

V − λ ≥ c, or V − λ ≤ −c (1)

uniformly in the ball

B = B
(
x0,

cn√
c

√
λ

c
+ log

(
cn
‖φ‖L∞
|φ(x0)|

))
⊂ Ω,

then we have
supx∈B |φ(x)|
infx∈B |φ(x)| ≥ 2. (2)

If in (2) the ≥ sign is replaced by ≤, such an estimate is known as a
doubling estimate, which holds in certain situations where V ≡ 0. Thus
Theorem 1 gives an opposite result to a doubling estimate, suggesting that
across the ball B, the eigenfunction ought to at least double.

A main tool in the proof of Theorem 1 is a probabilistic description of the
eigenfunction which we now derive, using the Feynman-Kac formula which
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describes the action of the semigroup e−tL in terms of Brownian motion. For
an arbitrary function f , the Feynman-Kac formula states that

e−tLf(x) = Ex
(
f
(
ω(t)

)
e−

´ t
0 V (ω(s)) ds

)
, for t ≥ 0 and x ∈ Ω,

where the expectation Ex is taken with respect to the Brownian motion ω(·)
started at x, running for time t and stopped upon impact with the boundary.
On the other hand, if φ is an eigenfunction of L, then

e−tLφ = e−λtφ, for each t ≥ 0,

since eigenfunctions diagonalize the semigroup. We now combine these last
two equations for f ≡ φ to obtain the identity

φ(x) = Ex
(
φ
(
ω(t)

)
eλt−

´ t
0 V (ω(s)) ds

)
, for each t ≥ 0.

The proof of Theorem 1 is based on this identity. Theorem 1 can be improved
in two ways: �rst, by weakening the assumption (1) so that the inequalities
are assumed only `with respect to path integrals', and second, by rephrasing
the conclusion into the following nonlocal formulation (assuming that V ≥
λ):

φ varies locally by a constant factor on the scale ∼
√
tx, where

tx = inf
{
t > 0 : Ex

(
eλt−

´ t
0 V (ω(s)) ds

)
≤ 1

2

}
.

A similar result can be obtained if instead it is assumed that V ≤ λ.

16.2.1 Relation between the landscape function and the variation
estimate

Let us see how the variation estimate may be used to implicitly de�ne a
landscape. Pick a sequence of points {xj} ⊂ Ω and for each xj, compute txj
and draw balls around the points xj with radius

√
txj . Then, by the variation

estimate, we see that smaller balls correspond to faster growth/decay. We
may thus interpret that the �valleys� in the landscape correspond to regions
with smaller balls B(xj,

√
txj), while the �peaks� of the landscape correspond

to regions with larger balls B(xj,
√
txj). Since both

√
txj and u may be seen

as molli�cations of 1/V , it follows that the landscape generated in this way
will be very close to that of the landscape function of u described before.
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16.3 New landscape functions

The paper [S] also shows a way to obtain new landscape functions based on
an interation procedure. The Filoche-Mayboroda landscape function satis�es
the key estimate

|φ(x)| ≤ λu(x)‖φ‖L∞ , (3)

where φ is any eigenfunction of L with eigenvalue λ. The following theorem
gives a way to iterate this estimate to �nd new landscape functions satisfying
similar con�ning properties to the classical landscape function u.

Theorem 2. Suppose (−∆ + V )φ = λφ and h(x) satis�es

|φ(x)| ≤ h(x)‖φ‖L∞ ,

then the same inequality holds for h(x) replaced by

h1(x) = inf
t≥0

Ex
(
h(ω(t))eλt−

´ t
0 V (ω(s)) ds

)
= inf

t≥0
eλte−tLh(x)

Although Theorem 2 is quite general, computing e−tLu may be equally
di�cult (or even more di�cult) to computing the eigenfunction φ directly.
Thus new landscape functions which are computationally e�ective are also
considered in [S] for small eigenvalues, essentially by taking a simple cut-o�
of λu at 1 and then bootstrapping (3).
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17 Localization of eigenfunctions via an e�ec-

tive potential

After D. Arnold, G. David, M. Filoche, D. Jerison and S. May-
boroda [A+2016]

A summary written by Jaume de Dios Pont

Abstract

This work considers the localization of eigenfunctions for the op-
erator L = −∆ + V on a Lipschitz domain Ω and, more generally, on
manifolds with and without boundary. The main tool is the ability
of the landscape, de�ned as the solution to Lu = 1, to predict the
location of the localized eigenfunctions. Informally, the paper shows
that eigenfunctions of eigenvalue ≤ λ will be (essentially) supported
in a connected component of U−1 ≤ λ+ δ.

17.1 Introduction

Consider a quantum particle in a potential, evolving with the Schrodinger
evoluiton equation

i∂tψ = Lψ = −∆ψ + V ψ.

Where (note the unusual notation) L represents the Hamiltonian of the
system. The phenomenenon of Anderson localization in physics shows an
absence of di�usion of solutions to the Schrodinger evolution equation in
disordered media (random V ). An essentially equivalent fact is the spatial
localization of eigenfunctions of L := −∆ + V .

A key example to keep in mind is the case when V is constant on squares
of the form [k, k + 1] × [l, l + 1], taking values 0 or V with probability p. If
p is small, one could expect the quantum particles to di�use over time, since
the set V = 0 has a large connected component that percolates the whole
space. This, however, is not the case in the presence of disorder.

Classical approaches to study these phenomena involve a simultaneous
understanding of the randomness in V and the evolution equation. This work
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takes a di�erent direction, showing a way to deterministically construct an
e�ective potential that characterizes the localization of eigenfunctions of L.

17.1.1 The landscape function

The introduction of the landscape function will allow us to disentangle the
spectral and random parts of the problem (See Theorems 3 and 4 below for
the actual statements). We can informally sumarize the main results of the
paper as follows:

Theorem 1 ([A+2016, Theorems 2.1,2.2], Informal statement). Let L =
−∆ +V be a Schrodinger operator with a nonnegative potential, and u be the
landscape function, the solution to L(u) = 1. Let φλ be an eigenfunction of
L with energy (eigenvalue) λ. Then

� The function φλ is essentially supported on the setW≤λ := {x : u−1(x) ≤
λ} and decays exponentially fast outside of this set.

� The function φλ is in fact essentially supported on a conected compo-
nent of V≤λ unless there's anotherother eigenvalue λ′ very close to λ (a
ressonance).

In other words, the function w = u−1 acts like an e�ective potential bar-
rier that states with lower energy cannot cross.

17.1.2 Generalization to manifolds

While, for simplicity, the results in this summary (and all but the last section
of [A+2016]) are written for the manifold M = Rn/(KZ)n (with bounds
independent of the value of K), they can be extended to C1 manifolds (See
Section 6 of [A+2016])

17.2 Intuition behind the Landscape Function

17.2.1 An informal physics-inspired interpretation

The landscape function is able to capture the following two insights at once:
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Physics Insight 1: Quantum systems should have similar system to their
classical counterparts. In particular, most of the mass of an eigenfunction
of energy ≤ λ should be contained on the set {x : V (x) ≤ λ}. This fact
can be formally stated and proven, but is not strong enough to show that
localization occurs in systems like the random Bernoulli potential described
in the introduction. There, the set {x : V (x) ≤ λ} percolates to the whole
space for any λ ≥ 0 but the eigenfunctions are localized.

Physics Insight 2: Low energy eigenfunctions, by the uncertainty princi-
ple, must be delocalized in space. In particular, an eigenfunction of energy λ
should be roughly constant at scale λ−1/2, and should therefore see a blurred
version of V at scale at least λ−1/2. The e�ective potential w = u−1 asso-
ciated to the landscape function solves Lw−1 = 1 and is (by integrating by
parts) formally the solution to the optimization problem:

w = argminω−1∈H1

ˆ
M

(
V

ω
− 1

)2

dx+

ˆ
M

ω−4|∇ω|2dx

The �rst term in the minimization problem forces V and w to be as similar
as possible, while the second term forces the w to be smoother, especially at
low energy values (because of the w−4 term).

This smoothing turns out to be the key advantage of the Landscape func-
tion. Suitable variations of the theorems below still hold (with even easier
arguments) for ũ−1 = w̃ = V . The advantage of u−1 over V is that it can
create disconnected potential basins as sub-level sets even when the sub-level
set of the whole space is connected.

17.2.2 The energy identity

Integrating by parts one can show the following equality for the energy of a
quantum state:

ˆ
M

|∇f |2 + V f 2dx =

ˆ
M

1

u
f 2 + u2|∇(f/u)|2dx (∗)

as long as f, u, u−1 are in W 1,2 ∩ L∞. Lemma 4.1 in the paper gives a more
general identity. Before stating it, we need to give some notation:

Let 0 < c < m(x) < C be an L∞ density, and A be a bounded measurable
uniformly elliptic coe�cient matrix. De�ne L := − 1

m
div mA∇ + V the
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associated elliptic operator. Let ∇A := A1/2∇ so that, formally, in L2(mdx)
we have − 1

m
div mA∇ = ∇∗A∇A.

Lemma 2 ([A+2016, Lemma 4.1]). Assume that f and u (with L(u) = 1)
belong to W 1,2(M), that V , f , and 1/u belong to L∞(M), and that u satis�es
Lu = 1 weakly on M . Then

ˆ
M

(|∇Af |2 + V f 2)mdx =

ˆ
M

(
u2 |∇A(f/u)|2 +

1

u
f 2

)
mdx.

From this one already deduces that if f is an eigenfunction of eigenvalue
λ (normalized in L2(m · dx)) of L then

ˆ
M

u−1f 2mdx ≤ λ

and by Markov's inequality most of the mass of f 2 must be contained in the
set where w . λ. This, however, is still much weaker than the statements of
Theorem 1.

17.3 Localization Estimates I: Agmon distance

Given a non-negative continuous weight w on M , and a continuous elliptic
matrix we de�ne a (possibly degenerate) distance on M via the degenerate
Riemannian metric g = wA−1, by

ρw(x, y) := inf
γ(x→y)

ˆ 1

0

(w(γ(t)〈γ′(t), A(γ(t))−1γ′(t)〉) 1
2dt

where infγ(x→y) denotes the in�mum over all paths joining x to y. The main
property of ρw that will be needed is that the function

ρw(x,E) = inf
e∈E

ρ(x, e)

is Lipschitz and |∇Aρ(x,E)| ≤ w. This is in general true for any function
that is 1−Lipschitz with respect to the ρw metric. Our weight w(x) will be
the "energy defect" at x, that is

wλ(x) = min(1/u− λ, 0)

We shall also specialize the set E to the case E = E(λ) = {x : V (x) ≤ λ}.
With this specializations, one can show the following result:
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Theorem 3 ([A+2016, Theorem 2.1]). Let φ be an eigenfunction of L, Lφ =
λφ on M . Let

h(x) = ρwλ+δ
(x,E(λ+ δ))

be the e�ective distance to the sub-level set (the Agmon distance), and let
V = ‖V ‖∞ Then

ˆ
h≥1

eh
(
|∇Aφ|2 + V φ2

)
mdx ≤ 18e

V
2

δ

ˆ
M

φ2mdx. (1)

17.4 Localization Estimates II: Projection to energy wells

approximately diagonalizes

The analysis on the previous section does not prevent eigenfunctions from
having their mass in multiple connected components of E(λ + δ). If, in
the most extreme example, there is a high multiplicity eigenvalue, any lin-
ear combination of eigenfunctions will give rise to (potentially delocalized)
eigenfunctions. This turns out to be (essentially) the only possibility:

Assume E(µ + δ) =
⋃
lEl, with Agmon distance between Ei and Ej

(i 6= j) at least S. Let Ωl be the S/2-neighbourhood of El (again, in the
Agmon distance).

Let Π(a,b) be the spectral projection for L in L2(M), and Πloc
(a,b) be spec-

tral projection for L in L2(
⋃
lEl) =

⊕
l L

2(El) (with Dirichlet boundary
conditions). Then, the main result states that:

Theorem 4. If φ is an eigenfunction of L with eigenvalue λ on M and
λ ≤ µ− δ, then

‖φ− Πloc
(λ−δ,λ+δ)φ‖2

2 ≤ 300

(
V

δ

)3

e−S/2‖φ‖2
2. (2)

Similarly, if ψ = ψl,j is a localized eigenfunction of L restricted to Ej with
eigenvalue µ = µl,j ≤ µ− δ, then

‖ψ − Π(µ−δ,µ+δ)ψ‖2 ≤ 300

(
V

δ

)3

e−S/2‖ψ‖2.

In other words, that eigenfunctions of L in all of M are linear combina-
tions of localized eigenfunctions with similar eigenvalues, and viceversa. If
the spectral gap at λ is large enough, this shows that φ is supported essen-
tially in a single component of E(µ+ δ).
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18 On fundamental solutions of generalized Schrödinger

operators

After Z. Shen [S99]

A summary written by Cole Jeznach

Abstract

We highlight some elements of the proof of the exponential decay
(in the Agmon metric) of the fundamental solution of Schrödinger
operators of the form −∆ + µ. As a consequence, one obtains the
boundedness of the operators ∇(−∆ + µ)−1/2 and (−∆ + µ)iγ for
γ ∈ R on Lp(Rn, dx), p ∈ (1,∞).

18.1 Introduction and the Main Theorem

We consider the Schrödinger operator

−∆ + µ, in Rn, n ≥ 3 (1)

where µ is a non-negative measure Radon for which there exists uniform
constants C0, C1 and δ > 0 so that

µ(B(x, r)) ≤ C0

( r
R

)n−2+δ

µ(B(x,R)), (2)

µ(B(x, 2r)) ≤ C1

{
µ(B(x, r)) + rn−2

}
, (3)

holds for x ∈ Rn and 0 < r < R. Examples of such measures include
dµ(x) = dHn−1|Γ(x) where Γ is the graph of a Lipschitz function de�ned
over Rn−1 ⊂ Rn, or dµ(x) = V (x)dx, where V ∈ (RH)n/2, i.e., the Reverse-
Hölder class with exponent n/2.

With such a measure µ, one can de�ne the Fe�erman-Phong maximal
function

m(x, µ)−1 := sup
{
r > 0 : µ(B(x, r)) ≤ C1r

n−2
}

(4)

where C1 is the same constant from (3). Finally, with the metric

d(x, y, µ) := inf
γ

ˆ 1

0

m(γ(t), µ)|γ′(t)| dt

where the in�mum above is taken over all γ : [0, 1] → Rn absolutely contin-
uous with γ(0) = x, γ(1) = y, we state the main Theorem.
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Theorem 1. Let µ be a non-negative Radon measure satisfying (2) and (3).
Then the fundamental solution Γµ(x, y) of the equation (1) exists and satis�es

ce−ε2d(x,y,µ)

|x− y|n−2
≤ Γµ(x, y) ≤ Ce−ε1d(x,y,µ)

|x− y|n−2
(5)

for some constants C, c, ε1, ε2 > 0 depending only on n and the constants
C0, C1 from (2), (3). Moreover, one also has

|∇xΓµ(x, y)| ≤ Ce−ε1d(x,y,µ)

|x− y|n−1
. (6)

As a consequence of the exponential decay from Theorem 1, one can
deduce via the usual functional calculus that for γ ∈ R, the operators
T1 = (−∆ + µ)iγ and T2 = ∇(−∆ + µ)−1/2 are singular integral operators of
convolution type with associated kernels

K1(x, y) = cγ

ˆ ∞
0

λiγΓµ+λ(x, y) dλ,

K2(x, y) = c

ˆ ∞
0

λ−1/2∇xΓµ+λ(x, y) dλ,

respectively. Here Γµ+λ is the fundamental solution associated to the measure
dµ(x) +λdx. With some additional work, one can show that the exponential
decay estimates (5) and (6) thus give the following result.

Theorem 2. Let µ be a non-negative Radon measure satisfying (2) and (3).
Then the operators (−∆ + µ)iγ and ∇(−∆ + µ)−1/2 are Calderón-Zygmund
operators, and thus bounded on Lp(Rn, dx) for each p ∈ (1,∞).

Let us turn to describing some key elements of the proof of Theorem
1. For brevity, we focus on the upper bound, since the other arguments,
while similar in spirit, are slightly more involved. We assume (2) and (3)
throughout.

18.2 The Poincaré inequality and weak formulation

The main tool in the exponential decay of (5) is the following Poincaré in-
equality, which replaces the Fe�erman-Phong inequality from [F83] that was
used in [S95] to prove results for Schrödinger operators with absolutely con-
tinuous non-negative potentials dµ(x) = V (x) dx where V ∈ (RH)n/2.
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Lemma 3. There is a constant C > 0 depending only on n and C0 so that
for any ball B ⊂ Rn and any ψ ∈ C1(B), one has

ˆ
B

ˆ
B

|ψ(x)− ψ(y)|2 dµ(y) dx ≤ Crad(B)2µ(3B)

ˆ
B

|∇ψ(x)|2 dx. (7)

The inequality (7) also serves as a starting point for the usual functional-
analytic techniques used to study the existence of weak solutions to the
operator (1). In particular, it implies that

ˆ
B

|ψ(x)|2 dµ(x) ≤ CB

{ˆ
B

|∇ψ(x)|2 dx+

ˆ
B

|ψ(x)|2 dx
}

so thatW 1,2(B) ⊂ L2(B, dµ), and in fact, this imbedding can be shown to be
compact. Moreover, this imbedding makes legitimate the following de�nition
of a (weak) solution of the operator (1).

De�nition 4. Suppose that f ∈ L1
loc(Ω) for some domain Ω ⊂ Rn. Then

u ∈ W 1,2
loc (Ω) is said to be a solution to the equation (−∆ + µ)u = f in Ω

provided that for all φ ∈ C1
0(Ω), one has

ˆ
Ω

〈∇u,∇φ〉 dx+

ˆ
Ω

〈u, φ〉 dµ =

ˆ
Ω

〈f, φ〉 dx.

Beyond just making possible the de�nition above, the inequality is used
to show that for u ∈ W 1,2

loc (Rn) ∩ L2(Rn, dµ),
ˆ
Rn
|∇u(x)|2 dx+

ˆ
Rn
|u(x)|2 dµ(x) '

ˆ
Rn
|∇u(x)|2 +m(x, µ)2|u(x)|2 dx,

(8)

and, moreover, that the space

H := {u ∈ W 1,2
loc (Rn) : ∇u ∈ L2(Rn, dx), m(·, µ)u ∈ L2(Rn, dx)} (9)

is a Hilbert space with inner product given by

〈u, v〉H :=

ˆ
Rn
〈∇u(x),∇v(x)〉+m(x, µ)2〈u(x), v(x)〉 dx.

In particular, using the Lax-Milgram Theorem, one has basic existence and
uniqueness of solutions as follows.
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Proposition 5. For each f ∈ L2
loc(Rn, dx) with m(·, µ)−1f ∈ L2(Rn, dx),

there is a unique weak solution uf ∈ H to (−∆ + µ)u = f in Rn. More-
over, there is a unique, symmetric kernel function Γµ(x, y) so that when
f ∈ L2

c(Rn, dx), then uf is given by

uf (x) =

ˆ
Rn

Γµ(x, y)f(y) dy.

Γµ(x, y) is called the fundamental solution of −∆ + µ in Rn.

18.3 A sketch of the upper bound of (5)

With the precise de�nition of the fundamental solution in mind, we move
on to the upper bound in (5). First, we need some preliminary results on
m(·, µ) and Γµ.

Lemma 6. The function m(x, µ) satis�es the following properties:

if |x− y| ≤ C/m(x, µ), then m(x, µ) 'C m(y, µ), (10)

there is some k0 ∈ N so that if |x − y|m(x, µ) ≥ 2, then
c|x− y|m(x, µ) ≤ d(x, y, µ)k0.

(11)

Lemma 7. The fundamental solution Γµ(x, y) satis�es the following proper-
ties:

0 ≤ Γµ(x, y) ≤ C|x− y|−n+2 for all x 6= y ∈ Rn, (12)

for each x0, Γµ(·, x0) is a solution to (−∆ + µ)u = 0 (and
thus subharmonic) in Rn \ {x0}.

(13)

We move on to the main steps in proving the upper bound in (5).

sketch of proof (upper bound) of (5).
Let x0 6= y0 ∈ Rn, and assume without loss of generality that y0 =

0. Set u(x) := Γµ(x, 0). From (10), we see that d(x, y, µ) ≤ C whenever
|x0|m(x0, µ) ≤ 4 or |x0|m(0, µ) ≤ 4, and thus the desired conclusion follows
from (12). Thus we may assume that |x0|m(x0, µ) > 4, |x0|m(0, µ) > 4, and
thus

B(0, 2/m(0, µ)) ∩B(x0, 2/m(x0, µ)) = ∅. (14)
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Step 1: one shows that if g ∈ C1(Rn\{0}) is non-negative, φ ∈ C1
c (Rn\{0}),

and |∇g(x)| ≤ C2m(x, µ), then for ε1 su�ciently small,ˆ
Rn
m(x, µ)2|uφ|2e2ε1g dx ≤ C

ˆ
Rn
|u|2|∇φ|2e2ε1g dx. (15)

where ε1 depends only on C0, C1, C2 and n. Setting ψ = uφeε1g and f =
φeε1g, this follows from the bounds on ∇g by applying (8) to the function
φ, re-writing |∇ψ|2 = 〈∇u,∇(u|f |2)〉 + |u|2|∇f |2, and using the fact that
(−∆ + µ)u = 0 Rn \ {0} by (13).

Step 2: by a suitable approximation argument, one may take g∗ = d(x, 0, µ)
in Step 1 and assume that ‖g∗‖∞ ≤ 1 as long as no estimates depend on this
bound. Set r = m(0, µ)−1. By taking φ to be a suitable C1 bump function
that is supported in B(0, 2M) \ B(0, r) that is identically 1 on B(0,M) \
B(0, 2r), one sees from g∗ ≤ C on B(0, 2r) (by (10)) that,ˆ

2r≤|x|≤M
m(x, µ)2|u|2e2ε1g∗ dx ≤ C

(
r−2

ˆ
r≤|x|≤2r

|u|2 + e‖g
∗‖∞M−2

ˆ
M≤|x|≤2M

|u|2 dx
)
.

Since |u(x)| ≤ C|x|−n+2, sending M →∞ givesˆ
|x|≥2r

m(x, µ)2|u|2e2ε1g∗ dx ≤ Cr−n+2, (16)

with constant C independent of ‖g∗‖∞.
Step 3: using that u is subharmonic, the values of g∗ are comparable in
B(x0, R), B(x0, R) ⊂ B(0, 2r)c from (14), and Step 2, we see that

|u(x0)| ≤
( 

B(x0,R)

|u(x)|2
)1/2

≤ R−n/2
(ˆ
|x|≥2r

|u(x)|2 dx
)1/2

≤ C
e−ε1g

∗(x0)

(Rr)(n−2)/2

Finally, (11) implies that |x0|m(x0, µ) + |x0|m(0, µ) ≤ Cδe
δg∗(x0) for any δ >

0. Choosing δ > 0 su�ciently small (depending on k0) and recalling the
de�nitions of r and R gives then that

Γµ(x0, 0) = |u(x0)| ≤ C
e−ε1d(x0,0,µ)/2

|x0|n−2

as desired.
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19 The landscape law for the integrated den-

sity of states

After G. David, M. Filoche and S. Mayboroda [DFM]

A summary written by Alex Bergman

Abstract

We summarize the article �The landscape law for integrated den-
sity of states�. The main result is a non-asymptotic estimate from
above and below on the integrated density of states of the Schrödinger
operator L = −∆ + V using the solution to the equation Lu = 1.

19.1 Introduction

Consider a domain Ω ⊂ Rd and a Schrödinger operator L = −∆ + V on Ω.
For de�niteness we shall consider the case where Ω is a cube of side-length
R0, however, our estimates will not depend on the side-length and hence it
will (often) be possible to pass to other regions via exhaustion. We shall
assume the potential V is nonnegative and locally integrable. Given periodic
boundary conditions for L on ∂Ω the (normalized) integrated density of states
N is de�ned by

N(µ) =
1

|Ω| {the number of eigenvalues λ such that λ ≤ µ} ,

here eigenvalues are counted with multiplicity. It is implicit in the def-
inition that L has discrete spectrum consisting of positive eigenvalues (this
follows from the nonnegativity of V and periodicity of the boundary condi-
tions). The integrated density of states has the following asymptotics, known
as the Weyl law

N(µ) ∼ (2π)−d|Ω|−1

ˆ
|ξ|2+V (x)<µ

dxdξ, as µ→∞.

The purpose of this article is to present estimates for N(µ) which hold
uniformly in µ based on the concept of the landscape function. The landscape
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function of L is the solution to the equation Lu = 1. It can be shown that u
is positive and bounded.

To motivate the introduction of the Landscape function u we note that
the operator L has the same spectrum as the conjugated operator

− 1

u2
divu2∇+

1

u
,

which was shown in [ADFJM] and brings up 1/u as an e�ective potential.
Numerical experiments (with Anderson-type potentials) show that at the
bottom of the spectrum the eigenvalues are essentially dimensional multiples
of the local minima of 1/u and the following version of the Weyl law

N(µ) ∼ (2π)−d|Ω|−1

ˆ
|ξ|2+ 1

u(x)
<µ

dxdξ,

giving an approximation in the whole spectrum. We stress that these results
are only motivated by numerical experiments and not theorems! Indeed they
cannot hold as near identities as simple examples show.

Motivated by this let for r > 0, such that R0 is an integer multiple of r,
{Q}r be a collection of disjoint cubes of side-length r, such that each Qr is
a subset of Ω and

∪Q∈{Q}rQ̄ = Ω̄.

We de�ne the counting function of the minima of 1/u via the formula

Nu(µ) =
1

|Ω|

{
the number of cubes Q ∈ {Q}κµ−1/2 such that min

Q
1/u ≤ µ

}
,

where κ = κ(µ) is taken to be the smallest number such that R0 is an integer
multiple of kµ−1/2.

Theorem 1. (The Landscape law). With the above de�nitions there exists
constants Ci > 0, i = 1, 2, 3, 4, depending only on the dimension, such that

C1α
dNu(C2α

d+2µ)− C3Nu(C2α
d+4µ) ≤ N(µ) ≤ Nu(C4µ),

for every α < 2−4 and µ > 0.

The advantage of the above result is that it is not asymptotic, does not
depend on the L∞ norm of V and is independent of the side-length R0. The
obvious blemish is the left hand side. This can be �xed by assuming u2 is a
doubling weight at small scales.
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Theorem 2. (The doubling case). Retain the de�nitions of Theorem 1.
Suppose also there exists a constant CD ≥ 1, such that

ˆ
Q2s

u2dx ≤ CD

(ˆ
Qs

u2dx+ sd+4

)
,

for every cube Qs of side-length s > 0, then

Nu(C
′
2µ) ≤ N(µ) ≤ Nu(C4µ),

where C4 is as in Theorem 1 and C ′2 depends only on CD and the dimension.

We shall work exclusively with periodic functions and hence we assume
our functions are extended periodically when necessary (in particular we
assume this in the doubling condition above).

19.2 Proofs of the main results

We begin with the proof of the upper bound valid for both Theorem 1 and
2. In this section we let H be the space of all periodic functions in W 1,2(Ω).

Proof. (of upper bound).
The estimate |Ω|N(µ) ≤ N will follow if we can �nd a subspace HN of H

of codimension N , such that

〈Lv, v〉2
‖v‖2

2

=

´
Ω
|∇v|2 + V v2dx´

Ω
v2dx

> µ, for v ∈ HN \ {0} .

To this end denote

F =

{
Q ∈ {Q}κµ−1/2 such that inf

Q
1/u ≤ C4µ

}
,

with C4 to be �xed later and 1 ≤ κ < 2 is the smallest number, such that
R0 is an integer multiple of κµ−1/2. Let HN be the set of v ∈ H, such that´
Q
vdx = 0 for all Q ∈ F . Since the cubes are disjoint the space HN has co-

dimension equal to the cardinality of F . We shall need the following estimate
from [ADFJM]

ˆ
Ω

|∇v|2 + V v2dx ≥
ˆ

Ω

1

u
v2dx, for all v ∈ H.
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From the above estimate it follows that

2

ˆ
Ω

|∇v|2 + V v2dx ≥
ˆ

Ω

|∇v|2 +
1

u
v2dx, for all v ∈ H,

and so it su�ces to prove
ˆ

Ω

|∇v|2 +
1

u
v2dx > 2µ

ˆ
Ω

v2dx, for all v ∈ HN \ {0} .

For cubes Q ∈ {Q}κ(C4µ)−1/2 , such that Q /∈ F it follows if C4 > 2 since
infQ 1/u ≥ C4µ on any such cube. Conversely, if Q ∈ F an application of
Poincare's inequality gives

ˆ
Q

|∇v|2 ≥ CPC4µ

ˆ
Q

|v − vQ|2dx = CPC4µ

ˆ
Q

v2dx,

where the constant CP arising from the Poincare inequality depends only
on the dimension. Choosing C4 large enough such that C4CP > 2 gives
the desired result for each cube Q. Since the cubes are disjoint the proof is
done.

We now turn to the proof of the lower bound.

Proof. (of the lower bound in the doubling case). In order to prove M ≤
|Ω|N(µ) we must �nd a subspace HM of dimension M , such that

〈Lv, v〉
‖v‖2

2

=

´
Ω
|∇v|2 + V v2dx´

Ω
v2dx

≤ µ, for all v ∈ HM \ {0} .

To this end let

F ′ =
{
Q ∈ {Q}κ(C2µ)−1/2 such that inf

Q
1/u ≤ C2µ

}
,

where C2 is to be �xed later. Let HM be the linear span of functions of the
form uχQ, Q ∈ F ′, where χQ is smooth with compact support in Q, χQ = 1
on Q/2, 0 ≤ χQ ≤ 1 on Q and |∇χQ| ≤ 4`(Q)−1. Since −∆u ≤ 1 a variant
of Harnack's inequality (Theorem 4.14. in [HL]) implies

sup
Q
u ≤ CH

(
1

|Q|

ˆ
2Q

u2dx

)1/2

+ CH`(Q)2,
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where the constant CH depends only on the dimension. Applying the dou-
bling condition three times leads to

sup
Q
u ≤ CH

(
1

|Q|(C
3
D

ˆ
Q/4

u2dx+ `(Q/4)d+4 + `(Q/2)d+4 + `(Q)d+4)

)1/2

+ CH`(Q)2

≤ CHC
3/2
D sup

Q/4

u+ C ′`(Q)2,

where C ′ depends only on CD, CH and the dimension. Now a computation
based on the above inequality yields

〈L(uχQ), uχQ〉
‖uχQ‖2

2

≤ 4d+2`(Q)−2 supQ u
2 + 4d supQ u(

supQ u

C2
HC

3/2
D

− ( `(Q)2

16
+ C′`(Q)2

C2
HC

3/2
D

)

)2 . (1)

Modifying κ to be small (in terms of CD and CH) we can assume

1

CHC
3/2
D

sup
Q
u ≥

(
1

16
+

C ′

C2
HC

3/2
D

)
`(Q)2.

Applying this to equation (1) gives

〈L(uχQ), uχQ〉
‖uχQ‖2

2

≤ C ′d,5`(Q)−2 + C ′′d,5
1

supQ u
≤ Cd,5C2µ,

where the constants C ′d,5, C
′′
d,5 and Cd,5 depend on CH , CD and the dimension.

Choosing C2, such that C2Cd,5 = 1 gives the desired estimate for the basis
elements of HM and hence since the cubes are disjoint for all elements. Also
κ may be outside of the range 1 ≤ κ < 2, however, increasing κ decreases
the cardinality of F ′ and so the result follows.

The proof of the lower bound in the non-doubling case is similar and is
omitted for reasons of space. We stress that the important features of the
above estimates are that they are not asymptotic, do not depend on ‖V ‖∞
or on the side-length of the cube R0.
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20 Applications of the landscape function for

Schrödinger operators with singular poten-

tials and irregular magnetic �elds

After B. Poggi [P]

A summary written by Alioune Seye

Abstract

We extend the de�nition of the Filoche-Mayboroda landscape func-
tion to unbounded domains and singular potentials, and recover the
uncertainty principle and decay estimates. We also show the pointwise
equivalence between the landscape function and the Fe�erman-Phong-
Shen maximal function.

20.1 Introduction

Let us consider on Ω ⊂ Rn a Schrödinger operator

L = −divA∇+ V (1)

with A satisfying the uniform ellipticity condition

λ|ξ|2 ≤
∑
i,j

Aijξiξj , ||A||L∞(Ω) ≤
1

λ
(2)

for all ξ ∈ Rn and for some λ ∈ (0, 1). We want to extend the de�nition of the
Filoche-Mayboroda landscape function to the case of unbounded domains Ω
and non-negative singular potentials V ∈ L1

loc(Ω). The original de�nition
[FM] was given for bounded domains and positive bounded potentials as the
solution u to the equation

Lu = 1. (3)

In this setting the following inequality was derived:ˆ
Ω

1

u
f 2 ≤

ˆ
Ω

[
A∇f∇f + V f 2

]
(4)

which is similar to the Fe�erman-Phong-Shen uncertainty principle [S94].
This allows to prove several decay estimates e.g. for eigenfunctions via an
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Agmon distance with weight 1/u. The intuitive understanding of such es-
timates is that 1/u acts as an e�ective potential and looks like a smoothed
version of the potential at a locally appropriate scale. A low energy wave-
function sees this average rather than the true potential, especially when the
potential varies faster than the wavelenght. This averaging of the potential is
in fact the very idea behind the Fe�erman-Phong-Shen uncertainty principle
with the maximal function, m.

In the next section, we extend the de�nition of the landscape function
to unbounded domains and singular potentials, and recover the uncertainty
principle and the decay estimates. Then we show the pointwise equivalence
between 1/u and m2

20.2 A landscape function for unbounded domains

Let us start by de�ning the generalization of the landscape function:

Theorem 1. Let n ≥ 1, Ω ⊂ Rn be an open connected set, with empty or
Lipschitz (n−1)-dimensional boundary, let A be a not necessarily symmetric
matrix of bounded measurable coe�cients verifying the uniform ellipticity
condition (2), and 0 ≤ V ∈ L1

loc(Ω) such that
´

Ω
V > 0. Denote L =

−divA∇+ V . The following statements hold.
(i) Fix x0 ∈ Ω and for each R ∈ N, let ΩR := Ω ∩ B(x0, R). Consider

the landscape function uR := L−1
ΩR
1ΩR on the domain ΩR with zero Dirichlet

boundary conditions, and extend it by 0 on Ω\ΩR. Then the sequence (uR)∞R=1

is pointwise non-decreasing, and the limit

u := lim sup
R→∞

uR (5)

exists as a measurable non-negative function on Ω (whose values may be +∞
everywhere).

(ii) The function u of (i) veri�es that u ∈ W 1,2
loc (Ω) ∩ L2

loc(Ω, V dx) and
solves the equation Lu = 1 in the weak sense in Ω if and only if there exists
q > 0 such that ˆ

Ω

G(x, y) dy ∈ Lqloc(Ω, dx). (6)

We have u(x) =
´

Ω
G(x, y) dy a.e. in Ω.
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The proof of the �rst statement comes from the weak maximum principle.
The argument relies on the fact that if ΩR ⊂ ΩR′ then uR ≤ u′R. The same
argument implies that ΩR,x0 ⊂ ΩR′,y0 ⇒ uR,x0 ≤ uR′,y0 . We can then show
with appropriate subsequences that ux0 ≤ uy0 , so u does not depend on x0.

The second uses the De Giorgi-Nash-Moser estimate, Caccioppoli inequal-
ity and the dominated convergence theorem.

We now give the uncertainty principle. Let D(Ω) be the completion of

C∞c (Ω) under the norm I(f) :=
√´

Ω
[A∇f∇f + V f 2].

Theorem 2. Under the same assumptions as in Thm.1, suppose that eq.(6)
holds, if u is the landscape function de�ned in Thm.1, then 1/u ∈ L1

loc(Ω),
∇ log u ∈ L2

loc(Ω), and for each f ∈ D(Ω), each of the following integrands
lies in L1(Ω), and we have that

ˆ
Ω

1

u
f 2 ≤

ˆ
Ω

1

λ4
A∇f∇f +

ˆ
Ω

V f 2. (7)

The proof of this theorem is basically the same as for bounded domain
and potential, with the use of Fatou's lemma to go to the limit (VN) =
min(V,N)→ V and ΩR → Ω

With this uncertainty principle, we can now prove exponential decay es-
timates for the eigenfunctions of L. Let us �rst de�ne the Agmon distance
we will use. We consider a non-negative continuous function f on Ω and
associate the potentially degenerate metric

ds2 = f(x)
∑
i,j

(A−1)ij(x)dxidxj. (8)

We then denote ρA(x, y, f) the distance of the shortest path between x and
y for this metric:

ρA(x, y, f) = inf
γ

ˆ 1

0

f(γ(t))
∑
i,j

(A−1)ij(γ(t))γ̇(t)iγ̇(t)j dt (9)

where the in�mum is taken over smooth paths γ : [0, 1]→ Ω going from x to
y. We have the following decay estimate for the eigenfunctions of L:
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Theorem 3. Retain the setting of Thm.1, and moreover, assume that eq.(6)
holds, that ρA(x, y, 1

u
) −→ 0 as |x − y| −→ 0, and that A is symmetric and

continuous. Let L be the operator in (1) with domain D(L) ∈ L2(Ω). Suppose
that there exist µ > 0 and ψ ∈ D(L) such that Lψ = µψ. Let

w(x) :=

(
1

u(x)
− µ

)
+

= max

(
0,

1

u(x)
− µ

)
and E :=

{
x ∈ Ω ,

1

u(x)
≤ µ

}
.

Then for each α/in(0, 1/4), we have that

ˆ
Ω

u2A∇
(
eαρA(·,E,w)ψ

u

)
∇
(
eαρA(·,E,w)ψ

u

)
+

ˆ
Ω

(
1

u
− µ

)
e2αρA(·,E,w)|ψ|2 ≤ 1

1− α2

ˆ
E

(
µ− 1

u

)
+

|ψ|2 (10)

For the proof we refer to [P].

20.3 Equivalence between the landscape function and

the Fe�erman-Phong-Shen maximal function

Now that we have an uncertainty principle with the landscape function, we
seek to make a link with the Fe�erman-Phong-Shen maximal function m.
For a weight function w, the maximal function is de�ne by

1

m(x,w)
= sup

{
r ,

1

rn−2

ˆ
B(x,r)

w(y) dy ≤ 1

}
. (11)

In the Fe�erman-Phong-Shen uncertainty principle, the potential V in L is
used as the weight function. Under certain conditions on V , which include the
class of polynomial potentials, we prove the pointwise equivalence between u
and m2.

Theorem 4. Retain the setting of Thm.1, and moreover, assume that n ≥ 3,
that Ω = Rn, and suppose that V veri�es:

(V1) (Scale-invariant Kato Condition). There exist positive constants C0

and δ such that for all x ∈ Rn and all 0 < r < R,

ˆ
B(x,r)

V (y) dy ≤ C0

( r
R

)n−2+δ
ˆ
B(x,R)

V (y) dy
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(V2) (Doubling on balls with high mass). There exists a positive constant
C1 such that for all x ∈ Rn and all r > 0,

ˆ
B(x,2r)

V (y) dy ≤ C1

[ˆ
B(x,r)

V (y) dy + rn−2

]

Then eq.(6) holds, and there exists C > 0, depending only on n, λ, C0, C1,
δ, such that

1

C

1

m(x, V )2
≤ u(x) ≤ C

1

m(x, V )2
, (12)

for each x ∈ Rn, where m(· , V ) is the maximal function from (11), and u is
the landscape function de�ned in Thm.1.

The potentials satisfying conditions (V1) and (V2) are called Shen potentials.
The main steps of the proof are as follows (we drop the V in the argument
of m(· , V ) ). The left inequality is derived using [S99]. For x ∈ Rn, we have:

G(x, y) ≥ cn
|x− y|n−2

(13)

for each y ∈ B(x, c
m(x)

), where cn depends only on n and A. Hence:

u(x) =

ˆ
Rn
G(x, y) dy ≥

ˆ
B(x, c

m(x)
)

G(x, y) dy ≥
ˆ c/m(x)

0

c′nr
n−1

rn−2
≥ C

m(x)2

(14)
For the right inequality, let us �x x ∈ Rn. Let Ak be annuli Ak :=

B
(
x, 2k

m(x)

)
\B
(
x, 2k−1

m(x)

)
, fk := 1Ak and uk := L−1fk. Prove that u =∑∞

k=0 uk. With the help of [MP] Thm. 4.16 and the Moser estimate, and
using properties of the maximal function, we prove �rst u0(x) ≤ C

m(x)2 and
for each k ≤ 1:

uk(x) ≤ C

m(x)2
2kne

−ε2 k
k0+1 .

The result follows. We leave technical details.

Eventually, we can prove the following properties of the landscape func-
tion for Shen potentials:
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Theorem 5. Retain the setting and assumptions of Thm.4. Then there exist
C > 0 and k0 ∈ N, which depend only on n, λ, C0, C1, and δ, such that the
following statements hold.

(i) (1/u encodes V ). For each x ∈ Rn, we have that

1

C

1

u(x)
≤
ˆ
B(x,
√
u(x))

V (y) dy ≤ C
1

u(x)
(15)

(ii) (Scale-invariant Harnack inequality). For each x ∈ Rn, if y ∈
B(x,

√
u(x)), then

1

C

1

u(x)
≤ u(y) ≤ C

1

u(x)
. (16)

All these properties follow from the equivalence theorem and the similar
properties of the maximal function.
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21 Hölder regularity and area distortion of qua-

siconformal mappings in the plane

After Astala, Iwaniec, and Martin [AIM09]

A summary written by Ignasi Guillén-Mola

Abstract

We give a brief introduction to quasiconformal mappings. We start
by giving some equivalent de�nitions, and we conclude by proving the
Hölder regularity and the area distortion.

21.1 Quasiconformal mappings

De�nition 1. An orientation-preserving1 homeomorphism f : Ω → Ω′ is
K-quasiconformal, 1 ≤ K <∞, if f ∈ W 1,2

loc (Ω) and

sup
α∈[0,2π)

|∂αf(z)| ≤ K inf
α∈[0,2π)

|∂αf(z)| for almost every z ∈ Ω. (1)2

Remark 2. A mapping is 1-quasiconformal if and only if it is conformal.

Remark 3. The inequality in (1) is equivalent to

|Df(z)|2 ≤ KJ(z, f) for almost every z ∈ Ω, (2)

|∂zf |+ |∂z̄f | ≤ K (|∂zf | − |∂z̄f |) for almost every z ∈ Ω, or

|∂z̄f | ≤ k|∂zf | for almost every z ∈ Ω

for k = (K − 1)/(K + 1).

Here we state some fundamental properties of quasiconformal mappings.

Theorem 4. Let f : Ω → Ω′ be a K-quasiconformal mapping from Ω ⊂ C
onto Ω′ ⊂ C and let g : Ω′ → C be a K ′-quasiconformal mapping. Then

� f−1 : Ω′ → Ω is K-quasiconformal.

� g ◦ f : Ω→ C is KK ′-quasiconformal.

� For all measurable sets E ⊂ Ω, |E| = 0 if and only if |f(E)| = 0.

� The Jacobian determinant J(z, f) > 0 almost everywhere in Ω.
1If J(z, f) = |detDf(z) | = |∂zf |2 − |∂z̄f |2 ≥ 0 almost everywhere.
2∂αf(z) = Df(z)eiα = cos(α)∂xf(z) + sin(α)∂yf(z) = limr→0

f(z+reiα)−f(z)
r .
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21.1.1 Equivalent de�nition via Beltrami equation

Quasiconformal mappings are related to solutions of the Beltrami equation
(3). Write µ(z) = ∂z̄f(z)/∂zf(z) where ∂zf(z) 6= 0, and µ(z) = 0 otherwise.
With this, we have the following equivalence.

Theorem 5. Suppose f : Ω → Ω′ is a homeomorphic W 1,2
loc (Ω)-mapping.

Then f is K-quasiconformal if and only if

∂z̄f(z) = µ(z)∂zf(z) for almost every z ∈ Ω, (3)

where µ, called the Beltrami coe�cient of f , is a bounded measurable function
satisfying

‖µ‖∞ ≤
K − 1

K + 1
< 1.

For compactly supported Beltrami coe�cient µ, we call the principal solu-
tion the function f ∈ W 1,2

loc (C) with ∂z̄f = µ∂zf normalized by the condition
f(z) = z+O(1/z) near in�nity. The measurable Riemann mapping theorem
ensures the existence and uniqueness of the principal solution.

Theorem 6 (Measurable Riemann mapping theorem). Let |µ| ≤ k < 1
be compactly supported and de�ned on C. Then there is a unique principal
solution to the Beltrami equation

∂z̄f(z) = µ(z)∂zf(z) for almost every z ∈ C,

and the solution f ∈ W 1,2
loc (C) is a K-quasiconformal homeomorphism of C.

21.1.2 Quasisymmetric mappings

De�nition 7. Let η : [0,∞) → [0,∞) be an increasing homeomorphism3,
A ⊂ C and f : A→ C a mapping. We say f is η-quasisymmetric if for each
triple z0, z1, z2 ∈ A we have

|f(z0)− f(z1)|
|f(z0)− f(z2)| ≤ η

( |z0 − z1|
|z0 − z2|

)
.

Should f be de�ned on an open set, we will assume that it is orientation-
preserving and further, we say f is quasisymmetric if there is some η as
above for which f is η-quasisymmetric.

3It implies η(0) = 0 and η(t)→∞ as t→∞
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Remark 8. Let f : Ω → Ω′ be an η-quasisymmetric mapping onto. Then
f−1 : Ω′ → Ω is {1/η−1(1/·)}-quasisymmetric.

From the de�nition, it follows that quasisymmetric mappings are injec-
tive and continuous. In particular, quasisymmetric mappings are homeomor-
phism onto their image by the previous remark.

21.1.3 Relation between quasiconformality and quasisymmetry

Quasiconformal maps and quasisymmetric maps are related to each other.
More precisely, the following two theorems specify the relation.

Theorem 9. Suppose that f : Ω → Ω′ is an η-quasisymmetric mapping.
Then f is quasiconformal. In particular, f ∈ W 1,2

loc (Ω).

Theorem 10. Suppose f : C → C is a K-quasiconformal homeomorphism.
Then f is η-quasisymmetric, where η depends only on K.

Note that for the quasiconformal to quasisymmetric direction, we need
global quasiconformal. For a local equivalence, see [AIM09, Theorem 3.6.2].

21.2 Hölder regularity

The key points to prove the Hölder regularity of quasiconformal mappings
(Theorem 11 below) are:

� Global quasiconformal maps are quasisymmetric.

�
4Isoperimetric inequality |Ω| ≤ 1

4π
[H1(∂Ω)]2.

Theorem 11 (Mori's theorem). Suppose f : C → C is K-quasiconformal
with f(0) = 0 and f(1) = 1. Then there exists a constant CK depending only
on K such that

|f(z)| ≤ CK |z|1/K , 0 ≤ |z| ≤ 1.

The K-quasiconformal mapping f(z) = z|z|1/K−1 shows that the Hölder ex-
ponent 1/K is optimal.

4For the precise statement of the isoperimetric inequality and a detailed proof, see
[AIM09, Theorem 3.10.1].
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Sketch of the proof. Let t > 0 and B = Bt(0). By means of the isoperimetric
inequality, Hölder inequality and K-quasiconformal condition (2),

φ(t) :=

ˆ
B

J ≤ Kt

2

ˆ
∂B

J = φ′(t).

Equivalently d
dt

(
t−2/Kφ(t)

)
≥ 0 for almost every t > 0. Integrating over

[t, 1] we obtain φ(t) ≤ φ(1)t2/K for 0 ≤ t ≤ 1.
From this (in second inequality) and quasisymmetry (in �rst and third

inequality) we obtain

|f(z)| ≤ CK
(
π−1|f(Br(0))|

)1/2 ≤ CK
(
π−1|f(B1(0))|

)1/2
r1/K ≤ C2

Kr
1/K .

Corollary 12. Suppose f : C → C is K-quasiconformal. Then there exists
a constant CK depending only on K such that

|f(z)− f(w)| ≤ CK |f(R + w)− f(w)| |z − w|
1/K

R1/K
, for |z − w| ≤ R.

Proof. De�ne f̃(ξ) = f(Rξ+w)−f(w)
f(R+w)−f(w)

: C→ C, which is K-quasiconformal with

f̃(0) = 0 and f̃(1) = 1. Apply Theorem 11 to f̃ .

The Hölder regularity of global quasiconformal mappings allows to see
that quasiconformal mappings are locally Hölder continuous.

Corollary 13 (Locally Hölder). Every K-quasiconformal mapping f : Ω→
Ω′ is locally 1

K
-Hölder continuous. More precisely, if a disk B ⊂ 2B ⊂ Ω,

then

|f(z)− f(w)| ≤ C̃Kdiam (f(B))
|z − w|1/K

(diamB)1/K
, z, w ∈ B.

Sketch of the proof. Extend f everywhereK-quasiconformally, i.e., construct
a K-quasiconformal mapping f̃ : C → C such that f̃|B = f|B. Then apply
Corollary 12.
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21.3 Distortion of area

Before stating the area distortion theorem (see Theorem 18) we present some
preliminary results. They describe simpler situations that will be used in the
proof of Theorem 18.

Theorem 14. Suppose f is a K-quasiconformal principal mapping of C that
it is conformal outside a compact subset E. Then we have |f(E)| ≤ K|E|.
Theorem 15 (Weak [AIM09, Theorem 13.1.3]). Suppose f is a principal
K-quasiconformal mapping of C that is conformal outside the unit disk D.
Assume also that we are given a measurable set E ⊂ D. If f|E is conformal,
meaning that fz̄(z) = 0 for almost every z ∈ E, then( |E|

π

)K
≤ |f(E)|

π
≤
( |E|
π

)1/K

. (4)

Remark 16. Note that Theorems 14 and 15 describe �opposite� situations.
While Theorem 14 requires the mapping to be conformal outside the set, The-
orem 15 requires the conformal condition inside the set.

This will allow us to reduce to the case of Theorems 14 and 15 in the
proof of Theorem 17. Note that the conclusion of Theorem 17 is the mixture
of the conclusion in Theorem 14 and the right-hand side inequality in (4).

Theorem 17. Suppose f is a K-quasiconformal principal mapping of C
that is conformal outside the unit disk D. Let E ⊂ D be measurable. Then
|f(E)|
π
≤ K

(
|E|
π

)1/K

.

Sketch of the proof. Let µ be the Beltrami coe�cient of f . De�ne µ0 =
µχC\E and denote g the principal K-quasiconformal mapping of C arising
from the Beltrami coe�cient µ0.

Then the function h = f◦g−1 isK-quasiconformal in C, conformal outside
g(E) (since µh = 0 in g(E) by [AIM09, Theorem 5.5.6]5), and normalized by
h(z) = z +O(1/z). Hence f = h ◦ g.

By Theorem 14 we have |f(E)| = |h(g(E))| ≤ K|g(E)|. By the choice of
µ0, the K-quasiconformal principal solution g is conformal in (C \ D) ∪ E,
and hence |g(E)|

π
≤
(
|g(E)|
π

)1/K

by (4).

5[AIM09, Theorem 5.5.6] gives the Beltrami coe�cient of h = f ◦ g−1 in terms of µf
and µg.

118



Note that we are still in the situation that the map is conformal outside
the unit disk. The area distortion theorem completes the area distortion for
general quasiconformal mappings.

Theorem 18 (Area distortion theorem). For every K ≥ 1 there is a constant
CK, depending only on K, such that for any K-quasiconformal mapping f :
C→ C, for any disk B ⊂ C and for any subset E ⊂ B, we have

1

CK
|f(B)|

( |E|
|B|

)K
≤ |f(E)| ≤ CK |f(B)|

( |E|
|B|

)1/K

Sketch of the proof. The left-hand side inequality follows from the one on the
right-hand side using that f is quasisymmetric. To prove the right-hand side
inequality it su�ces to prove it when B is the unit disc D.

Let φ the principal quasiconformal mapping with Beltrami coe�cient
µφ = µfχD. Then f = γ ◦ φ where γ : φ(D) → f(D) is conformal (as in the
proof of Theorem 17).

The core of the proof is to obtain (via conformal theory) |f(E)|
|f(D)| = |γ◦φ(E)|

|f(D)| ≤
CK |φ(E)|. At this point apply Theorem 17 to φ to get |φ(E)| ≤ CK |E|1/K .
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22 The Stoïlow factorisation theorem

After Astala, Iwaniec, and Martin [AIM09, �5]

A summary written by Gianmarco Brocchi

Abstract

We give a proof of the Stoïlow factorisation theorem for quasicon-
formal mappings on the plane. This result is then used to obtain a
classi�cation of quasiconformal mappings, and so uniqueness of (nor-
malised) solutions to the Beltrami equation.

22.1 Introduction

The Stoïlow factorisation theorem says that two di�erent solutions to the
Beltrami equation are related by a holomorphic function.

22.1.1 Quasiconformal mappings

Let µ be a measurable function on Ω ⊂ C with small L∞-norm ‖µ‖∞ = ε < 1.
The weak solutions (in H1

loc(Ω)) to the Beltrami equation

∂

∂z̄
f(z) = µ(z)

∂

∂z
f(z) a. e. z ∈ Ω ⊂ C (B)

that are homeomorphisms are called quasiconformal mappings. Geometri-
cally, these are maps of �bounded distorsion� on the plane.

The following result relates a homeomorphic solution to (B) and any other
solution.

Theorem 1 (Stoïlow factorization). Let Ω ⊂ C, and let f, g ∈ W 1,2
loc

(Ω) be
two solutions to the same Beltrami equation (B) with f a quasiconformal
map. Then there exists a holomorphic map Φ on f(Ω) such that

g(z) = Φ(f(z)) for all z ∈ Ω.

Moreover, for any holomorphic function Φ on f(Ω), the map Φ ◦ f is a
solution of (B).

The Stoïlow factorisation can be used to parameterise solutions to (B) on
the whole plane by their value at di�erent points.
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Corollary 2. Let f, g ∈ W 1,2
loc

(Ω) be two homeomorphic solutions to (B) on
C. If f and g �x the points 0 and 1, then f = g.

Proof of the Corollary. By Stoïlow factorisation, there exists an entire func-
tion Φ such that g = Φ ◦ f . Since both f and g are homeomorphism, Φ has
to be injective, so in particular Φ is conformal. Entire conformal maps are
similarities (they preserve the ratio of distances), and a similarity which �xes
0 and 1 (and Φ(∞) =∞) is the identity.

We say that a quasiconformal homeomorphism f : C → C is normalised
if it �xes the origin and the point 1. Then the corollary above implies that
normalised solutions to the Beltrami equation are unique.

Before going into the proof of the Theorem 1, we recall a few useful facts
needed to �nd solutions to the Beltrami equation.

22.2 Solving the Beltrami equation

To �nd solutions to (B), we start by assuming that the Beltrami coe�cient
µ is smooth and compactly supported. Then, consider the inhomogeneous
equation:

∂

∂z̄
σ = µ(z)

∂

∂z
σ + ϕ (1)

where ϕ ∈ Lp(C) and compactly supported.

22.2.1 Cauchy and Beurling transform

A couple of operators are relevant to us: the Cauchy transform C := (∂/∂z̄)−1,
mapping C : Lp(C) → W 1,p(C) for p > 2, which is the singular integral
operator given by

Cf(z) =
1

π

ˆ
C

f(ζ)

z − ζ dζ,

and the Beurling transform S, which is ∂/∂z ◦ C, so it is given by

Su(z) = − 1

π

ˆ
C

u(ζ)

(z − ζ)2
dζ.

Remark 3. The operator S is bounded on Lp(C) and it exchanges the weak
derivative ∂/∂z̄ with ∂/∂z, in particular S(σz̄) = σz for σ ∈ W 1,p(C).
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Let u := (∂/∂z̄)σ. By using the Beurling transform S, the inhomogeneous
equation (1) is equivalent to

u = µ(z)Su+ ϕ.

The solution can be written as u = (I − µS)−1ϕ, where we used the in-
verse of the Beltrami operator (I − µ(z)S). Indeed, the Neumann series of
(I − µ(z)S)−1 converges if ‖µ‖∞‖S‖Lp < 1. Since ‖µ‖∞ = ε < 1, the
Beltrami operator I − µ(z)S is invertible in a range of p where ‖S‖p < 1/ε.

Despite the fact that the exact value of ‖S‖Lp is still unknown, it is a
deep result that the maximal range of invertibility of I − µ(z)S is

Iε :=

(
1 + ε, 1 +

1

ε

)
.

Back to our inhomogeneous problem, a solution to (1) is given by the
Cauchy transform of u:

σ =
( ∂
∂z̄

)−1

(I − µ(z)S)−1ϕ.

Given a solution to the inhomogeneous problem (1), a solution to the
original Beltrami equation (B) is f = z + σ, by taking ϕ = µ in (1).

Now one can show that solution are smooth by a bootstrapping argument:
�rst, taking µ = ϕ ∈ W 1,p(C) implies σ ∈ W 2,p(C). Then the smoothness of
µ implies σ ∈ C∞, and so the smoothness of f .

For the general case (µ only measurable with small L∞ norm) one can
solve (B) with the smooth approximation µδ := µ ∗ φδ → µ as δ → 0, and
φ smooth. Then exploit the compactness properties of the class of quasicon-
formal mappings and the boundedness of the Cauchy transform to prove the
uniform convergence of the approximate solution fδ. Details are in [AIM09,
�5.3].

We now move to the proof of the factorisation theorem.

22.3 Proof of the Stoïlow factorisation

The idea of the proof is to show that the map

Φ := g ◦ f−1

122



is continuous and then that is holomorphic. Note that g is not a priori
continuous, but we will see that any W 1,2

loc -solution to the Beltrami equation
(B) is indeed continuous. We will prove this result later. For the time being,
we will assume the g is continuous and it has weak derivative in L2.

Then it follows that Φ is continuous, because f is a homeomorphism. We
want to show that ∂/∂w̄Φ ≡ 0. By the chain rule:

∂

∂w̄
Φ(w) = (gz ◦ f−1)(w)

∂

∂w̄
(f−1)(w) + (gz̄ ◦ f−1)(w)

∂

∂w
(f−1)(w).

Since it can be seen that inverse function f−1 satis�es the equation

∂

∂w̄
(f−1) = −µ(f−1(w))

∂

∂w
f−1

by rewriting the chain rule above, we have that

∂

∂w̄
Φ =

∂

∂w
f−1
[
− gz(f−1)µ(f−1) + gz̄(f

−1)
]

= 0

because g satis�es the Beltrami equation.
To conclude, we invoke the Weyl's lemma, which states that weak solution

to ∂/∂w̄ in L1
loc(C) are analytic. This shows that Φ is holomorphic and

concludes the proof.
It is left to show that W 1,2

loc -solutions to the Beltrami equation are contin-
uous. This result exploits the Lp mapping property of the Beltrami operator
presented above. In particular, when ‖µ‖∞ < ε < 1, the inverse of the
Beltrami operator is continuous on Lp for p in the range Iε := (1+ε, 1+1/ε).

22.3.1 Continuity of W 1,2
loc solutions

Theorem 4. Let Ω ⊂ C. Let f ∈ W 1,2
loc

(Ω) be a solution to (B) with ‖µ‖∞ =
ε < 1. Then f ∈ W 1,p

loc
(Ω) for all p ∈ Iε.

In particular, f ∈ W 1,2+s
loc (Ω) for some s > 0, so by the Sobolev embedding

f is continuous.

Sketch of the proof of Theorem 4. Consider the function ψf , for ψ ∈ C∞c (Ω).
Since f is a solution to the Beltrami equation, by the chain rule we have

(ψf)z̄ − µ(ψf)z = f · (ψz̄ − µψz) =: ϕ.
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By solving the inhomogeneous Beltrami equation for F = ψf

Fz̄ = µFz + ϕ

we �nd expressions for the weak derivative of F , that are

Fz̄ = (I − µS)−1ϕ

Fz = SFz̄ = S ◦ (I − µS)−1ϕ.

The Sobolev membership of f then follows from the Lp boundedness of the
partial derivative Fz̄, Fz, which is a consequence of the Lp mapping property
of the Beurling transform S and (I − µS)−1 for p in the range Iε.
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23 Sign and area in nodal geometry of Laplace

eigenfunctions

After F. Nazarov, L. Polterovich, M. Sodin, [NPS]

A summary written by Georgios Dosidis

Abstract

The paper deals with asymptotic nodal geometry for the Laplace�
Beltrami operator on closed surfaces. Given an eigenfunction f cor-
responding to a large eigenvalue, we study local asymmetry of the
distribution of sign(f) with respect to the surface area. It is mea-
sured as follows: take any disc centered at the nodal line f = 0, and
pick at random a point in this disc. What is the probability that the
function assumes a positive value at the chosen point? It is shown
that this quantity may decay logarithmically as the eigenvalue goes
to in�nity, but never faster than that. In other words, only a mild
local asymmetry may appear. The proof combines methods due to
Donnelly-Fe�erman and Nadirashvili with a new result on harmonic
functions in the unit disc.

23.1 Introduction

Consider a compact manifold S endowed with a C∞ Riemannian metric
g. Let {fλ}, λ ↗ +∞, be any sequence of eigenfunctions of the Laplace�
Beltrami operator ∆g:

∆gfλ + λfλ = 0.

The eigenfunctions fλ give rise to the nodal sets Lλ = {fλ = 0}. For instance,
when S is 2�dimensional, any nodal line Lλ at a singular point p looks like
the union of an even number of smooth rays meeting at p at equal angles.
In spite of this �in�nitesimal simplicity�, the global picture of nodal sets for
large λ becomes more and more complicated, partially due to the fact that
Lλ is ∼ 1√

λ
�dense in S.

A nodal domain is a connected component of the set S \ Lλ. All nodal
domains can be naturally grouped into two subsets S+(λ) := {fλ > 0} and
S−(λ) := {fλ < 0}. Our starting point is two theorems due to Donnelly�
Fe�erman.
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The �rst one is a �local version� of the Courant nodal domain theorem
[DF2]: let D ⊂ S be a metric ball and let U be any component of S+(λ)∩D
such that

U ∩ 1

2
D 6= ∅ (1)

which means that U enters deeply enough into D6. Then

V olume(U)

V olume(D)
> a · λ−k (2)

where a depends only on the metric g and k only on the dimension of S.
The second result is the following quasi�symmetry theorem that was

proven in [DF1] under the extra assumption that the metric g is real an-
alytic. Let D ⊂ S be a �xed ball. Then there exists Λ depending on the
radius of the ball D and the metric g such that for all λ > Λ

V olume(S+(λ) ∩D)

V olume(D)
> a, (3)

where a > 0 depends only on the metric g.
From the geometric viewpoint, there is a signi�cant di�erence between

the measurements presented above: the quasi-symmetry theorem (3) deals
with a ball of �xed radius and large λ. In contrast to this, the local version of
the Courant theorem (2) is valid for all scales and all λ's though the collection
of balls depends on λ through the �deepness assumption� (1).

A natural problem arising from this discussion is to explore what remains
of quasi�symmetry on all scales and for all λ, provided that the nodal set
enters deeply enough into a ball: Lλ ∩ 1

2
D 6= ∅. The main result in [NPS] is

that only a mild local assymetry may appear.

Theorem 1. Let S be a compact connected surface endowed with a smooth
Riemannian metric g, and let fλ, be an eigenfunction of the Laplace�Beltrami
operator. Assume that the set S+(λ) := {fλ > 0} intersects a metric disc
1
2
D. Then

Area(S+ ∩D)

Area(D)
≥ a

log λ
· 1√

log log λ
. (4)

where the constant a > 0 depends only on g.

6Here 1
2D refers to the ball with the same center and half the radius of D
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The optimality of Theorem 1 (up to the double logarithm) is showcased
by the sphere S2.

Theorem 2. Consider the 2�sphere S2 endowed with the standard metric.
There exist a positive numerical constant C, a sequence of Laplace�Beltrami
eigenfunctions fi, i ∈ N corresponding to eigenvalues λi → ∞, and a se-
quence of discs Di ⊂ S2 such that each fi vanishes at the center of Di and

Area(S+ ∩Di)

Area(Di)
≤ C

log λi
. (5)

23.2 The Proof in Five Steps

23.2.1 The Donnelly�Fe�erman Bound

For any continuous function f on a closed discD (in any metric space), de�ne
its doubling exponent β(D, f) by

β(D, f) := log
maxD |f |
max 1

2
D |f |

.

The following fundamental inequality was established in [DF1] in any dimen-
sion. For any metric disc D ⊂ S and any λ,

β(D, fλ) ≤ a
√
λ.

where the constant a depends only on the metric g.

23.2.2 Reduction to harmonic functions

Assume now that D ⊂ S is a disc of radius ∼ 1/
√
λ. It turns out that on this

scale the eigenfunction fλ can be �approximated� by a harmonic function u
on the unit disc D. More precisely, the set {fλ > 0} can be transformed into
the set {u > 0} by a K�quasiconformal homeomorphism with a controlled
dilation K. Moreover, the doubling exponent of u on D is essentially the
same as that of fλ in D. This idea originates in Nadirashvili's paper [N].

23.2.3 Topological interpretation of the doubling exponent

Let u : D → R be a non�zero harmonic function. Denote by ν(rT, u) the
number of sign changes of u on the circle rT = {|z| = r}. Then

C−1
(
β(

1

4
D, u)− 1

)
≤ ν(

1

2
T, u) ≤ C

(
β(D, u) + 1

)
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where C is a positive numerical constant. This result goes back to Gelfond.
We will need the inequality on the right only.

23.2.4 The Nadirashvili constant

Denote by Hd the class of all non�zero harmonic functions u on D with
u(0) = 0 that have no more than d sign changes on the unit circle T. De�ne
the Nadirashvili constant

Nd := inf
u∈Hd

Area({u > 0}).

Using an ingenious compactness argument, Nadirashvili [N] showed that Nd
is strictly positive. The following result of [NPS] gives a satisfactory estimate
of the Nadirashvili constant

Theorem 3. There exists a positive numerical constant C such that for each
d > 2,

C−1

log d
≤ Nd ≤

C

log d
.

The proof of Theorem 3 is the main innovation of [NPS].

23.2.5 Arbitrary Disks

The four steps described above yield Theorem in the case when the disc D is
small, that is, of radius ≤ λ−1/2. The double logarithm term is the price we
pay for the fact that the transition from the eigenfunction fλ to the approx-
imating harmonic function u is given by a quasiconformal homeomorphism,
which in general is only Hölder. The case of an arbitrary (not necessarily
small) disc D is based on the following standard argument: The nodal line
Lλ = {fλ = 0} is ∼ 1/

√
λ�dense in S. Hence every disc D with Lλ∩ 1

2
D 6= ∅

contains a disjoint union of small discs Di whose centers lie on Lλ and such
that the total area of these discs is > const ·Area(D). Since the area bound
is already established for each Di, it extends with a weaker constant to D.
This completes the outline of the proof of Theorem 1.
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24 The Landis conjecture on exponential decay

After A. Logunov, E. Malinnikova, N. Nadirashvili, and F. Nazarov[LC]

A summary written by Martin Hsu

Abstract

We show that all "super-exponentially" decaying solutions to the
Laplace equation with bounded real potential on R2 are trivial.

24.1 Introduction

Imagine an enormous hot surface with a relatively weak position-dependent
radiative e�ect on the surface. A snapshot captured by the thermal cam-
era reveals that heat dissipates super-exponentially across the surface. In-
tuitively speaking, the surface is "too cold" far out, and heat should �ow
outwards. As a result, the system cannot be in equilibrium at that very mo-
ment. To be more precise, we may describe the heat �ow u(x, t) by equation
ut(x, t) = ∆xu(x, t) + V (x)u(x, t) with a radiative e�ect controlled by the
bounded potential V (x). The moral of the story is that, given a snapshot at
time t0 of the hot surface u(·, t0) 6≡ 0, we shall expect that:

|u(x, t0)| . e−|x|
1+ε

=⇒ ∆xu(·, t0) + V (·)u(·, t0) = ut(·, t0) 6≡ 0.

In other words, we have:

Conjecture 1 (Weak Landis conjecture[KL][KS]). Let u be the solution to

∆u+ V u = 0, (1)

where V is real measurable and |V | ≤ 1. Suppose, additionally,

|u(x)| . e−|x|
1+ε

for some ε > 0, than u ≡ 0.

The paper resolves the above conjecture in dimension two.
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24.2 Heuristic ideas

Indeed, by considering uδ(·) := u(δ·), we may zoom-in and see

(1) =⇒ ∆uδ = −δ2V︸ ︷︷ ︸
�1

uδ =⇒ uδ is almost harmonic

=⇒ u is almost harmonic.

Therefore, we expect that u behaves "almost" like a harmonic function and
exhibits certain levels of rigidity. If we can utilize that rigidity, as in Liou-
ville's theorem to harmonic function, then Q.E.D.

24.3 Sketch of the proof

To turn those heuristic ideas into rigorous proof, the two concepts need to
be made precise:

Step 1. Establish "almost" harmonicity:

� Porous disk/domain: Fixing a disk, we puncture as many well-
chosen-sized separated holes away from the zeros of u on the disk.
We now call the u 6= 0 part on the porous disk the porous domain.
Such domain, due to the geometry of the nodal set[CF], has a small
Poincaré constant, and by construction, u doesn't change its sign
around each hole.

� Distortion on the image: Through an iterative process, the
small Poincaré constant allows us to construct a "near 1" auxiliary
solution φ to (1) on the porous domain. This "near 1" solution is
the correct distortion on the image. Namely, after careful analysis,
we show that the distorted function f := u

φ
actually solves:

∇ · (φ2∇f) = 0 on the whole porous disk. (2)

Since φ ∼ 1, this con�rms that u ∼ f is "almost" harmonic.

� Distortion on the domain: On further inspection, (2) tells us
that φ2∇f is a divergence-free vector �eld. It seems tempting to
use the inverse gradient theorem:

φ2∇f = ∇× f̃ , (3)
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rephrase (3) into Beltrami equation by setting w := f + if̃ :

∂w

∂z̄
=

1− φ2

1 + φ2
· fx + ify
fx − ify︸ ︷︷ ︸

=:µ

· ∂w
∂z

, (4)

and then conclude that f+if̃ is a quasi-conformal map and, there-
fore, has bounded distortion. However, there's a catch: construct-
ing f̃ requires a simply connected domain. Thus, (3) and (4) can
only be formulated locally on the porous disk. Yet, all hope isn't
lost. We notice that the Beltrami coe�cient µ is globally de�ned
on the porous disk and can be extended by zero to the full complex
plane. Via measurable Riemann mapping theorem[EQ], we may
reverse engineer a global solution ψ to (4). Now, it becomes nat-
ural to compare the two solutions w and ψ. A version of Stoïlow
factorization[EQ] states that, locally, we can �nd a holomorphic
function W such that w = W ◦ ψ. With some rearrangement, we
may conclude that:

h := f ◦ ψ−1 = Rw ◦ ψ−1 = RW is a harmonic function. (5)

Note that, although (5) is a local statement, since "harmonicity"
is also a local property, it automatically implies that h is harmonic
on the entire distorted porous disk. Moreover, after some normal-
ization, the distortion of quasi-conformal map ψ can be further
characterized by Mori's theorem[AF]. That is, ψ preserves dis-
tance in a loose sense. As a result, the distortion doesn't alter the
general shape of the porous disk.

In summary, what we've achieved for now is the following:

u = φ · (h ◦ ψ) on the porous disk.

We're left to quantify the rigidity of h on the distorted porous disk.

Step 2. Quantify local "rigidity":

� Rigidity around circles/holes: By construction, h inherits the
sign-preserving property of u around holes. As a result, when
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restricted to a circle C around a hole, due to Harnack's inequality,
we have the following rigidity condition:

|h| h inf
C
|h| & |∇h| on an annulus around C. (6)

� Connecting circles/holes: Lastly, we leverage rigidity around
circles/holes to a quantitative estimate across the distorted porous
disk. Roughly speaking, the argument, at its core, could be sim-
pli�ed into the following scheme:

inf
Cj
|h| &

(6)

Connecting Cjs and apply F.T.C.

sup
Cj

|∇h| control on |h| v.s. sup
Ck

|h|.

The result is formulated in terms of the doubling index:

Theorem 2 (Theorem 5.3 in [LC]). Fix λ < 63
64
. Let

⊔
j Dj denote

the union of all the holes. Given the a priori estimate:

supD(0,R)\⊔j Dj |h|
supD(0,λR)\⊔j Dj |h| ≤ eN ,

then, for any r � R, we have the following lower bound:

supD(0,r)\⊔j Dj |h|
supD(0,R)\⊔j Dj |h| ≥

( r
R

)C(R+N)

,

where C � 1 is an absolute constant.

With a little more e�ort, we can show that Theorem 2 implies a stronger
version of Conjecture 1 in dimension two:

Theorem 3 (Theorem 1.1 in [LC]). Suppose u satis�es (1) on R2 with V
real measurable and |V | ≤ 1. There's an absolute constant C � 1 such that:

|u(x)| . e−C|x| log1/2|x|, for |x| > 2 =⇒ u ≡ 0.
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