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1 Introduction

Integrable systems and equations are connecting several very different areas
in mathematics. The notion itself is only vaguely defined and refers to two
different but related properties.

1. Liouville integrable systems are Hamiltonian ODEs for which the gen-
eral solution can by expressed in terms of integrals and algebraic ma-
nipulations. In general the integrals cannot explicitly evaluated and he
importance lies in some qualitaive consequences: Typical solutions are
dense on tori of half the dimension of the space, and the tori foliate a
large set in the space.

This structure is somewhat stable under perturbation. This is the
content of the KAM (Kolmogorov, Arnold, Moser) theory. A related
question is the question whether the solar system is stable. If one
neclects the attraction between planets one gets an uncoupled system
of two body Kepler systems, but it is a delicate question whether the
KAM theorie applies, and if it does, what the implicatons for the solar
system are.

2. Integrability refers to solvability via formulas. It is not quite clear what
that means. However examples show that integrable systems, despite
being rare, occur at important places. Two prototypical integrable
PDES are the nonlinear Schrödinger equation

i∂tu+ uxx = ±2|u|2u

and the Korteweg-de Vries equation

∂tu+ uxxx − 6u∂xu = 0

which are universal asymptotic equaions for wave propagation, for es-
sentially every nonlinear wsystem describing wave propagation.

3. While one may consider integrable systems as very exceptional and par-
ticular - even small perturbations destroy integrability - there are not
many really different ’integrable structures’. Again this is a vage state-
ment which I cannot make precise. However both NLS and KdV are
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linked to a structure which is relevant in algebraic geometry, represen-
tation theory, PDEs, wave propagation, random processes and random
matrices and statistical physics.

One feature of many integrable equatons is the Lax-Pair structure. Let

Lψ = (−∂2 + u) (1.1)

and
Bψ = −4∂3ψ + 3(u∂ψ + ∂(uψ)) (1.2)

Then
Lt = [B,L]

is formally equivalent to the KdV equation.

[−4∂3 + 3(∂u+ u∂),−∂2 + u] = −4[∂3, u] + 3([2u∂ + u′,−∂2] + [2u∂ + u′, u])

= −4u(3) − 12u′′∂ − 12u′∂2 + 12u′∂2 + 6u′′∂ + 3u(3) + 6u′′∂ + 6uu′

= −u(3) + 6uu′.

The remarkable feature is that the commutator of the differential operators
is a multiplication operator.

Consider the system

L(u)ψ = z2ψ, ∂tψ = B(u)ψ.

Suppose that the initial value problem

ψt = B(u(t))ψ, ψ(0) = ψ0

is uniquely solvable and defines a map

ψ0 → U(t, 0)ψ0 = ψ(t)

on L2. Then, at least formally

d

dt

(
L(u(t))− U(0, t)L(u(0))U(0, t)−1

)
= [B(u(t), L(u(t))]−B(u(t))(U(0, t)L(u(0))U(0, t)−1

+ U(0, t)L(u(0))(U(0, t)−1B(u(t))

= [B(u(t)), L(u(t))− U(0, t)L(u(0))U(0, t)−1]

and since the identity holds for t = 0

L(t) = U(0, t)L(0)U(0, t)−1.
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For matrices we would say that L(u0) and L(u(t)) are similar, i.e. they are
the same up to the choice of a basis. In particular the spectrum does not
change under the evolution.

We may rewrite the pair of equations

Lψ = z2ψ, ψt = Bψ

as a two by two system of the form

∂xφ+ A(z)φ = 0, ∂tΦ +B(z)φ = 0.

The Cauchy problem for linear equations can always be solved. We can
solve the general initial value problem consistently and simultaneously iff a
compatibility condition is satisfied,

0 = [∂x + A, ∂t +B] = ∂xB − ∂tA+ [A,B].

This can be understood as a vanishing curvature condition for a connection of
a two dimensional vector bundle, which is again equivalent to the Korteweg-
de Vries equation.

The study of the KdV equation is strongly related to the spectral prop-
erties of the Lax operator, which is a linear object.

Outline:

1. Symplectic structures ad Hamiltonian equations [1]

2. Examples of integrable ODEs ( [6, 22, 2] )

3. The Korteweg-de Vries hierarchy ([2, 8],,

4. The KdV equation at H−1 after Killip and Visan [16]

5. If time permits: Global solutions to the defocusing Nonlinear Schrödinger
equation

2 Hamiltonian equations

Reference: Arnold [1] .
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2.1 Vector fields and flows

Definition 2.1. A Lie algebra is a vector space E with an skew symmetric
bilinear map called Lie bracket

E × E 3 (a, b)→ [a, b] ∈ E

which satisfies the Jacobi identity

[[a, b], c] + [[b, c], a] + [[c, a], b] = 0.

Skew symmetry means

[a, b] + [b, a] = 0

Examples:

1. Matrices with the commutator [A,B] = AB −BA.

2. Bounded operators on Banach spaces.

3. The Virasoro algebra. Let X = {f∂} be the smooth complex vector
fields on the unit circle. The vector fields together with the commutator
form Lie algebra by the calculation above. We define on X × C a Lie
bracket

[(ξ∂, α), (ζ∂, β)] =

(
[ξ∂, ζ∂],

1

24π

ˆ 2π

0

ξ′ζ ′′dx

)
We consider smooth vector fields X on open sets U ⊂ Rd,

X = (aj(x))1≤j≤d

which we identify with the differential operator

f → fX = ∂Xf =
d∑
j=1

aj∂jf.

We use the same notation for vector valued functions.
The commutator is defined by

[X, Y ]f = ∂X∂Y f − ∂Y ∂Xf =
d∑

j,k=1

[aj(∂jbk)− bj∂jak)]∂kf

and it is again a smooth vector field. It satisfies

[X, Y ] + [Y,X] = 0, [[X, Y ], Z] + [[Y, Z]X] + [[Z,X], Y ] = 0
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and it is a derivation (it satisfies the Leibniz formula)

∂X(fg) = f∂Xg + g∂Xf.

We denote the set of smooth vector fields by C∞(U ;Rd). We have the obvious
bilinear map

C∞(U)× C∞(U ;Rd) 3 f ×X → fX = (faj)1≤j≤d ∈ C∞(U,Rd).

Consider the ODE

d

dt
x(t) = X(x(t)), x(0) = x0.

It has unique solution x(t) = Φ(t, x0) = ΦX(t, x0) on a maximal times interal
0 ∈ (t−, t+). Then

∂

∂t
Φ(t, x0) = X(Φ(t, x0))

and
∂

∂t

( ∂

∂xj0
Φ(t, x0)

)
= DX(ΦX(t, x0))

( ∂

∂xj0
Φ(t, x0)

)
where the first bracket denotes the argument of DX.

We will ignore the restriction of t to this interval whenever it is unimpor-
tant.

Lemma 2.2. The flows commute, i.e.

ΦX(t,ΦY (s, x)) = ΦY (s,ΦX(t, x)) (2.1)

for all x and |s|, |t| small if and only if the vector fields commute, i.e.

[X, Y ] = 0. (2.2)

Proof. Suppose the flows commute (2.1). We differentiate with respect to t:

0 =
d

dt
(ΦX(t,ΦY (s, x))− ΦY (s,ΦX(t, x)))

= X(ΦX(t,ΦY (s, x)))−DxΦ(s,ΦX(t, x))X(ΦX(t, x)).

We evaluate at t = 0

0 = X(ΦY (s, x))−D2Φ(s, x)X(x). (2.3)

We differentiate with respect to s (denoting D2 the differentiation with re-
spect to the second variable)

0 = DX(Φ(s, x))Y (ΦY (s, x)))−DY (Φ(s, x))D2Φ(s, x)X(x). (2.4)
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The evaluation at s = 0 gives (2.2). Vice versa: We assume that the vec-
tor fields commute (2.2). We first prove that then (2.3) holds. First using
commutation for the first term

d

ds

[
X(ΦY (s, x)−D2Φ(s, x)X(x)

]
= DX(ΦY (s, x))Y (ΦY (s, x))−DY (ΦY (s, x))D2ΦY (s, x)X(x)

= DY (ΦY (s, x))
[
X(ΦY (s, x))−D2ΦY (s,ΦX(t, x)X(x)

]
where D2 denotes the derivative with respect to the second variable. Hence,
with f(s) = |(X(ΦY s, x)−D2ΦY (s,ΦX(t, x)X(x)|∣∣∣ d

ds
f(s)

∣∣∣ ≤ sup |DY |L(Rn,Rn)|f(s)|

(if f(s) > 0) where the supremum is taken over the evaluation over

{ΦY (s, x) : s ∈ [−T, T ]}

for some T > 0. Now Gronwall’s inequality implies

f(t) ≤ eC|t|f(0) = 0

hence (2.4). We fix s. Then, using (2.4),

d

dt

[
ΦX(t,ΦY (s, x))− ΦY (s,ΦX(t, x))

]
=
[
X(Φ(t,ΦY (s, x)))−D2ΦY (s,ΦX(t, x))X(ΦX(t, x))

]
= X(Φ(t,ΦY (s, x)))−X(Φy(s,Φx(t, x))

and with
f(t) = |ΦX(t,ΦY (s, x))− ΦY (s,ΦX(t, x))|

and deduce f(0) = 0 and

| d
dt
f(t)| ≤ Cf(t)

where C is the supremum of the Lipschitz constant of X over a suitable set.
This implies (2.4) and concludes the proof.

Let Xj be N vector fields which pairwise commute. Given (tj)1≤j≤N . We
define

Φ((tj), x) = ΦXN (tN ,ΦXN−1
(tN−1, . . .ΦX1(t1, x))

Let σ be a permutation of the indices. By an iterative use (more precisely a
double induction) of Lemma 2.2

Φ((tj), x) = ΦXσ(N)
(tσ(N),ΦXσ(N−1)

(tσ(N−1), . . .ΦXσ(1)(tσ(1), x)).
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Theorem 2.3 (Frobenius). Let Xj, 1 ≤ j ≤ N be vector fields which are
linearly independent at every point. Then the following is equivalent.

1. The commutators evaluated at any point ly in the span of the vector
fields, i.e. we can uniquely write

[Xj, Xk] =
N∑
l=1

ajkl(x)Xl.

2. There is a foliation of a neighorhood of any point by smooth manifolds of
dimension N so that the vector fields are tangent. Equivalently there are
coordinates so that all the vector fields have values in RN × {0} ⊂ Rn.

Proof. We assume 0 ∈ U and argue in a neighborhood of zero. After a linear
transform we may assume that

Xj(0) = ej(0).

We write Xj(x) =
∑n

k=1 cjkek . Then C = (cjk)1≤j,k≤N is invertible near 0.
We define

X̃j =
N∑
k=1

(C−1)jkXk

so that the Xj =
∑N

k=1 Cjk(x)X̃k. We may replace the Xk by X̃k since neither
assumption nor conclusion changes. We have

X̃j(x) = ej +
n∑

k=N+1

cjkek. (2.5)

We claim that the vector fields X̃j commute: We can write

[X̃j, X̃k] =
n∑

l=N+1

ajklel =
N∑
l=1

bjklX̃l.

The first equality follows from (2.5) and the second holds since the commu-
tators are in the span of the vector fields. Since the first N components of
the commutator vanish (by the middle term) the bjkl vanish and the vector
fields commute.

We define a map

Rn = RN × Rn−N ⊂ V 3 ((tj)1≤k≤N , (yj)1≤k≤n−N)→ Φ(t, (0, y)) ∈ Rn

9 [February 2, 2023]



which is smooth. By construction DΦ(0) = 1Rn , hence it is a local diffeomor-
phism. In V we have the trivial foliation with the leafs Sα = {(t, α) ∈ V }.
The submanifolds Φ(Sα) foliate a neighborhood of zero.

Vice versa: If there exists such a map then if x = Φ(t, (0, y))

Xj(x) = ∂tjΦ(t, (0, y)).

2.2 The symplectic structure

2.2.1 Symplectic vector spaces

Let K be R or C. E be an n dimensional K vector space.

Lemma 2.4. Let ω : E × E → K by an antisymmetric bilinear map. There
exists basis ei so that for some N ≤ d/2

ω(
n∑
j=1

ajej,
n∑
j=1

bjej) =
N∑
j=1

ajbj+N − aj+Nbj (2.6)

Proof. Let e1 e some vector so that there is another vector f so that ω(e1, f) 6=
0. We define

e2 =
1

ω(e1, f)
f.

Suppose we have constructed (ej)1≤j≤2J . Suppose there exists e2J+1 and f
so that

ω(ej, e2J+1) = ω(ej, f) = 0, ω(e2j+1, f) 6= 0

for 1 ≤ j ≤ 2J . Then we continue recursively until the procedure stops
because

ω(ej, e) = ω(ej, f) = 0 for 1 ≤ j ≤ 2J =⇒ ω(e, f) = 0

We complement the basis and claim that then (2.6) with J = Nholds.

Definition 2.5. We call ω a sympletic form if 2N = d in the construction
above.

Let ω be an antisymmetric bilinear map. We define the linear map

B : E → E∗

by
B(x)(y) = ω(x, y).
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Then ω is a symplectic form if and only if B is invertible. In that case we
denote the inverse by J : E∗ → E.

On K2n 3 (p, q) there is the cannonical symplectic form

ω0((p1, q1), (p2, q2)) = p1 · q2 − p2 · q1

In this case

J =

(
0 1Rn

−1Rn 0

)
, J−1 =

(
0 −1Rn

1Rn 0

)
.

Definition 2.6. Let (E,ω) be a d = 2N dimensonal symplectic vector space.
A subvector space F ⊂ E of dimension N is called Lagrangian if ω|F×F = 0.

In (R2N , ω0) we see that Lagranigian subspaces exist. There cannot be a
subspace of higher dimension so that the restricton vanishes.

Definition 2.7. Let (E,ω) and (F, µ) be a symplectic vector spaces. An
invertible linear map A : E → F is called a symplectic if

ω(z1, z2) = µ(Az1, Az2).

The symplectic group is the group of symplectic linear maps from (R2n, ω0)
to itself.

It is not hard to make the condition for a matrix to be symplectic precise.
Let zj = (xj, xj) ánd consider the matrix(

A B
C D

)
.

We want to check under which conditions it is symplectic. First every sym-
plectic operator is invertible. Since(

A B
C D

)(
x
y

)
=

(
Ax+By
Cx+Dy

)
and

ω0

((
x1

y1

)
,

(
x2

y2

))
= xT1 y2 − yT1 x2,

ω0

((
Ax1 +By1

Cx1 +Dy1

)
,

(
Ax2 +By2

Cx2 +Dy2

))
= (Ax1 +By1)T (Cx2 +Dy2)− (Cx1 +Dy1)T (Ax2 +By2)

It is symplectic iff
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• ATC, BTD are symmetric and ATD − CTB = 1KN

• ABT , CDT are symmetric and ADT −BCT = 1KN

A 2× 2 matrix is symplectic iff its determinant is 1.
We will be almost exclusively be concerned with submanifolds of Rd. Here

we are even more restrictive and consider only open subsets of R2N . Using
local coordinates we obtain similar constructions on manifolds.

2.2.2 Primer on differential forms

Consider skew k linear maps (Rn)k → R, which we denote by Λk. They are
k linear maps T

(v1, . . . , vk)→ T (v1, . . . , vk) ∈ R

so that the value changes sign whenever we exchange to vectors. Equivalently
T is zero if the vectors are linearly dependent. A basis is given by

dxj1 ∧ dxj2 · · · ∧ dxjk

with
1 ≤ j1 < j2 < . . . jk.

They are defined by

dxj1∧dxj2 · · ·∧dxjk(ei1 , ei2 . . . eik) =


±1 if (ik) is a permutation of (jk)

and the sign is the sign of
the permutation

0 otherwise

We define the smash product of a k1 resp. k2 form by the basis. The smash
product of two basis forms vanishes unless all indices are different. We then
permute step by step. If X ∈ Rn and ω is an skew k linear map we define
the k − 1 form iXω by

(iXω)(X2, . . . Xk) = ω(X,X2, . . . Xk).

A differential k form on an open set U ⊂ Rn is a (continuous / smooth
/analytic ) map U to the skew k linear maps. Typically we express them
with respect to the basis above.

We define the exterior derivative of a C1 k form, which is a continuous
k + 1 form via

d(fdxj1 ∧ dxj2 · · · ∧ dxjk) = df ∧ dxj1 ∧ dxj2 · · · ∧ dxjk .
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We say a form is closed, if its exterior derivative vanishes, and exact if it is
an exterior derivative. On easily sees that always

ddω = 0

and hence exact implies closed. The Poincaré lemma say that on star shaped
closed forms are exact.

If φ : U → V is C1 map and if ω is a continuous k form on V we define
the pull back by

φ∗ω(x;X1, . . . Xk) = ω(φ(x);DΦ(x)X1, . . . , DΦ(x)X2).

The operations are all compatible:

φ∗(ω ∧ ν) = φ∗ω ∧ φ∗ν

dφ∗ω = φ∗dω.

If X is a vector field and ΦX is the flow we define the Lie derivative

LXω =
d

dt
Φ∗(t)ω

∣∣∣
t=0

Then

Lxω = iXdω + d(iXω) (2.7)

2.2.3 Definition of symplectic manifolds and first properties

We work in local coordinates and hence argue on Rn, even when we formulate
statements about manifolds.

Definition 2.8. A symplectic form ω is a closed 2 form on a 2N dimensional
manifold M2N of maximal rank at every point. (M2N , ω) is called symplectic.

By the Poincaré lemma locally any sympectic form is exact and there
exists a 1 form α so that ω = dα.

We again may ask: Can we choose coordinates so that the symplectic
form becomes simple? The answer is yes.

Theorem 2.9 (Darboux theorem). Let (M2n, ω) be a symplectic manifold.
For z ∈M there exists a neighborhood U ⊂M and a diffeomorphism

φ : U → R2n

so ω = φ∗ω0.
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Proof. It suffices to prove the statement for a symplectic form on an open set
U ⊂ R2N . We use an elegant argument which goes back to Moser. Arnold
[1], Section 43 B provides a different proof.

Let ω by a symplectic from on Br(0) ⊂ R2N . By a linear change of
coordinates and Lemma 2.4 we may assume that ω(0) = ω0 and, decreasing
r if necessary

ωt = (1− t)ω0 + tω

is a family of symplectic forms parametrized over [0, 1].
We want to construct a family of vector fields X(t, x) with X(t, 0) = 0

and maps Ψ(t, x) defined by

Ψ(0, x) = x,
∂

∂t
Ψ(t, x) = X(t,Ψ(t, x))

so that Ψ∗(t)ωt = ω0. We differentiate the left hand side. Then

0 =
d

dt
ω0(V,W ) =

d

dt
(Ψ∗(t)ωt)(x)(V,W )

=
d

dt
ωt(Ψ(t, x))(DΨ(t, x)V,DΨ(t, x)W )

=
(

Ψ∗(t)(ω − ω0) + Ψ∗LXωt
)

(V,W )

= Ψ∗(t)(ω − ω0 + diXωt + iXdωt)(V,W )

= Ψ∗(t)d(α + iXωt)(V,W )

The symplectic forms are closed and we write ω2 − ω1 = dα. We observe
iXωt(x) = J−1

t (x)X(x) hence X(x) = −Jt(x)α(X) where Jt is the map
connected to the sumplectic form ωt(x). Now we read the equalities in the
opposite direction.

There is an extension with the same proof.

Theorem 2.10 (Darboux-Weinstein theorem). Let (M2n, ω) be a symplectic
manifold, Nd ⊂M2n a submanifold. Let ω̃ be second symplectic forms which
coincides with ω on N . Then there exist two neighborhood U1 and U2 of N
and a diffeomorphism φ : U1 → U2 so that

ω = φ∗ω̃.

Definition 2.11. Let (M2n, ωM) and (N2n, ωN) be symplectic manifolds. A
symplectomorphism is a diffeomorphism φ : M2n → N2n so that

ωM = φ∗ωN .
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2.3 Hamiltonians and Hamiltonian vector fields

Let (M2n, ω) be an open set with a symplectic form and H ∈ C1(M2n). We
define the Hamiltonian vector field as the unique vector field ∇H so that for
all V in the tangent space at x

dH(x)(V ) = ω(x)(V,∇H(x)).

We can work this out for ω0 where

∇H = −J∇H =



− δH
∂q1
...
− ∂H
∂qn
∂H
∂p1

. . .
∂H
∂pn


.

The Hamiltonian equations are

d

dt
pj = −∂H

∂qj
,

d

dt
qj =

∂H

∂pj
(2.8)

In the sequel we consider smooth Hamiltonians, even if the statement and
definition require only a finite number of derivatives. We define the Poisson
bracket of two smooth functions by

{f, g} = ω(Jdg, Jdf) (2.9)

with with ω0 becomes

{f, g} = ω0





−∂q1g
...

−∂qng
∂p1g

...
∂png


,



−∂q1f
...

−∂qnf
∂p1f

...
∂pnf




=

n∑
j=1

(∂pjg∂qjf − ∂qjg∂pjf).

The definition of the Poisson bracket is independent of the coordinates. It
satisfies

∇gf = {f, g} (2.10)

which we check for (R2m, ω0) and

(
p
q

)
∈ R2n,

∇gf =
n∑
j=1

−∂qjf∂pjg + ∂pjf∂qjg,
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skew symmetry
{f, g}+ {g, f} = 0, (2.11)

which is clear from the definition and the Jacobi identity

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0. (2.12)

To verify the Jacobi identity we observe that schematically

{{f, g}, h} = Dh(DfD2g +DgD2f).

We will show that we can write the cyclic Poisson bracked above so that
there are no second derivatives on f , which by symmetry implies the Jacobi
identity.

We compute using (2.10) and skew symmetry

{{f, g}, h}+ {h, f}, g}) = ∇h∇gf −∇g∇hf = [∇h,∇g]f

The commutator is a first order operator, which proves the claim. The
Leibniz formula holds

{f, gh} = {f, g}h+ {f, h}g. (2.13)

There are compatibility equation between the Poisson bracket for functions
and the commutator of vector fields

∇{f,g} = [∇g,∇f ]. (2.14)

since

∇{f,g}h = {h, {f, g}} = −{{f, g}, h}
= {{g, h}, f}+ {{h, f}, g}
= −∇f∇gh+∇g∇fh

Lemma 2.12. Suppose that {H, g} = 0}. Then g is constant along the flow
of H. In particular H is constant on the Hamiltonian flow of itself. The
Hamiltonian flow is a (local) symplectomorphism.

Proof.

d

dt
g(Φ∇H (t, x)) = dg(∇H)(Φ∇H (t) = {H, g} ◦ Φ∇H (t) = 0.

We have to prove
L∇Hω = 0.
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This is a local statment and it sufices to prove it in (R2n, ω), (p, q) ∈ R2n,

ω0

((
p1

q1

)
,

(
p2

q2

))
= (pT1 , q

T
1 )J

(
p2

q2

)
.

We compute

d

dt
(pT1 , q

T
1 )(DΦ)T (t, x)JDφ(t, x)

(
p2

q2

) ∣∣∣
t=0

= (pT1 , q
T
1 )
(

(D∇H)TJ + JD∇H

)(p2

q2

) ∣∣∣
t=0

and

((D∇H)TJ + JD∇H) =

(
(D2

pqH)T −D2
ppH

D2
qqH −D2

pqH

)(
0 1
−1 0

)
+

(
0 1
−1 0

)(
D2
pqH D2

qqH
−D2

ppH −(D2
pqH)T

)
=

(
D2
ppH (D2

pqH)T

D2
pqH D2

qqH

)
+

(
−D2

ppH −(D2
pqH)T

−D2
pqH −D2

qqH

)
= 0

Examples:

1. The free motion. H(p, q) = 1
2m
|p|2 where m is the mass. The Hamilto-

nian equations are

d

dt
pj = 0,

d

dt
qj =

1

m
pj.

Here q is the position, p the momentum which is m times the velocity
of the free particle. The general solution is

q(t) = q(0) +
t

m
p.

2. The harmonic oscillator, n = 1, H(p, q)) = 1
2
(|p|2 + |q|2). The Hamil-

tonian equations are

d

dt
q = p,

d

dt
p = −q

The general solution is(
p(t)
q(t)

)
=

(
cos(t) − sin(t)
sin(t) cos(t)

)(
p(0)
q(0)

)
.
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3. The anharmonic oscillator, n = 1, H(p, q) = 1
2m
|p|2 + V (q) V (q) =

−L cos(q). The Hamiltonian equations are

d

dt
p = −L sin(q),

d

dt
q =

1

m
p.

We cannot solve explicitly but the orbits are on the level sets of H.

4. Consider, Ij = 1
2
(p2
j + q2

j )

H(p, q) = h
(
(
1

2
(Ij)1≤j≤n)

)
Then

{H.Ij} = 0

and the Hamiltonian equations are

ṗj = −∂H
∂Ij

∂Ij
∂qj

= −∂H
Ij
qj

q̇j =
∂H

∂Ij
pj.

The action variables are Ij and the angle variables are given by polar
coordinates. In polar coordinates

dpj ∧ dqj =
1

2
dr2dθ.

Definition 2.13. We say two functions f and g Poisson commute if

{f, g} = 0.

Definition 2.14. We call a Hamiltonian function H Liouville integrable on
U if there exists n functions Fj which Poisson commute with one another,
and also with H so that the rank of {dFj} is n at every point.

Of course H may be one of the vector fields.
The span of (∇Fj)1≤j≤n is a Lagrangian subspace, and there cannot be

more Poisson commuting functions so that the rank of the Hamiltonian vector
fields is the number of the functions.

By the previous considerations the functions are conserved under the flow,
and hence the flow lines stay on the level set.
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Theorem 2.15 (Liouville-Arnold integrability). Let H be Liouville integrable
on an open set M2n with the Poisson commuting functons (Fj)1≤j≤n which
also Poisson commute with H. Let α ∈ Rn so that the level set

T := {z ∈ U : Fj(z) = αj for 1 ≤ j ≤ n}

is nondegenerate, connected and compact. Then there exists a ball Br(α) and
an open set V ⊂ Rn so that the following holds: We equipp V ×(S1)n 3 (I, θ)
with the symplectic form

ω0 = d
n∑
j=1

Ijdθj

and a symplectomorphism

Φ : {z : (Fj(z)) ∈ Br(α)→ V × (S1)n.

The Ij ◦ Φ Poisson commute with the Fj and with H. There exists a map
φ : Br → V so that φ(α) is the first component of Φ(z) iff F (z) = α,

We consider the Ij as functions on U . The are called action variables and
θ are called angles. The actions Ij Poisson commute. In particular level sets
I = I0 are level set F = α and the map I → α is a diffeomorphism. As a
consequence the level ses of F are n dimensional tori.

The Hamiltonian H can be written as a function of the action variables

H = h(I)

and the Hamiltonian equations become

d

dt
Ij = 0,

d

dt
θj =

∂h

∂Ij
=: ωj

which we can solve as
θj(t) = θj(0) + tωj

modulo 2π.

Proof. Let
Θ : Rn 3 t→ ΦF (t, z0).

By assumption

dΘ =
∑
∇Fidti

has rank n since the vector fields ∇Fi are linearly independent. The range
is open in T since it has dimension n. It is also closed: Let z ∈ T be
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in the closure of the range. Then the flows map a neighborhood of 0 to a
neighborhood of z in T . Thus there exists s, t ∈ Rn so that

Φ(t, z0) = Φ(s, z)

hence
Φ(t− s, z0) = z.

Then
T = {t : Φ(t) = z0}

is a discrete additive subgroup of Rn. It does not depend on z0

Lemma 2.16. Discrete additive subgroups T ⊂ Rn are generated by at most
n vectors in Rn.

Proof. No ball contains more than a finite number of elements of the discrete
subgroup. Let e1 6= 0 be one of the vectors with the smallest norm and let
X1 be its span. Then T ∩X1 = {ne1 : n ∈ Z}. Otherwise we would find an
element of T closer to the origin.

We define ej recursively and denote by Xj the span of the first j vectors
and assume that T ∩Xj is generated by the ej. Suppose that we have defined
Xj. We claim

d(T\Xj, Xj) > 0.

If not there exists a sequence gk ∈ G\Xj so that

d(gk, Xj)→ 0

Adding a linear integer linear combination of the ek, 1 ≤ k ≤ j we may
assume that the sequence is bounded, and taking a subsequence converges
to some g0 ∈ G since G is discrete. But this contradicts the discreteness.
We take ej+1 ∈ G closest to Xj and claim that (ek)k≤j+1 generate G ∩Xj+1.
Suppose not. Then there exists g ∈ G ∩ Xj+1 with distance to Xj at most
half the distance of ej+1 to Xj. This is a contradiction. This process has to
stop at latest at j = n.

The map Θ is a diffeomorphism of Rn/T → T . Then T has to have rank
n since T is compact. As a consequence level sets in a neighborhood consist
of n dimensional tori. Decreasing the manifold we may assume that it is
foliated by tori invariant under the flow.

We fix a smooth maps

BRn
r (α0) 3 α→ zα ∈ T (α)

20 [February 2, 2023]



and en(α), T (α) the stabilizer of Φα generated by en(α) and

BRn
r (α0)× (S1)n → Φ(

∑
sjej(α), z(α)) ∈ W ⊂M2n

which is a diffeomorphism. The tangent spaces of (S1)n are Lagrangian. The
symplectic form is independent of the t variables, hence

ω =
n∑

i,j=1

ωij(α)dαj ∧ dti + γij(α)dαi ∧ dαj.

The form is closed, hence

0 = dω =
n∑

ijk=1

∂ωij(α)

∂αk
dαj ∧ dαk ∧ dti +

∂γij
∂αk

dαk ∧ dαi ∧ dαj

Thus
d(ωij(α)dαj) = 0 and dγij(α)dαidαj = 0.

By the Poincaré lemma there exist functions fi so that dIi = ωij(α)dαj. We
claim that the map

α→ (fi)1≤i≤n

is a diffeomorphism. Suppose not. There is a point z0 and a non zero vector
v ∈ Rn so that Dα(fi)(v) = 0. But then ω(z0) vanishes on the span of
{0}×Rn∪{v, 0}, a contradiction to the assumptions that ω has rank n. Let
Ii := φi(α) = fi be the action variables. Then Fj and H are functions of the
action variables, Fj = Fj(I) and H = h(I) and ω can be written as

ω =
n∑
j=1

dIj ∧ dθj + γ̃ij(I)dIi ∧ dIj.

Again there exists a one form
∑n

j=1 βj(I)dIj so that

n∑
j=1

dβj(I)dIj =
n∑

i,j=1

γ̃ijdIi ∧ dIj.

We define
θ = θ̃ − β(I)

so that ∑
j

Ijdθj =
n∑
j=1

Ijdθ̃j + d
n∑
j=1

(βjIj) +
n∑
j=1

βjdIj
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which implies
n∑
j=1

Ijdθ̃j =
n∑
j=1

Ijdθj +
n∑
j=1

βjdIj.

By construction and the chain rule

{Ii, Fj} = {Ii(F ), Fj} = 0

and similarly {Ii, H} = 0.

This proof has a draw-back from Arnold’s point of view: It involves solv-
ing ODE’s and it is possible to be more explicit. We do that in the next
section.

2.3.1 Action-angle variables in the case 2n = 2

We begin with a discussion of symplectomorphisms

Φ : (R2n, ω0) 3 (p, q)→ (P,Q) ∈ (R2n, ω0).

Since
ω0 = d(pdq) = d(PdQ)

we see

d(
n∑
j=1

pjdqj − PjdQj) = 0

hence there exists a potential S with

n∑
j=1

pjdqj − PjdQj = dS

Now suppose that
R2n 3 (p, q)→ (q,Q)

is a diffeomorphism and let S(q,Q) be a function so that

∂S

∂qj
= pj.

Define Pj = − ∂S
∂Qj

. Then

dS =
n∑
j=1

∂S

∂qj
dqj +

∂S

∂Qj

dQj =
∑

pjdqj − PjdQj,
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and the map
(p, q)→ (P,Q)

is a local symplectomorphism.
This is used to complement certain sets of coordinate (Q) to P so that

the symplectic form is d(PdQ). There are obvious variants if

(p, q)→ (q, P ) or (p, q)→ (p,Q) or (p, q)→ (p, P )

are (local) diffeomorphisms: One expresses S in terms of the coordinates
and complements the coordinates in capital letters so that one obtains a
diffeomorphism.

We apply this to the illustrative case of n = 1, (R2, ω0). This is always
integrable since we may take F = H. We assume that Hα = {(p, q) :
H(p, q) = α} is connected, compact and nondegenerate. We observe

dp ∧ dq = d(pdq).

Let γ ∈ C1([0, 1];Hα) with γ(0) = γ(1) be a parametrization of the level set
in positive orientation. Let D(α) be the encircled set. We define

I(α) =

ˆ
γ

pdq = Area(Dα)

by Green’s formula and hence dI
dα
6= 0 and thus α = h(I). We define

S(I, q) =

ˆ z

z(α)

pdq

for z on the level set with the path of integration is on the level set in positive
orientation. Suppose that we can write p = p(I, q). Then we consider S as a
function of I and q. Since

dS =
∂S

∂q
dq +

∂S

∂I
dI

we see that by construction p = ∂S
∂q

. We define

θ =
∂S

∂I

so that
dS = pdq + θdI = pdq − Idθ + d(θI)

and
ω0 = d(Idθ).
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The map
(p, q)→ (I, θ)

is thus a symplectomorphism. To complete the argument we observe that
the period ∆S of S is I so that

d∆S

dI
= 1

hence θ ∈ R/2πZ.

2.4 The two body problem

The two body problem describes two point masses in R3 with mass m1,m2 >
0 , which attract each other by gravitation. The kinetic energ is with p1, q1 ∈
R3

1

2m1

|p1|2 +
1

2m2

|p2|2

and the potential energy

− g

|q1 − q2|
where g > 0 is a gravitational constant. The Hamiltonian is the sum of the
two,

H =
1

2m1

|p1|2 +
1

2m2

|p2|2 −
g

|q1 − q2|
The symplectic form is

d

(
3∑
j=1

pj1dq
j
1 + pj2dq

j
2

)

and the Hamiltonian equations are

d

dt
q1,2 =

1

m1,2

p1,2,
d

dt
p1 = −g q1 − q2

|q1 − q2|2
,

d

dt
p2 = −g q2 − q1

|q2 − q1|2

The total momentum is P = p1 + p2 which Poisson commutes with H,

[P k, H] = −
∑
k

∂H

∂qk1
+
∂H

∂qk2
= 0

The center of mass is

Q =
m1q1 +m2q2

m1 +m22
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and
d

dt
Qj =

P j

m1 +m2

so that

Q(t) = q(0) + t
P

m1 +m2

.

We define the reduced mass as

m =
m1m2

m1 +m2

Let q = q2 − q1. Then

d2

dt2
q =

d2

dt2
q2 −

d2

dt2
q1

=
d

dt

p2

m2

+
d

dt

p1

m1

= −g
(

1

m2

+
1

m2

)
1

|q|3
q

so with p = mq̇ we have

d

dt
q =

1

m
p,

d

dt
p = − g

|q|3
q.

These are the Hamiltonian equations for the Hamiltonian

H =
1

2m
|p|2 − g

|q|
(2.15)

of a particle in a radial potential. The map

(p1, p2, q1, q2)→ (P, p,Q, q)

is a symplectomorphism. We have reduced the two body problem to a uni-
form motion and the problem of a particle in a central force field.

The angular momentum is L = q × p. Its components Poisson commute
with H, which we check for the third component.

{L3, H} =
3∑
j=1

∂qjL
3∂pjH − ∂pjL3∂qjH

=
1

m
(p2p1 − p1p2 + (−q2(− gq1

|q|3
) + q1(− gq2

|q|3
)) = 0.
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However the components of angular momentum do not Poisson commute
with another. However H, L3 and |L|2 Poisson commute. We have n = 3
and three Poisson commuting functions.

We proceed in a more geometric fashion. The vector L is conserved, and

L = r × q

hence r and q stay in the plane perpendicular to L. Without loss assume
that L = le3 and we have reduced the problem to the planar Kepler problem
(see [27])

d

dt
q1 = p1,

d

dt
q2 = p2,

d

dt
p1 = − g

|q|3
q1,

d

dt
p2 = − g

|q|3
q2 (2.16)

with Hamiltonian

H =
1

2m
(p2

1 + p2
2)− g√

q2
1 + q2

2

.

There are two Poisson commuting functions, H and the angular momentum

l = q1p2 − q2p1.

The differentials are

dH =
1

m
(p1dp1 + p2dp2) +

g

|q|3
(q1dq1 + q2dq2)

dl = q1dp2 + p2dq1 − q2dp1 − p1dq2

which are easily seen to be linearly independent whenever q 6= 0 and l 6= 0. If
H < 0 and l 6= 0 then level sets are bounded: g

|q| ≥ −H implies |q| is bounded
on the level set. Boundedness of the momentae is harder. We choose polar
coordinates

q = r

(
cos θ
sin θ

)
and ω = dθ

dt
so that

m
d2

dt2
r = − g

r2
+

1

m

( |p|2
r
− (p1q1 + p2q2)2

r3

)
and

|p|2|q|2 − (p1q1 + p2q2)2 = (q1p2 − q2p1)2

hence

m
d2r

dt2
−mrω2 = − g

r2
. (2.17)
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We obtain Kepler’s second law from the conservation of l = mr2ω (the line
[0, q] sweeps out an area propotional to time), and

d

dt
=

l

mr2

d

dθ

which allows rewrite (2.17) as

l

r2

d

dθ

(
l

mr2

dr

dθ

)
− l2

mr3
= − g

r2
.

Let u = 1
r
. Then

d2u

dθ2
+ u =

gm

l2

which are one dimensional Hamiltonian equations which can be solved:

u =
gm

l2
(1 + e cos(θ − θ0))

At θ = θ0 we have u̇ = 0 hence ṙ = 0. Evaluating the Hamiltonian of (2.17)
and hence the Hamitonian of Kepler’s problem gives

e =

√
1 +

2HL2

g2m

is the eccentricity and θ0 the phase offset. Then e = 0 is a circle, e < 1 an
ellipse, e = 1 a parabola and e > 1 a hyperbola. Hence H < 0 gives an ellipse
(Kepler’s first law) , if H = 0 it is a parabola, and if H > 0 a hyperbola. To
solve the motion we use

l = mr2dθ

dt

and solve the scalar first order ODE via separation of variables,

dθ

dt
=

l

mr2
=

l

m
u2 =

g2m

ml3
(1 + e cos(θ − θ0))2.

We see that the level sets are bounded if H < 0 and l 6= 0. We missing yet
the action angle variables.

For that we return to the three dimensional problem with central force.
We follow [2] and write it in polar coordinates

q1 = r sin θ cosφ, q2 = r cos θ cosφ, x3 = r sinφ
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We write

α =
3∑
j=1

pjdqj = prdr + pθdθ + pφdφ

so that
(p, q)→ (r, θ, φ, pr, pθ, pφ)

is a symplectomorphism. Then

H =
1

2
(p2
r +

1

r2
p2
θ +

1

r2 sin2 θ
p2
φ

|L|3 = p2
θ +

1

sin2 θ
p2
φ

L3 = pφ

This completes the change of variables.

On the level set

pr =

√
2(H +

g

r
)− |L|

2

r2
, pθ =

√
|L|2 − (L3)2

sin2 θ
, pφ = L3 (2.18)

The 1 form α restricted to the level set is obviously closed and has a potential
S on the level sets (locally) , which we normalize by chosen points on the
level sets where S vanishes depending smoothly on the Poisson commuting
functions. The angle variables are as in the one dimensional case

ψH =
DS

dH
,ψ|L|2 =

∂S

∂|L|2
, ψL3 =

∂S

∂L3

By the same argument as there with the generating function S this defines
a symplectomorphism.

We write the Hamiltonian has a function of the action variablesH, |L|2, L3,
H = h(H, |L|2, L3) with h = H. Hence d

dt
ΨH = ∂h

∂H
= 1 and Ψ|L|2 and ΨL3

are constant for the flow of H.

2.5 Poisson Geometry

We follow Weinstein [5, 26] in this section.

Definition 2.17. Let MN be a manifold. A Poisson structure is a bilinear
map

C∞(M)× C∞(M) 3 (f, g)→ {f, g} ∈ C∞(M)
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which satisfies

{f, g}+ {g, f} = 0 skew symmetry

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 Jacobi identity

{f, gh} = {f, g}h+ {f, h}g Leibniz rule.

Let Mm and Nn by Poisson manifolds. A map φ : Mm → Nn is a Poisson
map if

{f ◦ φ, g ◦ φ}M = {f, g}N ◦ φ.

We define the pull back by this formula which we can use to define a Poisson
structure on M from a Poisson structure of N and this formula.

Remarks and definitions.

1. A Casimir is a function f so

{f, g} = 0

for all g. Examples are constant functions since

{f, 1} = {f, 1 ∗ 1} = 2{f, 1} = 0

2. If f = gh and g and h vanish at a point then {f, gh} = 0 at this point
by the Leibniz rule. Consider a Poisson structure on a subset U of Rn.
Let x0 ∈ U and

f(x) = f(x0) +
∑

∂xjf(x0)(x− x0)j + T2f(x)

Then

{g, f}(x0) =
n∑
j=1

∂xjf(x0){g, xj − x0
j}(x0)

and as a consequence
f → (g → {f, g})

is a first order operator, which is a vector field which we call Hamil-
tonian vector field and denote by ∇f . We obtain again by the same
argument as for symplectic manifolds

[∇g,∇f ] = ∇{f,g}.
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3. The Poisson bracket is a sum over products of first order derivatives
and in local coordinates resp. in Rn there exists a skew symmetric
matrix Πij so for some smooth skew symmetric Πij called the Schouten
tensor

{f, g}(x) =
∑
i,j

Πij(x)∂if(x)∂jg(x) (2.19)

where
Πij = {xi, xj}.

The Hamiltonian vector field is

∇f = Πdf.

It generates a flow.

4. If Π is skew and constant then the Jacobi identity is automatically
satisfied. After a linear coordinate transform

Π =

 0 −1k 0
1k 0 0
0 0 0l

 .

Casimirs are functions of (cj)1≤j≤l with coordinates (p, q, c) ∈ Rk ×
Rk × Rl.

2.5.1 The Lie-Poisson (or Kirrilov-Kostant) bracket on the dual
of a Lie algebra

Let g be a finite dimensional Lie algebra and let g∗ be its dual. If f ∈ C1(g∗)
then df(µ) ∈ g∗∗ = g and we define the Lie-Poisson bracket using the bracket
of the Lie algebra

{f, g}(µ) = µ([df(µ), dg(µ)]).

It is clearly bilinear, skew symmetric and satisfies the Leibniz rule.

Lemma 2.18. The Lie-Poisson bracket satisfies the Jacobi identity.

Proof. We define the jacobiator (or Schouten-Nijemhuis bracket) on C∞(g∗)
as

J(f, g, h) = {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g}.
It is skew symmetric and a derivation in each argument:

J(f, g, hl) = {{f, g}, hl}+ {{g, h}l + {g, l}h, f}+ {{h, f}l + {l, f}h, g}
= ({{f, g}, h}+ {{g, h}, f}+ {{h, f}, g})l

+ ({{f, g}, l}+ {{g, l}, f}+ {{l, f}, g})h
+ {g, h}{l, f}+ {g, l}{h, f}+ {h, f}{l, g}+ {l.f}{h, g}
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Thus

J(f, g, h)(µ0) = J((µ→ df(µ0)(µ), (µ→ dg(µ0)(µ)), (µ→ dh(µ0)(µ)))

and it suffices to check the Jacobi identity for linear functions. Suppose

f(µ) = µ(A), g(µ) = µ(B), h(µ) = µ(C)

are linear functions, A,B,C ∈ g. Then

{f, g}(µ) = µ([A,B])

and

{f, {g, h}}+{g, {h, f}}+{h, {f, g}} = µ([A, [B,C]]+[B, [C,A]]+[C, [A,B]]) = 0

and the Jacobi identity for linear functions for the Lie-Poisson bracket is
equivalent to the Jacobi identity of the Lie algebra. This implies the claim.

Let A ∈ g. It defines a linear map on g called the adjoint represenation
of the Lie agebra

adXY = [X, Y ],

for which Lie bracket and commutator are compatible:

ad[X,Y ],Z = [[X, Y ], Z]

= −[[Y, Z], X]− [[Z,X], Y ]

= adX [Y, Z]− adY [Z,X]

= adXadYZ − adY adXZ

The coadjoint representation on g∗ is defined by

ad∗Xµ(Y ) = −µ(adXY ).

We compute

∇Hf(µ) = µ([dH, df ]) = µ(addH(df)) = −ad∗dH(m)((df)(m))

and

Lemma 2.19.
∇H = − ad∗dH . (2.20)
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2.5.2 The splitting theorem of Weinstein

At a point x0 ∈ U ⊂ RN the Hamiltonian vector fields span a subspace of the
tangent space Rn. Its dimension is the rank of the skew symmetric Π(x0),
which is even.

Theorem 2.20 (Splitting theorem of Weinstein). Let MN be a Poisson man-
ifold and x0 ∈ M . There exist coordinates ((pj)1≤j≤n, (qj)1≤j≤n, (yj)1≤j≤M)
so that

Π =



0 −1 0 0 . . . 0
1 0 0 0 . . . 0
0 0 0 −1 . . . 0
0 0 1 0 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . Π̃(y)


where Π̃ defines a local Poisson structure on RN−2n which vanishes for y = 0.

There is an important consequence: N = R2n × {0N−2n} is a Poisson
manifold with a Poisson structure of maximal rank, since

{f, g}|N =
n∑
j=1

∂qjf |N∂pjg|N − ∂pjf |N∂qjg|N .

As a consequence on the submanifold {y = 0} there is a natural Poisson
structure of full rank which is the Poisson structure of the canonical sym-
plectic form on this manifold. In particular Darboux’s theorem is a special
case.

Through every point there is symplectic submanifold defined by the Pois-
son structure so that the Hamiltonian vector fields are tangent. As an im-
mediate consequence the Hamiltonian flows define Poisson mappings, since
we know that in the symplectic case.

Proof. We assume that there is Hamiltonian vector field ∇p1 which does not
vanish at x0 - otherwise we take n = 0. So we assume that there is another
function q so that {p, q}(x0) = 1. We choose coordinates (p1, q1, (ỹj)1≤j≤N−2)
so that

{p1, q1} = ∇p1q1 = 1.

This is a linear ordinary differential equation which has a local solution.
Then ∇p1 and ∇q1 are linearly independent and

[∇p1 ,∇q1 ] = ∇1 = 0.
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We apply the Frobenius theorem wand choose coordinates (p1, q1, (yj)) so
that the all components besides the first two of the vector fields ∇p1 and ∇q1

vanish. Then the dyj are linearly independent, ∇p1(yj)) = ∇q1(yj) = 0 since
they are constant on the leafs. Then by the Jacobi identity

{{yi, yj}, p1} = {{yi, yj}, q1} = 0

and the Poisson brackets {yi, yj} are constant on the leafs, and hence a
function of the ys. In this coordinates M is a locally a product of R2 with the
canonical symplectic structure, and an N − 2 dimensional Poisson manifold.
We obtain the claim by induction of j.

3 Integrable ODEs

3.1 Euler’s equation on Lie groups: The spinning tops
of Euler, Lagrange and Manakov and the Korteweg-
de Vries equation

Most of the material of this subsection is contained in Khesin and Wendt
[15], see also Marsden and Ratiu [18]. Let SO(n) be the set of orthogonal
n × n matrices of determinant 1. It is a smooth manifold in the space of
n× n matrices since

O ∈ SO(n) ⇐⇒ detO = 1, OTO = 1

is a nondegenerate level set. The tangent space at the identity is the set
so(n) of traceless skew symmetric matrices. The matrix product is smooth
since it is bilinear in the set of matrices. Inversion is smooth by the implicit
function theorem (or linearity of taking transposeds).

Define

exp(tX) =
∞∑
k=0

(tX)k

k!
∈ GL(n)

Then
d

dt
exp(tX) = X exp(tX) = exp(tX)X

exp((s+ t)X) = exp(sX) exp(tX)

exp(0X) = 1

If X ∈ so(n) then exp(tX) ∈ SO(n) which is rotation in n dimensions.
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There is a canonical representation of SO(n) on so(n), the adjoint repre-
sentation

AdOX = OXO−1 = OXOT .

We can differentiate

d

dt
exp(tX)Y exp(−tX)|t=0 = XY − Y X = adXY

and obtain the adjoint representation of the Lie algebra on itself. The coad-
joint representation is defined by

Ad∗Om(X) := m(AdO−1) = m(O−1XO)

and
ad∗Y m(X) := −m(adY X).

The left resp right multiplication defines a map

O : TeG→ TOG

X → OX resp. X → XO.

The inner product

so(n)× so(n) 3 〈X, Y 〉 = −1

2
trXY =

1

2
trXTY

is invariant under the adjoint representation:

〈AdOX,AdO Y 〉 =
1

2
tr((OXOT )TOY O) =

1

2
trXTY = 〈X, Y 〉.

On the level of the Lie algebra

−〈adY X,Z〉 = 〈adX Y, Z〉
= tr[X, Y ]TZ

= tr[Y,X]Z

= tr(Y XZ −XY Z)

= tr(XZY −XY Z)

= 〈X, adY Z〉.

The Killing form B(X, Y ) is the trace of adX adY in the adjoint represen-
tation. One can calculate for SO(n)

B(X, Y ) = −(n− 2)〈X, Y 〉
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Theorem 3.1. The leaves of the Lie-Poisson bracket are the orbits under
the co adjoint representation. A function is a Casimir if and only if it is
invariant under the coadjoint representation.

Proof. The tangent space of any leaf is spanned by the Hamiltonian vector
fields. If v ∈ g and m ∈ g∗ then there is a Hamiltonian function which
has this derivative at m. Suppose that f is smooth and invariant under the
coadjoint representation Ad∗. Using the exponential map and differentiating
we see that

adv df = 0

for every v hence {f, g} = 0 for all g by Lemma 2.19. Thus f is a Casimir.
All arguments are reversible.

Similarly, since the tangent space of the leaf consists of the evaluation
of Hamiltonian vector fields this argument shows that ad∗vm always tangent.
Using the matrix exponential and differentiating with respect to t shows that
the leaf is the orbit.

Let K be a rigid body with density ρ ≥ 0 and massˆ
ρ

dx > 0.

We write
X(t) = O−1(t)Ȯ(t) ∈ so(n).

Then

1

2

ˆ
K

∣∣∣ d
dt
O(t)x

∣∣∣2ρdx =
1

2

ˆ
|O(t)X(t)x|2ρ(x)dx

=
1

2

ˆ
|X(t)x|2dy

We define the inertia matrix resp bilinear form

(X, Y ) :=
1

2

ˆ
K

Xx · Y xρdx

which is a nondegenerate inner product on so(n). We define the Hamiltonian

H(O, Ȯ) :=
1

2
(O−1(t)Ȯ(t), O−1(t)Ȯ(t)) =

1

2
(X(t), X(t)).

The principle of the least action says that a path is a critical point of the
action functional ˆ T

0

1

2
(O−1Ȯ(t), O−1Ȯ(t))dt.

The inertia defines an invertible linear map A : so→ so∗.
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Theorem 3.2. Let O(t) be a critical point of the action functional in the
sense above. Let

m(t) = AȮ(t).

Then m satisfies the Hamiltonian equation (with respect to the Lie-Poisson
bracket)

d

dt
m(t) = −ad∗A−1m(t)m(t)

with Hamiltonian

H =
1

2
(A−1m,A−1m).

Suppose that m(t) is a solution to the Hamiltonian equations. Let h(t) =
Am(t) and let O(t) satisfy

Ȯ(t) = O(t)h(t), O(0) ∈ SO(n).

Then O is a critical point of the action functional.

Proof. We consider a smooth function O(s; t) ∈ SU(n) and assume that
t→ O(0, t) is a critical point of the action functional and O(s, 0) = O(0, 0),
O(s, T ) = O(0, T ). We differential the action with respect to s. Then

0 =
d

ds

ˆ
1

2
(O−1(s, t)Ȯ(s, t), O−1(s, t)Ȯ(s, t)dt

=

ˆ
(
∂

∂s
O−1(s, t)Ȯ(s, t), O−1(s, t))dt

Let X(t) = O−1(0, t)Ȯ(0, t).

∂

∂s
O−1Ȯ = O−1 ∂

∂t

∂

∂s
O −O−1∂sOO

−1

=
d

dt
(O−1∂sO) + [X,O−1∂sO]

Thus by the definition of A

0 =

ˆ
−(g−1∂sg, Ẋ) + ([v,O−1∂sO], X)dt

∣∣∣
s=0

=

ˆ
− d

dt
(Av)(g−1∂sg)− ad∗X(Av)(g−1∂sg)dt

∣∣∣
s=0

hence, with m = AX
d

dt
m = −ad∗A−1mm.
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In the considerations above we can replace SO(n) with any Lie group,
with the exeption of the form 〈, 〉. The Killing form is nondegenerate for
any semisimple Lie group, and negative definite for semisimple compact Lie
groups. Semisimple compact Lie groups can be realized as matrix groups.

3.1.1 Euler’s spinning top

Here we specialize our consideration to the case n = 3. The group SU(3)
is not simply connected. Its universal covering space is SU(2), which is a
the group of the quanternonian multiplicative quaternonian multiplication
on the three dimensional sphere. The covering map SU(2)→ SO(3) is given
by the adjoint representation.

Elements in so(3) can be written as 0 −x1 x3

x1 0 −x2

−x3 x2 0


The commutator is given by the negative of the cross product 0 −x1 x3

x1 0 −x2

−x3 x2 0

 ,

 0 −y1 y3

y1 0 −y2

−y3 y2 0


=

 0 −(x2y3 − x3y2) x1y2 − x2y1

−(x2y3 − x3y2) 0 x3y1 − x1y3

−(x2y3 − x3x2) x3y1 − x1y3 0

 .

The adjoint representation becomes adX ~y = x × y hence AdO~x = O~x. An
easy calculation shows that

1

2
tr

 0 −x1 x3

x1 0 −x2

−x3 x2 0

 ,

 0 −y1 y3

y1 0 −y2

−y3 y2 0

 = xẏ

and we identify so∗(3) and so(3) so that

Ad∗O ~m = O−1 ~m.

The group orbits of SO(n) are the spheres and the origin. The Hamiltonian
equations become

d

dt
m = m× A−1m.

They define two dimensional Hamiltonian equations on the orbits. Two di-
mensional Hamiltonian equations are integrable.
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Rotating the coordinates we may assume that A is diagonal with positive
entries Ij. The Hamiltonian is

1

2
mTA−1m =

1

2
(I−1

1 m2
1 + I−1

2 m2
2 + I−1

3 m2
3).

The trajectories are given generically by the intersection of the sphere with
the ellipsoid,

|m|2 = R2, I−1
1 m2

1 + I−1
2 m2

2 + I−1
3 m2

3 = H. (3.1)

Then
ṁ1 = (m× A−1m)1 = (I−1

3 − I−1
2 )m2m3

and for some coefficients (solving the two equations (3.1) for m2 and m3 in
terms of m1, H and R)

ṁ1 =
√
α + βm2

1 + γm4
1.

which can be integrated by separation of variables.
Alternatively we may count Poisson commuting functions

H, |L|2, L3

on a six dimensional space. However, we would have to rewrite the equations
in Hamiltonian form on the cotangent bundle of SO(3).

3.2 Lagrange’s spinning top

This material is from [2].
We consider a spinning top in gravity in R3 which is fixed at the origin

which is not the center of mass. The center of mass is

q =
1

M

ˆ
xρdx, M =

ˆ
ρdx.

The kinetic energy is again

1

2
(O−1 d

dt
O,O−1 d

dt
O)

and the potential energy is

q3 = (O(t)q(0))3.
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We assume that two of the eigen values of the intertia A are the same,
I1 = I2 = λ and the third is µ 6= ν. Then, with L the angular momentum
(again by the least action principle)

d

dt
L = −(

d

dt
O)× L− e3 × q,

d

dt
q = −(

d

dt
O)× q.

where
O−1L = IO−1Ȯ

The Hamiltonian is

H =
1

2
L · I−1L+ q3

and the Poisson bracket (basically giving Π)

{Li, Li+1} = Li+3, {Li, qi+1} = qi+2, {qi, qi+1} = 0

with indices mod 3. There are two Casimirs, |q|2 and L · q

L · q = OTL ·OL

for every orthogonal matrix and the dynamics is reduced to a four dimen-
sional sub manifold.

We write

q = r

sin θ sinψ
sin θ cosψ

cos θ


Ȯ =

φ̇ sin θ sinψ + θ̇ cosψ

φ̇ sin θ cosψ − θ̇ sinψ

φ̇ cos θ + ψ̇


The Hamiltonian is

H =
1

2
I1(sin2 θφ̇2 + θ̇2) +

1

2
I3(φ̇ cos θ + ψ̇)2 − r cos θ

The Casimirs are r and

q · L = (Oq ·OTL) = r
[
(I1 sin2 θ + I3 cos θ)φ̇+ I3 cos θψ̇

]
=: rLz.

The third component of the angular momentum Poisson commutes with H
since H is independent of ψ,

L3 = I3(φ̇ cos θ + ψ̇)

We use these identities to eliminate φ̇ and ψ̇ from the Hamiltonian,

H =
1

2
I1θ̇

2 +
1

2I1

(Lz − L3 cos θ)2

sin2 θ
− r cos θ +

1

2

L2
3

I3

.

The Hamiltonian H is constant and we consider this as on ODE for θ.
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3.2.1 The case of so(n)

The quadratic form on so(n)

〈X, Y 〉 = −1

2
tr(XY )

defines the linear invertible map J−1 : so(n)→ so∗(n). We define the gradi-
ent of f ∈ C1(so(n))

∇f(X) = J−1df(X).

We pull back the Lie-Poisson structure to so(n). Let f(X) = F (J−1x),
g(x) = G(J−1x). Then

{f, g}so(n)(X) = {F,G}so∗(n)(J−1X) = J−1X([dF (J−1X), dG(J−1X)])

= 〈X, [Jdf(X), Jdg(X)]〉
= 〈X, [∇f(X),∇g(X)]〉
= −〈[∇f(X), X],∇g(X)〉

hence
∇fg(X) = −〈[∇f(X), X],∇g(X)〉

and
∇f (X) = −[∇f(X), X]. (3.2)

The Hamiltonian of Euler’s spinning top is the kinetic energy

H(X) =
1

2
J−1X(A−1J−1X)

and the equation for the spinning top on so(n) become

d

dt
X = −[∇H(X), X]. (3.3)

Let

Iij =
1

2

ˆ
K

xixjρdx

The inertia form is
n∑

i,j,k=1

X ikIklX
jl = AX(Y ).

with the summation convention and the Hamiltonian is

H(X) =
1

2
AX(Y ).

After an orthogonal change of coordinates (using Schur’ s decomposition I
is a diagonal matrix with diagonal entries Ij, 1 ≤ j ≤ n. We denote the
invertible map ĨX := 1

2
(IX +XI).
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Lemma 3.3. The following formular holds

n∑
i,k,l=1

Y ikIklX
il = −1

2
trY (XI + IX)

Proof. Let eij be the matrix with an 1 in the ith row and jth column. A
basis of so(n) is given by eij − eij, i < j. Let Y = eij − eji. On the left hand
side we obtain

n∑
l=1

(IjlX
il − IilXjl)

and on the right hand side

−1

2

n∑
l=1

(eij − eji)(X ilIlj +XjlIli) = IljX
il − IliXjl.

Theorem 3.4. The equations of the spinning top are

d

dt
X = [X, (Ĩ)−1X] (3.4)

and the Hamiltonian is

H(X) = −1

4
tr(XĨ−1X).

Let Ω = Ĩ−1X. Then we can write the equation as

Ẋ = [X,Ω] = XΩ− ΩX

resp. as
IΩ̇ = [IΩ,Ω]. (3.5)

3.3 Euler’s top in any dimension: Manakov’s idea

We reduced the problem of the n dimensional spinning top to the Hamiltonian
equation

d

dt
m(t) = − ad∗A−1m(t) m(t)

on so∗(n). We have seen that the solution stay on leaves of the coadjoint
action. The inner product allows to identify so(n) and so∗(n) as vector
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spaces. This allowed write the ODE as a Hamiltonian differential equation
on so(n)

Ẋ = [X, Ĩ−1X]

with the Hamiltonian

H(X) = −1

4
trXĨ−1X.

We first discuss the orbits of the coadjoint representation. Their dimen-
sion is even. The rank of any skew symmetric matrix X is even and every
even number occurs as rank. The rank is constant under the coadjoint action.
Also the spectrum is conserved.

Lemma 3.5. Let X be a skew adjoint n× n matrix of rank 2k. Then there
exists an orthogonal matrix so that

O−1XO =



(
0 λ1

−λ1 0

)
0 . . . 0 . . .

0

(
0 λ2

−λ2 0

)
. . . 0 . . .

...
...

. . .
...

. . .

0 0 . . .

(
0 λk
−λk 0

)
. . .

0 0 . . . 0 OR(n−2k)×(n−2k)


where the λj are nonzero real numbers.

Proof. We take an orthonormal basis in the range and complement it. This
reduces the problem to n = 2k. The matrix X2 is negativ definit and has
a Schur decomposition. Retricting to eigenspaces we reduce the problem to
X2 = −λ21, λ > 0. The eigenvalues are ±iλ. Let Eiλ be the eigen space to
the eigen value iλ in Cn. We write x ∈ Eiλ as x = xr + ixi and compute

X(xr − ixi) = Xx = −iλ(xr − ixi)

and

X(xr) =
1

2
(X(xr + ixi) + (xr− ixi)) =

1

2
(iλ(xr + ixi)− iλ(xr− ixi)) = λ(ixi)

X(xii) = −λxr.

Taking the real resp. complex part we obtain the decomposition. The matrix
X is skewsymmetric hence normal in Cn and hence has an orthogonal eigen
space decomposition.
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3.3.1 The group GL(n) and its Lie algebra

We denote the group of matrices with determinant 1 by GL(n) and its Lie
algebra by gl(n) which consists of all matrices of trace 0. Then

〈A,B〉 : = −1

2
trAB

= −1

4
(tr(A+ AT )B + tr(A− AT )B)

= −1

4
(tr(A+ AT )(B +BT ))− 1

4
((A− AT )(B −BT )

(3.6)

since if A is symmetric and B is skew symmetric then

trAB = trBTA = − trBA = − trAB

hence trAB = 0. The adjoint representation on GL(n) is

AdGA = GAG−1.

The quadratic form is nondegenerate: It is positive definit on skew adjoint
matrices and negative definit on symmetric matrices. It defines a unique map
gl(n)→ gl∗(n). Let

Ĩ : A→ 1

2
(IA+ AI)

which is again diagonal and invertible. The Hamiltonian

H(A) =
1

4
tr(AĨ−1A)

leads again to the Hamiltonian equations

Ȧ = [A, Ĩ−1A]

on SL(n).

3.3.2 The Lax-Pair

Equality (3.4) can be understood is a Lax-pair. We can write it even as

d

dt
(X + λI2) = [X + λI2, (Ĩ)−1X + λI]. (3.7)

for λ ∈ C:

[X + λI2, (Ĩ)−1X + λI] = [X, (Ĩ)−1X] + λ([X, I] + [I2, Ĩ−1X].
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We continue

[X, I] + [I2, Ĩ−1X] =
1

2
[IΩ + ΩI, I] + [I2,Ω]

= IΩI + ΩI2 − I2Ω− IΩI + I2Ω− ΩI2

= 0.

Equation (3.7) is remarkable, but we want to rewrite it.

Theorem 3.6. Then the Lax pair becomes

d

dt
(X + λI2) = [X + λI2, Ĩ−1(X +

1

2
λI2)]. (3.8)

It is a Hamiltonian equation with Hamiltonian

H(X) = −1

4
tr(X +

1

2
λI2)Ĩ−1(X +

1

2
λI2)

and the shifted Poisson structure

{f, g} = 〈X + λI2, [∇f,∇g]〉

in GL(n).

Proof. The left hand side is d
dt
X. The identity matrix commutes with every-

thing, and the terms on the right hand side of (3.8) differ from the previous
term by the addition of constants.

• It is the basis of the proof of integrability.

• It is a blue print for the proof of integrability of many other problems.

Clearly

tr
1

2k
(X + λI2)k

is constant on the orbits of the translated coadjoint action. Hence it is a
Casimir for the translated Poisson structure and conserved under the Hamil-
tonian flow.

We expand the trace in λ. The coefficient of λj vanishes if k − j is odd.
tr I2k is constant. Moreover trXk is constant on the orbit. let dk,j be the
coefficient of λj. We obtain [(k− 1)/2] conserved quantities, if we ignore the
trivial ones. In total there are up to

n∑
k=2

[(k − 1)/2] =
1

2
(
n(n− 1)

2
− [n/2])
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nontrivial conserved quantities. The dimension of the generic orbit ( of rank
n resp n− 1, with [n/2] pairwise different eigenvalues of −X2 ) is

n(n− 1)

2
− [n/2]

since the dimension of so(n) is n(n−1)
2

and there are [n/2] conditions. so this
is the correct number of conserved quantities.

Theorem 3.7. 1. the djk Poisson commute with the Hamiltonian.

2. the djk Poisson commute

3. The quantities (ddjk)jk have maximal rank if rank X = 2[n/2] and the
eigenvalues are all different.

The first claim is a consequence of our considerations. We do not prove
the last claim.

3.4 BiHamiltonian structure and integrability

We consider the following setting: Let {, }0 and {, }1 be two compatible
different Poisson structures on Rn. Compatible means that {, }t = {, }0 +
t{, }1 satisfies the Jacobi identity for all t. Suppose that Qt is a Casimir for
all t ∈ [0, 1], which depends analytically on t uniformly on compact sets. Let

Qt(x) =
N∑
j=0

Hn(x)tn +O(tN+1).

Then the Hn Poisson commute with respect to both Poisson srtuctures.
We expand

0 = {Hn, Qt}t =
N∑
m=0

(tm{Hn, Hm}0 + tm+1{Hn, Hm}1) +O(tN+1)

hence
{Hn, H0}0 = 0, {Hn, Hm+1}0 + {Hn, Hm}1 = 0.

Since by skew symmetry

{Hn, Hn}0 = {Hn, Hn}1 = 0

we obtain the statement by induction. Now suppose that

Pt =
N∑
j=0

Lj(x)tj
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is a second Casimir. Then

0 = {Ln, H0}0 = {L0, Hm}

and
0 = {Ln, Hm+1}0 + {Ln, Hm}1 = {Ln+1, Hm}0.

Thus
0 = {Ln+m−1, H0}0 = {Ln, Hm+1}0 = {Ln, Hm}1.

We apply this consideration to

P = tr((X + tΛ)k), Q = tr((X + tΛ)l).

By the same type of argument

∇0
Hn = −∇1

Hn+1
.

3.5 The Virasoro-Bott group

Here I follow Khesin and Wendt [15]. See also [9]. The Virasoro-Bott group
VIR and its Lie algebra vir are of central importance in conformal field
theory, which is only tangentially related to our interests here. We will see
that the Korteweg-de Vries equation and other integrable equations arise as
geodesic equations for a metric on the vir∗. We obtain an infinite number of
Poisson commuting Hamiltonians in the same fashion as for the general top.

The main step is the computation of the coadjoint action of vir but also
the coadjoint action of VIR is of interest.

3.5.1 The diffeomorphism group DIFF(S1)

Let DIFF(M) be the group of diffeomormphisms on a manifold M which
we assume to be an open subset of Rn since we want to argue with local
coordinates. The diffeomorphism group DIFF(M) acts on smooth functions
by

(φ, f)→ f ◦ φ−1

so that
(φ ◦ ψ, f)→ f ◦ (φ ◦ ψ)−1

If ψ(t) is smooth family of diffeomorphisms with φ(0, x) = x then

d

dt
ψ(t))|t=0 = X
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where X is smooth vector field. We obtain the adjoint representation by

d

dt
(φ ◦ ψ(t) ◦ φ−1)|t=0 = (Dφ ◦X ◦ φ−1)

and
Adφ(X) = DΦ(φ−1(x))X(φ−1(x)).

Differentiating once more we obtain as before

adY (X) = −[X, Y ].

If M is a compact smooth manifold there is an exponential map defined by

ẋ = X(x), x(0) = 0.

In general it is neither locally surjectiv nor injectiv.
We write smooth vector fields resp. elements of diff(S1) as v∂. The

adjoint representation is

Adφ v∂ = φ′(φ−1(x))v(φ−1(x))∂

adu v = −uv′ + v′u.

We define the smooth dual as quadratic differentials

{udx2 : u ∈ C(S1)}

where dx2 is a symbol suggesting the coadjoint action

Ad∗φ−1 udx2 = u ◦ φ(φ′)2dx2.

We define the duality map

udx2(v∂) =:

ˆ
uvdx

so that

Ad∗φ−1 udx2(v∂) = udx2(Adφ v∂ =

ˆ
uφ′(φ−1)v(φ−1)dx =

ˆ
u(φ(y))|φ′(y)|2v(y)dy

and udx2 is a suggestive notation. The Lie bracket is the negative of the
commutator and

ad∗v∂(udx
2)(w∂) = udx2([v∂, w∂]) =

ˆ
u(vw′−v′w)dx = −

ˆ
w((uv)′+uv′)dx = ((uv)′+uv′)dx2(w∂).
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In particular √
|u|dx

transforms as a measure and ˆ √
|u|dx

is a Casimir. It is not hard to see that it is the only Casimir if u does never
vanish. If it vanishes at two points x1 and x2 where the derivative does
not vanish then this structure is preserved under small perturbation by the
implicit function theorem and

ˆ x1

x1

√
|u|dx

is another Casimir. One can show that these two span the space of all
Casimirs. There is a striking consequence:

• If u never vanishes then the coadjoint orbit has codimension 1.

• If u has two zeros with nonvanishing derivative then the codimension
is 2.

This is in striking constrast to the finite dimensional case, where the dimen-
sion of the coadjoint orbits is always even, and hence the codimenions are all
even or all odd.

3.5.2 Definition of the Virasoro-Bott group

We slightly change the notation at define DIFF(S1) as the group of orienta-
tion preserving diffeomorphisms.

The Virasoro-Bott is a so called universal central extension of DIFF(S1).
It is essentially unique.

Definition 3.8. We define the Bott cocycle as

B : DIFF(S1)×DIFF(S1) 3 (φ, ψ)→ 1

2

ˆ
log((φ ◦ ψ)′)

d

dx
logψ′dx (3.9)

and the group multiplication on VIR = DIFF(S1)× R by

(φ, s)(ψ, t) = (φ ◦ ψ, s+ t+B(φ, ψ) (3.10)
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We have to prove that we obtain a group operation. First we claim that
the Bott cocycle satisfies the defining relation of a cocycle

B(φ ◦ ψ, η) +B(φ, ψ) = B(φ, ψ ◦ η) +B(ψ, η)).

To verify this we calculate

2B(φ ◦ ψ, η) =

ˆ
log((φ ◦ ψ ◦ η)′)∂x log η′dx

=

ˆ
S1

(log(φ′ ◦ ψ ◦ η)∂x log η′ + log((ψ ◦ η)′)∂x log η′dx

=

ˆ
S1

(log(φ′ ◦ ψ ◦ η)∂x log η′ + 2B(ψ, η)

2B(φ, ψ ◦ η) =

ˆ
log((φ ◦ ψ ◦ η)′)∂x log((ψ ◦ η)′)dx

=

ˆ
S1

(log(φ′ ◦ ψ ◦ η)∂x log η′dx+ 2B(φ, ψ).

Now we check associativity

(φ, s)((ψ, t)(η, u)) = (φ, s)(ψ◦η, t+u+B(ψ, η)) = (φ◦ψ◦η, s+t+u+B(φ, ψ◦η)+B(ψ, η))

((φ, s)(ψ, t))(η, u) = (φ◦ψ, s+t+B(φ, ψ))(η, u) = (φ◦ψ◦η, s+t+u+B(φ, ψ)+B(φ◦ψ, η)),

identity
(1, 0)(φ, s) = (φ, s+B(1, φ) = (φ, s)

and inverse
(φ, t)(φ−1,−t) = (1, B(φ, φ−1)) = (1, 0).

We proceed with the adjoint representation. Let ψ(t, x) be a family of dif-
feomorphisms with ψ(1, x) = x, v = ∂tψ(x, t)|t=0 and η(t) with η(0) = 0. We
compute

2
d

dt

(
B(ψ(t), φ−1

)∣∣∣
t=0

=
d

dt

ˆ
log((ψ(t, φ−1(x))′)

d

dx
log(φ−1)′dx|t=

=
d

dt

ˆ
log((ψ′(t, φ−1(x))(φ−1)′)

d

dx
log(φ−1)′dx|t=0

= −
ˆ
v′(x)

d

dx
log φ′dx

=

ˆ
v
d2

dx2
log φ′dx

=

ˆ
v
φ′′′φ′ − (φ′′)2

φ′2
dx.
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I = 2
d

dt

(
B(φ, ψ(t)φ−1

)∣∣∣
t=0

=

ˆ { d
dt

log(φ(ψ(t, φ−1))′)
∣∣∣
t=0

} d

dx
log((φ−1)′)dx

since φ(φ−1(x)) = x and hence the first factor vanishes unless the time deriva-
tive falls on it. The derivative of the product is product of the derivagtives.
We do a substitution y = φ−1(x),

I =

ˆ { d
dt

log(φ′(ψ(t, y))ψ′(t, y)(φ′)−1)
∣∣∣
t=0

} d

dy
(log((φ′)−1)dy

= −
ˆ {φ′′v

φ′
+ v′

}φ′′
φ′
dy

= −
ˆ
v
(φ′′
φ′

)2

− v∂x
φ′′

φ′
dy

=

ˆ
v
φ′′′φ′ − 2(φ′′)2

(φ′)2
dy

hence

Ad(φ,s)(v∂, t) =

(
φ′(φ−1)v(φ−1)∂, t+

ˆ
v
φ′′′φ′ − 3

2
(φ′′)2

φ′
dx.

)
(3.11)

Equally important, let with ∂tφ(t)|t=0 = u,

ω(u∂, v∂) := − d

dt

ˆ
v
(3

2

(φ′′)2

(φ′)2
+
φ′′′

φ′
dx
)∣∣∣

t=0

=

ˆ
S1
−vu′′′dx =

ˆ
S1
v′′u′dx

(3.12)

and the Lie bracket on vir becomes

[(u∂, t), (v∂, s)] =
(
− (uvx − vux)∂,

ˆ
u′v′′dx

)
. (3.13)

We write elements of (udx2, a) ∈ vir∗ with the duality map

(udx2, a)(v∂, t) =

ˆ
uvdx+ at (3.14)

Proposition 3.1. The coadjoint representation is given by

Ad∗(φ−1,s)(udx
2, a) =

(
u(φ)φ′2dx2 + a

φ′φ′′′ − 3
2
(φ′′)2

(φ′)2
dx2, a

)
and

ad∗(v∂,b)(udx
2, a) =

(
− (2uv′ + u′v + av′′′)dx2, 0

)
.
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Proof. By definition

Ad∗φ−1,−s(udx
2, a)(v∂x, b) = (udx2, a)

(
Ad(φ,s)(v∂x, b)

)
= (udx2, a)

(
φ′(φ−1)v(φ−1)∂, b+

ˆ
v
φ′′′φ′ − 3

2
(φ′′)2

(φ′)2
dx

)
=

ˆ
u(x)φ′(φ−1(x))v(φ−1x) + av

φ′′′φ′ − 3
2
(φ′′)2

(φ′)2
dx+ ab

=

ˆ
v
(
u(φ(x)(φ′(x))2 + ab+ a

φ′φ′′′ − 3
2
(φ′′)2

(φ′)2
dx
)

and

ad∗(v∂,b)(udx
2, a)(w∂, c) = −(udx2, a)([(v∂, b), (w∂, c)])

= −(udx2, a)
(
− (vw′ − v′w),

ˆ
v′w′′dx

)
= −
ˆ
u(v′w − vw′) + av′w′′dx

= −
ˆ

((uv)′ + uv′ + av′′′)wdx.

The central variable a is fixed under the coadjoint action. The coadjoint
action depends only on the diffeomorphism!

3.5.3 Hill’s operator

It is convenient to write elements (u dx2, a) ∈ vir∗ as Hill’s operator

2a∂2 + u ∈ vir∗

Recall that if
(2a∂2 + u)f = (2a∂2 + u)g = 0

then the Wronskian W (f, g) = fg′ − gf ′ is constant,

d

dx
(fg′ − gf ′) = 0

Definition 3.9. We define the Schwarzian derivative of η as

S(η) =
η′η′′′ − 3

2
(η′′)2

(η′)2
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Proposition 3.2. Suppose that f and g are linearly independent, equivalently
W (f, g) 6= 0 and g 6= 0. Then

u = aS(f/g).

Proof. Let η = f/g. Then

η′ = −W (f, g)

g2
, η′′ = 2

W (f, g)g′

g3
, η′′′ = 2

W (f, g)g′′

g3
−6

W (f, g)(g′′)2

g4

and

aS(η) = a
η′η′′′ − 3

2
(η′′)2

(η′)2

= ag4
(
− 2

g′′

g5
+ 6

(g′)2

g6
− 6

(g′)2

g6

)
= u.

Theorem 3.10. Let a 6= 0,

(Udx2, a) := Ad∗(φ−1,0)(udx
2, a) = ([u ◦ φ|φ′|2 + aS(φ)]dx2, a).

Let f, g be as above. Then

(2a∂2 + U)
[
(f ◦ φ)|φ′|−1/2)

]
= 0 (3.15)

and
aS((f/g) ◦ φ) = U. (3.16)

Proof. We begin with

S(φ ◦ ψ) = S(φ) ◦ ψ(ψ′)2 + S(ψ) (3.17)

which implies (3.16). We compute

(φ ◦ ψ)′ = φ′ ◦ ψψ′

(φ ◦ ψ)′′ = φ′′ ◦ ψ(ψ′)2 + φ′ ◦ ψψ′′

(φ ◦ ψ)′′′ = φ′′′ ◦ ψ(ψ′)3 + 3φ′′ ◦ ψψ′ψ′′ + φ′ ◦ ψψ′′′.
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In order to lighten the notation we omit the ◦φ in the sequel. Then

φ′φ′′′(ψ′)4 + 3φ′φ′′(ψ′)2ψ′′ + φ′2ψ′ψ′′′ − 3
2
(φ′′(ψ′)2 + φ′ψ′′)2

(φ′ψ′)2

=
φ′φ′′′(ψ′)4 + φ′2ψ′ψ′′′ − 3

2
(φ′′)2(ψ′)4 − 3

2
(φ′)2(ψ′′)2

(φ′ψ′)2

=
φ′φ′′′ − 3

2
(φ′′)2

(φ′)2
(ψ′)2 +

ψ′ψ′′′ − 3
2
(ψ′′)2

(ψ′)2
.

Finally

(a∂2 + 2u ◦ φ(φ′)2 + aS(φ))(f ◦ φ|φ′|−1/2)

= (af ′′ + uf) ◦ φφ′3/2

− a
φ′φ′′′ − 3

2
(φ′′)2

(φ′)2
f ◦ φφ′−1/2 + S(φ)(f ◦ φ)(φ′)−1/2

3.5.4 The Korteweg-de Vries equation

We want to use a Lie-Poisson bracket on quadratic differentials for fixed a
and we need to define nonlinear functions on vir ∗. We insist that we always
consider smooth functionals

F : vir∗ → R

by which we mean that there exists N so that F extends to a smooth map

F : {udx2 : u ∈ CN} → R.

We define the variational derivative

δF

δu
(u)(v) =

d

dt
F (u+ tv)|t=0

and we consider δF
δu

(u) ∈ (CN(S))∗.
We define the inner product

〈(v∂, a), (u∂, b)〉 = −1

2

ˆ
uvdx− 1

2
ab,

in vir∗. The tangent space at η ∈ VIR is given by

(v ◦ η∂, a) ∈ TηVIR .
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We equipp it with the right invariant metric for v and a,

−1

2

ˆ
| d
dt
η ◦ η−1|2dx− 1

2
a2
t .

Arnold’s reduction to vir∗ - with the same calculation as for the top - is

d

dt
(udx2, a) = ad∗−2u,0 u

with the + sign since we use the right invariant metric, meaning that we
consider the velocity as a function of the actual position, not material coor-
dinates.The relation between the two is

vR(t, x) = vL(t, φ−1(t)).

Theorem 3.11. The Euler equation is the Korteweg-de Vries equation

ut − 2auxxx − 6uux = 0

and at = 0

Proof. The Euler equation for the Hamiltonian

H((udx2, a)) = −
ˆ
|u|2dx+ a2

is
d

dt
m = −2 ad∗A−1m(t)m(t)

which becomes

(utdx
2, at) = −2 ad∗(u∂,a)(udx

2, a) = ((6uux + 2auxxx)dx
2, 0).

The sign convention may be irritating.

We observe that the central a becomes a parameter which we can choose.
It acts trivially and we essentially reduce the consideration the hyper plane
a = −1/2, for which we obtain the Korteweg-de Vries equation:

ut + uxxx − 6uux = 0.

Theorem 3.12. There exists a sequence of Poisson commuting integrals

H−1(u) =

ˆ
u,H0(u) =

1

2

ˆ
u2dx,H1(u) =

ˆ
1

2
u2
x + u3dx

H2 =
1

2

ˆ
u2
xx + 10uu2

x + 5u4dx.
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Proof. Step 1. We define the family of Lie-Poisson brackets

{F,G}s(wdx2,−1

2
) = ((w + s)dx2,−1

2
)

([(δF
δu
,
∂F

∂a

)
,
(δG
δu
,
∂G

∂a

)])
(wdx2, a)

=

ˆ
w(∂xδFδG− δF∂xδG∂xδF −

1

2

(
∂xδF∂

2
xδG− (∂2

xδF )∂xδG
)
dx

+ 2s

ˆ
δxFδG− δFδxδG.

for t = 0. The bracket

{F,G}Gardner =

ˆ
∂xδFδG− δF∂xδG dx

is the Gardner bracket, which satisfies the Jacobi identity since it is a constant
skew symmetric form. The Jacobi identity is clearly satisfied.
Step 2. The KdV equation is a Hamiltonian equation for all these Poisson
structures. Consider the Hamiltonian

H(udx2,−1

2
) =

ˆ
−u2 + 4sudx

so that
δH = −2u+ 4s

and

−1

2
∂xxx(2u+ 4s) + (u+ s)∂(2u− 4s) + ∂((u+ s)(2u− 4s) = −uxxx + 6uux

Step 3: The Casimirs
Let f, g satisfy with λ ∈ R

−∂2f + (u+ λ2)f = 0

and f η = f ◦ η(η′)−1/2, and gη = g ◦ η(η′)−
1
2 .

Lemma 3.13. The Wronskian is a Casimir in the sense that

W (f η, gη) = W (f, g).

and it is a Casimir for the s shifted Lie-Poisson bracket,

(−∂3 + u∂ + ∂u+ 2λ2∂)
δ

δu
W (f, g) = 0.
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In the periodic case, which we consider here, there is another important
Casimir, related to the monodromy. We write −φ′′+uφ = −λ2φ as a system

φ0′ = φ1, φ
′
1 = (u+ λ2)φ0

The monodromy matrix M = X(1) where

X(0) = 1R2 , Ẋ =

(
0 1

u+ λ2 0

)
. (3.18)

A change of coordinates leads to a similar monodromy matrix hence

log trM

is a Casimir.
Step 4: Asymptotics of the Casimir. Suppose that λ is large. The functions
eλx and e−λx are solutions to

−φ′′ + λ2φ = 0.

Then

X0(x) =

(
1
2
(eλx + e−λx) 1

2λ
(eλx − e−λx)

λ
2
(eλx − e−λx) 1

2
(eλx + e−λx)

)
M =

(
1
2
(eλx + e−λx) 1

2λ
(eλ − e−λ)

λ
2
(eλ − e−λ) 1

2
(eλ + e−λ)

)
= eλ + e−λ

and
log(trM)− λ = O(λ−∞).

Now we consider (3.18) which we can solve by a fixed point argument,

X(x) = X0(x) +

ˆ x

0

X0(x)(X0(s))−1

(
0 0
u 0

)
X(s)ds

and it is an exercise to show that with some c 6= 0

log trX(1)− λ =
c

2λ

ˆ 1

0

udx

One obtains an asympotic expansion

1

2c
M(λ) ∼

∞∑
j=−1

Hj(2λ)−3−2j

with H−1 = 1
2

´
udx.
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Step 5: Lenard recursion We have seen that there is a Casimir log trM(λ)−
λ for {, }λ2 . Then

(−∂12∂3 + u∂ + ∂u+ 2λ2∂)
N∑

n=−1

Hn(−1)nλ−3−2n

with H−1 = 1
2

´
udx, δH−1 = −1,

(−∂3 + u∂ + ∂u)
1

2
= u′.

In general
(∂3 − 2u∂ − 2∂u)δHn = −∂δHn+1.

Thus

u′ = ∂δH0, H0 =
1

2

ˆ
u2dx

(∂3 − 2u∂ − 2∂u)δH0 = uxxx − 6uux = −∂δH1

H1 =

ˆ
1

2
u2
x + u3dx

(∂3 − 2u∂ − 2∂u)(−uxx + 3u2) = −u(5) + 2uuxxx + 2∂(uuxx) + 3∂3u2 − 30u2ux

= −∂(u(4) − 4uuxx + u2
x − 3∂2u2 + 10u3).

hence

H2 =
1

2

ˆ
u2
xx + 10uu2

x + 5u4dx.

3.5.5 The case of KdV on the line

Let VIR(R) be the set of monotone diffeomorphisms of the real line so that

∂xη − 1 ∈ HN(R)

for all N . The whole setup generalizes to this setting.
There are special solutions, the left and right Jost functions, if λ is suffi-

ciently large. They are characterized by

lim
x→−∞

e−λxfl(x) = lim
x→+∞

eλxfr = 1

The operator

(L+ λ2)ψ = (−∂2 + (u+ λ2))ψ = f

57 [February 2, 2023]



is invertible with a compact inverse on the circle. Formally we can write

(−∂2+u+λ2) = (∂+λ)(−∂+λ)+u = (∂+λ)(1+(∂+λ)−1u(−∂+λ))−1(−∂+λ)

and we can rewrite the equation as

(1 + (∂ + λ)−1u(−∂ + λ)−1ψ̃ = f̃

and

ψ̃ =
∞∑
n=0

(−1)n(∂ + λ)−1u(−∂ + λ)−1f̃

We can also use the left and right Jost function to realize the resolvent
as an operator with an integral kernel,

L−1f =

ˆ
g(x, y)f(y)dy

with

g(x, y) = (W (ψl, ψr))
−1

{
ψl(x)ψr(y) if x < y
ψr(x)ψl(y) if y < x

Lemma 3.14. The function

− 1

2λ
Wλ(ψl,λ, ψr,λ)

is a Casimir which satisfies

lim
λ→∞

log
1

2λ
Wλ(fr,λ, fl,λ =

c

λ

ˆ
udx+O(λ−3).

3.6 Geodesics on Ellipsoids

This is a classical problem where the techinique of contrained Hamiltonians
can be used. The close connection to geometry allows to see the setting of
Liouville integrability in action. The approach follows Moser [22].

3.6.1 Constrained Hamiltonian systems

We consider Hamiltonian equations on R2n 3 (p, q) with the cannonical sym-
plectic form. Let M2(n−r) be a submanifold given as nondegenerate level set
of the smooth vector valued function (Gj)1≤j≤2r,

M = {x : Gj(x) = 0 for 1 ≤ j ≤ 2r}
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and rkDG(x) = 2r for x ∈M . We require even

det({Gi, Gj})1≤i,j≤2r 6= 0

which makes M a symplectic manifold (the restriction of the cannonical form
remains closed. This reduces the question to the linear question of chosing a
basis). We consider the Hamiltonian equations

d

dt

(
p
q

)
= J∇H(p, q)

resp.

ṗj = −∂H
∂qj

, q̇j =
∂H

∂pj
.

Orbits stay on M if {H,Gj} = 0 on M , which is not true in general.
We constrain it to M by replacing ∇H by the vector field

∇H −
2r∑
j=1

λ(p, q)∇Gr

so that this vector field is tangential. This requires

{H,Gk} −
2r∑
j=1

λj(p, q){Gj, Gk} = 0

for 1 ≤ k ≤ 2r which can be solved for λj by the assumption of nondegener-
acy. Then H|M is the Hamiltonian of this vector field.

There is no reason to expect that the reduced system is integrable, even
if the original system has been integrable. There is however one situation
when it is integrable.

Suppose that Fj, 1 ≤ j ≤ n Poisson commute with H and with them-
selves, assume that in the setting above Gr+j = Fj, 1 ≤ j ≤ r and in addition

det{Gj, Fk} 6= 0.

We will see that then the Hamiltonian

H∗ = H −
∑

λjFj −
∑

µjGj

and Fj, r < j ≤ n Poisson commute on M and hence the constraint equation
is integrable (we again neglect nondegeneracy and compactness of the level
sets). To see this we argue as follows. First for 1 ≤ k ≤ r

0 = {H∗, Fk} =
r∑
j=1

µj{Gj, Fk}
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hence µj = 0 and

H∗ = H −
r∑
j=1

λjFj

where the λj are defined by {H∗, Gj} = 0. Then

{H∗, Fj}|M = {Fj, Fk}M = 0.

In particular all the Fj are constant under the flow of H∗ which stays on M .

3.6.2 Geodesic flow on the ellipsoid

Let A be a nondegenerate symmetric n× n matrix. We consider the nonde-
generate level set

E = {q ∈ Rn : 〈A−1q, q〉 = 1}.
It is an ellipsoid if A is positive definite. The constraint second order differ-
ential equations are given by

q̈ = −νA−1q

with ν determined by

0 =
d

dt

2

〈A−1q, q〉 = 〈A−1q, q̈〉+ 〈A−1q̇, q̇〉 = −ν|A−1q|2 + 〈A−1q̇, q̇〉

so that
ν = |A−1q|−2〈A−1q̇, q̇〉.

In a Hamiltonian formulation we constrain the free Hamiltomian

1

2
|p|2

to the manifold (the cotangent bundle of E which we can identity with the
tangent bundle). The cotangent bundle carries a cannonical one form which
in local coordinates in U ⊂ Rn

q × Rn
p is given by∑

j

pj ∧ dqj.

M = {(p, q) : 〈A−1q, q〉 = 0, 〈A−1q, p〉 = 0}.
The 1 form on the cotangent bundle is simple the restriction of the cannonical
1 form in R2n. We find

H∗ =
1

2
|p|2 − λ1(〈A−1q, q〉 − 1)− λ2〈A−1q, p〉
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where

λ1 = −1

2
|A−1q|−2〈A−1p, p〉, λ2 = |A−1q|−2〈A−1q, p〉

which we write as

H∗ =
1

2
|p|2 +

µ

2
Φ(p, q)− µ

2
〈A−1q, p〉2

with

µ = |A−1q|−2, Φ(p, q) = (〈A−1q, q〉 − 1)〈A−1p, p〉 − 〈A−1q, p〉2.

The last term in H∗ vanishes quadratically and we can drop it without harm.
Clearly

{(q, p) : q ∈ E,Φ(p, q) = 0}

is the (co)tangent space of the ellipse. We arrive at the Hamiltonian

H∗ =
1

2
|p|2 +

µ

2
Φ

with the contrained Hamiltonian equations

q̇ = y

ṗ = −µ〈A−1p, p〉A−1q.
(3.19)

Theorem 3.15. The Hamiltonian equation defined by the Hamiltonian H|M∗
on the (co)tangent bundle M of E is Liouville integrable on an open set with
a complement of codimension 1.

A short calculation shows that {Φ, 1
2
|p|2} = 0 and we are in the setting

of the integrable constrained equations provided we find functions which
Poisson commute with 1

2
|p|2 and Φ.

3.6.3 Construction of Poisson commuting functions

Let αj by the eigenvalues of A. We may assume that A is diagonal to make
the calculations more concrete, but we prefer to formulate in a coordinate
independent fashion. We consider the (confocal) quadrics Ez for z 6= αk

{q : 〈(z1Rn − A)−1q, q〉+ 1 = 0},

We define analogously to above

Qz(p, q) = 〈(z1− A)−1q, p〉; Qz(x) = Qz(x, x)
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Φz(p, q) = (1 +Qz(q))Qz(p)−Q2
z(p, q)

=
∑ p2

j

z − αj
+
∑
j,k

q2
jp

2
k − pjqjpkqk

(z − αj)(z − αk)

We do a partial fraction expansion, assuming that all αk are different: We
multiple by z − αi and evaluate at z = αi,

Φz(p, q) =
n∑
k=1

Fk(p, q)

z − αk

with

Fk(p, q) = p2
k +

∑
j 6=k

(qjpk − qkpj)2

αk − αj

Lemma 3.16. For all z1, z2 6= αk

{Φz1 ,Φz2} = 0

and also
{Fj, Fk} = 0

{Fj, |p|2} = 0.

Proof. Only the first identity need to be proven, since it implies the second.
The third equality follows by

|p|2 =
n∑
k=1

Fk.

The proof of the first identity is a direct calculation using

{Qz(q), Qz(p)} = 4〈A−1q, A−1p〉,
{Qz(q), Qz(p, q)} = 2|A−1q|2,
{Qz(p, q), Qz(p)} = 2|A−1p|2

which is left as a tedious exercise.

3.6.4 The Lax-pair

Let

L =

(
1Rn −

1

|p|2
p⊗ p

)
(A− x⊗ x)

(
1Rn −

1

|p|2
p⊗ p

)
and

B = −
(
piqj − piqj
αiαj

)
1≤i,j≤n

.
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Theorem 3.17.
L̇ = [B.L]

is equivalent to

q̇j =
∂Φ

∂pj
, ṗj = −∂Φ

∂qj

Proof. We spell out

q̇ = 2(〈A−1q, q〉 − 1)A−1p− 2〈A−1q, p〉A−1p

ṗ = −2〈A−1p, p〉A−1q − 2〈A−1q, p〉A−1p

Since {|p|2, φ(p, q)} = 0 we may restrict to |p| = 1. Then

L = (1− p⊗ p)(A− x⊗ x)(1− p⊗ p)

and
B = A−1p⊗ A−1q − A−1q ⊗ A−1p

so that

(1− p⊗ p)(A− q ⊗ q)(1− p⊗ p)A−1p⊗ A−1q

= (1− p⊗ p)(A− q ⊗ q(A−1p⊗ A−1q − 〈p,A−1p〉p⊗ A−1q)

(1− p⊗ p)
(
p⊗ A−1q − 〈q, A−1p〉q ⊗ A−1q

− 〈p,A−1p〉Ap⊗ A−1p+ 〈q, p〉〈p,A−1p〉q ⊗ A−1q
)

The only point here is to show that the calculation is doable. It is left as a
tedious exercise.

Lemma 3.18.
|p|2

z

det(z1− L)

det(z1− A)
=

n∑
k=1

Fk
z − αk

Proof. For simplicity we assume |p| = 1. Then

z1− L = z1− (1− p⊗ p)(A− q ⊗ q)(1− p⊗ p)
= (z1− A) + 〈p,Ap〉p⊗ p− Ap⊗ p− p⊗ Ap− q′ ⊗ q′

where q′ = (1− p⊗ p)q. Then

det(z1− L)

det(z1− A)
= det

(
1+(z1−A)−1

(
〈p,Ap〉p⊗p−Ap⊗p−p⊗Ap−q′⊗q′

))
where the right hand side is the determinant of matrix 1+ soemthing of rank
3.This can be expanded.
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The eigenvalues βj of L are all different. They can be considered as
functions of the Fk and hence they Poisson commute, and also with |p|2.

There is a geometric interpretation:

E0 = {(p, q) : 〈A−1q, q〉 = 1,Φ(p, q) = 0}

and
Φ(p, q) = 0

iff the line
{q + tp}

is tangent to E0 and the Hamiltonian φ describes an evolution of tangent
lines. With this interpretation one can describe the tori as the set of simul-
taneous tangent lines to to the Eβj .

p is an eigen function to the eigenvalue 0. There is a second eigen function
to the eigenvalue 0 on E since Φ vanishes. There remain n − 2 nonzero
eigenvalues of L which are zeros of

n∑
k=1

Fk
z − αk

.

The eigen vectors are the normals of the Eβj to the tangent and hence they
are orthogonal. We have∑

α−1
k Fk = −Φ(p, q) = 0

which is a simple zero.
The level sets are compact. Suppose the αj are pairwise disjoint.

3.7 The Calogero-Moser system

Here we consider the Hamiltonian

H(p, q) =
1

2
|p|2 +

∑
i 6=j

1

(qj − qk)2
(3.20)

which describes n particle on the real line with the repelling potential so that
particles never collide.

Theorem 3.19. On an open set whose complement has Hausdorff dimenion-
sion at most 1 the Hamiltonian equation above is Liouville integrable.

The point of view in this subsection is due to Kazhdan, Kostant, and
Sternberg [12] and Etingof [7]. Part of the presentation follows [15].
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3.7.1 Moment maps and Poisson group action

Let M be a Poisson manifold and, g the Lie algebra of the connected compact
Lie (matrix) group G. We recall that g∗ carries a Poisson structure. A map
J : M → g∗ is called a moment map if it is a Poisson map. This defines a
(anti) Lie algebra map fron g to the vector fields of M by

∇X : g 3 X → ∇J(x)(X) =: ∇X .

We have
∇[X,Y ] = [∇Y ,∇X ].

We obtain an action of G by mapping exp(tX) to the map defined as time t
map of the ODE

ẋ = ∇X(x).

Examples are

• M = T ∗(G),
J((g,mgt)) = m ∈ g∗

One can check that

{F ◦ J,G ◦ J}T ∗G = {F,G}g∗ ◦ J.

• M = su∗(n) × su(n). Consider the special unitary group SU(n) of
complex unitary n×n matrices of determinant 1. They are a Lie group
with Lie algebra su(n), the skew adjoint matrices with trace 0.

We consider on su(n) the inner product

〈A,B〉 := − trAB∗

which gives su(n) the structure of a complex Euclidean vector space.
On su(n)×su(n) = su∗(n)×su(n) = T ∗ su(n) we define the symplectic
form

ω((A1, A2), (B1, B2)) = 〈A1, B2〉 − 〈A2, B1〉 = − trA1B
∗
2 + trA2B

∗
1

The group SU(n) acts on su(n) by the adjoint representation, and on
su∗(n) by

Ad∗U(m)(A) = m(U−1AU) = − tr(mU−1AU) = − trUmU−1A = UmU−1(A)

65 [February 2, 2023]



and the coadjoint action representation agrees with the adjoint repre-
sentation. There is the obvious action resp. representation of SU(n)
on su(n)× su(n). As for SO(n)

〈adAB,C〉+〈B, adAC〉 = −1

2

(
tr(AB−BA)C∗+tr(B(AC−CA)∗)

)
= 0

There is the cannonical map

su∗(n)× su(n) 3 (A,B)→ φ(A,B) = [A,B] ∈ su∗(n).

We claim that it is a Poisson map:

{F ◦ φ,G ◦ φ}su∗(n)×su(n)(A,B) = {F,G}su∗(n)([A,B]).

It suffices to verify this for linear functions

− tr(F (AB −BA)),− tr(G(AB −BA))

+ {tr(F (AB −BA)), tr(G(AB −BA))}
= tr(BF − FB)(GA− AG)∗ − tr(FA− AF )(GB −BG)∗

= − tr[A,B][F,G]∗.

It is compatible with the action of SU(n)

[UAU−1, UBU−1] = U [A,B]U.

In the second setting let N ∈ su(n), G the stabilizer group. Then µ−1(N)
is a union of G orbits. Suppose that N is a regular value of the moment map
and that Φ−1(D)/G is smooth then it has a natural symplectic structure.

To see this we observe that if f and g are G invariant then so is {f, g}
since g ∈ G is a symplectomorphism. We obtain a Poisson structure on
su(n)× su(n)/G if this is smooth.

In this setting let M/G be the equivalence classes and assume that M/G
is a smooth manifold. If f, h are invariant under G then also {f, h} is in-
variant under the action of G. Since G invariant functions are in one to one
correspondence to functions on M/G we obtain a Poisson structure on M/G.

3.7.2 The Calogero-Moser system

Let N ∈ su(n) with the stablizer group G,

G = {U ∈ SU(n) : AdU N = UNU−1 = N}.
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Then G acts on

M = {(A,B) ∈ su(n)× su(n) : [A,B] = N}.

We are interested in the quotient

M/G = {(A1, A2) ∼ (B1, B2) ∈M : There exists U ∈ G : UB1U
−1 = A1, UB2U

−1 = A2}.

Lemma 3.20. Let

N = i

−1Rn +

1
...
1

 (1, . . . , 1)


and [Q,P ] = D. Then there exists g ∈ G so that gQg−1 is the diagonal
matrix with diagonal iqj, q1 ≤ q2 . . . . The off diagonal entries of P are

pjk = − i

qj − qk
.

Proof. Any matrix X ∈ su(n) can be diagonalized. We choose g ∈ SU(n) so
that

D = gQg−1

is diagonal. Let E = gPg−1 and w = g

1
...
1

 . Then

[D,E] = i(1− w ⊗ w̄)

with 0 on the diagonal ( since D is diagonal). Thus wjw̄j = 1 and wj = eitj

for some tj. Thus the product of the diagonal matrix with ientries e−itj and
g is in the stabilitzer of N . We permute the coordinates so that the diagonal
entries iqj of Q are ordered.

Now P has the off diagonal entries

pjk =
−i

qj − qk
.

while the diagonal entries are arbitrary. In particular all the qj are different.

Lemma 3.21. The value N is a regular value for the moment map. G acts
freely on Φ−1(N)
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Proof. This is a consequence of the fact that su(n) is simple (has no proper
ideals). If

gQg−1 = g̃Qg̃−1

then
g̃−1gQg−1g̃ = Q

which implies g̃ = g.

In particular M/G is smooth.
Let

A = {X ∈ su(n) : X − i = iw ⊗ w with |w| =
√
n}

This is an orbit of the coadjoint action of SU(n). If f, g are SU(n) invariant
functions on su(n)× su(n) then {f, g} is clear SU(n) invariant. Let

M̃ = {(X, Y ) ∈ su(n)× su(n) : [X, Y ] ∈ A}

Given X ∈ A and
fX(A,B) = 〈X, [A,B]〉.

Then
{fX , fY }(A,B) = 〈X + Y, [A,B]〉

and the span J of these functions is invariant under the Poisson bracket. The
quotient

C∞(su(n)× su(n))/J

can be understood as functions on the quotient M̃/ SU(n).
The group SU(n) acts on M̃ . Moreover

M̃/ SU(n) = M/G

is a manifold because the second is a manifold.
If f and g are functions on su(n)×su(n) which are invariant under SU(n)

and Poisson commute they define Poisson commuting functions on M/G.
Consider the Hamiltonian

H(Q,P ) = −1

2
trP 2

which is invariant under the action of SU(n) with the symplectic form

σ((A1, B1), (A2, B2)) = − trA1B1 + trA2B2.

It defines a function H̃ on Φ−1(M)/GM ,

H̃ =
1

2

n∑
j=1

p2
jj +

∑
j>k

1

(qj − qk)2
.
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First integrals are trP k, 2 ≤ k ≤ n .
There is a very simple fairly explicit formula for orbits. The Hamiltonian

H(P,Q) = −1
2

trP 2 defines the evolution

Q(t) = Q(0) + tP (0), P (t) = P (0).

We obtain the orbit by choosing initial data inA and projecting to M̃/ SU(n).
This can be generalized to general simple Lie groups, to loop groups

(which I don’t define) for the Hamiltonian

H(p, q) =
1

2
|p|2 +

∑
j 6=k

a2

sin2(a(qj − qk))

H(p, q) =
1

2
|p|2 +

∑
j 6=k

a2

sinh2(a(qj − qk))

H(p, q) =
1

2
|p|2 +

∑
j 6=k

a2

P(a(qj − qk))

where P is teh Weierstrass P function with periods 1 and τ .

3.8 Jacobi operators and the Toda latice

We consider the Toda differential equation with Hamiltonian

H =
1

2

N+1∑
k=1

p2
k +

N∑
k=1

exp(qk − qk+1).

The Toda lattice is again related to simple Lie group. There are variants for
other simple Lie groups and centrally extented loup groups, where the Toda
differential equation becomes a periodic equation. There are semi infinite
and infinite variants. The purpose of this section is the introduction of a
general structure leading to integrable systems with strong similarities to
the Korteweg-de Vries equation.

The Hamiltonian equations are

q̇k = pk, q̇k = eqk−1−qk − eqk−qk+1 .

(using eq0−q1 = eqN+1−qN+2 = 0 )
Flaschka and Manakov introduced the variables

ak = −pk/2, bk =
1

2
exp((qk − qk+1)/2)
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so that the differential equation becomes equivalent to the Lax pair

d

dt
L = [B,L]

where

L =


a1 b1 0 . . .
b1 a2 b3 . . .
0 b2 a3 . . .
...

...
...

. . .

 (3.21)

B =


0 b1 0 . . .
−b1 0 b2 . . .

0 −b2 0 . . .
...

...
...

. . .

 (3.22)

Definition 3.22. A Jacobi matrix is a real matrix of the form

T =



a0 b0 0 . . . 0
b0 a1 b1 . . . 0 0
0 b1 a2 . . . 0 0
...

...
. . .

...
...

0 0 0 . . . an−1 bn−1

0 0 0 . . . bn−1 an


with positive off-diagonal entries. We also consider the (semi-)infinite di-
mensional case where we assume in addition supj |aj|, supj |bj| ≤ c <∞.

A direct calculation give the Lax equations.
Jacobi matrices occur in the theory of orthogonal polynomials: Let µ be

a compactly supported probility measure. Recursing orthogonalisation leads
to orthogonal monic polynomials

Pn = xn +
n−1∑
j=0

cjx
j.

The eigen values of a Jacobi matrix are all real and distinct, a fact which we
will discuss on Thursday.

As usual the symmetry of the problem can be better understood for Lie
groups and Lie algebras.
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3.8.1 The Lie group SL(N + 1)

The Lie group SL(N + 1) consists of all real (N + 1) × (N + 1) matrices of
determinant 1. Its Lie algebra sl(N + 1) consists of the matrices with trace
0. The Lie algebra is simple: The only ideals in sl(N + 1) are sl(N + 1) and
{0}. It has a nondegenerate bilinear form

〈A,B〉 = trAB

(no negative sign) which allows to identity sl∗(N + 1) and sl(N + 1).
More generally, let g be a finite dimensional Lie algebra. Suppose that

the linear map R : g→ g satisfies the modified Yang Baxter equation

[RX,RX]−R([X,RY ]) + [RX, Y ]) = −1

4
[X, Y ] (3.23)

where the factor 1
4

is convention. An example is a multiple of the identity.
Assume that R satisfies (3.23). Then

[X, Y ]R = [RX, Y ] + [X,RY ] (3.24)

is a second Lie algebra structure:

[X, Y ]R + [Y,X]R = [RX, Y ] + [X,RY ] + [RY,X] + [Y,RX] = 0

[X, [Y, Z]R]R + [Y, [Z,X]R]R + [Z, [X, Y ]R]R

= [X, [RY,Z] + [Y,RZ]]R + [Y, [RZ,X] + [Z,RX]]R

+ [Z, [RX, Y ] + [X,RY ]]R

= [RX, [RY,Z]] + [X,R[RY,Z]] + [RX, [Y,RZ]] + [X,R[Y,RZ]]

+ [RY, [RZ,X]] + [Y,R[RZ,X]] + [RY, [Z,RX]] + [Y,R[Z,RX]]

+ [RZ, [RX, Y ]] + [Z,R[RX, Y ]] + [RZ, [X,RY ]] + [Z,R[X,RY ]]

= [X, [RY,RZ]−R[[Y, Z]R] + [Y, [RZ,RX]−R[[Z,X]R]

+ [Z, [RX,RY ]−R[[X, Y ]R]

=
1

4
([X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]]

Proposition 3.3. Suppose that A and B are Lie subalgebras of a Lie algebra
g and as a vector space

g = A + B

and let PA be the projection to A along B and similarly PB the projection
along A. Then R = 1

2
(PA− PB) satisfies the modified Yang-Baxter equation.
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Suppose that R satisfies the modified Yang-Baxter equation and denote
the two Lie brackets by [., .] and [., .]R. We obtain the codajoint representa-
tion for L ∈ g∗

ad∗X L(Y ) = −L([X, Y ]), ad∗R,X Y = −L([X, Y ]R) (3.25)

Theorem 3.23. The Casimirs on g∗ Poisson commute for [., .]R. If H is a
Casimir then the Hamiltonian equations with respect to [., .]R can be written
as

d

dt
L = − ad∗R,dH L

d

dt
L = ad∗−R(dH) L

Proof. Let H1, H2 be Casimirs. Then

{H1, H2}(L) = L([dH1, dH2]R)

= L([RdH1, dH2] + [dH1, RdH2])

= ad∗dH2
L(RdH1)− ad∗dH1

LRdH2

= 0.

{H, f}R(L) = L([dH, df ]R) = − ad∗R,dH Ldf.

In the case of an invariant non-degenerate quadratic form on g we can
identify g∗ and g and the equations take the form

d

dt
L = [M,L], M = −R(∇H).

We obtain an algorithmus for solving these equations. We rewrite the
equations as

d

dt
L = [M+, L] = [M−, L] with M± = −R±dH (3.26)

We specialize to SL(N + 1). There is the decomposition

sl(N + 1) = N− ×H ×N+

where N− consists of the strict lower triangular matrices, N+ of the strict
upper triangular matrices, and H are the traceless diagonal matrices. We
define

R(h) = 0, R(n−) = −1

2
n−, R(n+) =

1

2
n+
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for h ∈ H, n± ∈ N±. It satisfies the modified Yang-Baxter equation

[RX,RY ]−R([X, Y ]R) = −1

4
[X, Y ]

which we check case by case

1. If X, Y ∈ H all terms vanish.

2. If X, Y ∈ N± then

[RX,RY ]−R([X,RY ] + [RX, Y ]) = −1

4
[X, Y ]

3. If X ∈ N+, Y ∈ H then

[RX,RY ]−R([X, Y ]R) = −R[RX, Y ] = −1

4
[X, Y ]

4. X ∈ N+, Y ∈ N−

[RX,RY ]−R([RX, Y ] + [X,RY ] = −1

4
[X, Y ]− 1

2
R([X, Y ]− [X, Y ])

= −1

4
[X, Y ].

We define linear map R± by R± 1
2
1,

R+((n−, h, n+)) = (0,
1

2
h, n+)

and

R−(n−, h, n+)) = (−n−,−
1

2
h, 0).

Let G± the group of upper/lower triangular matrices with determinant
1.

Proposition 3.4.
L(t) = θ+(t)L(0)θ−1

+ (t) (3.27)

where
exp(−tdH(L(0)) = θ−1

− (t)θ+(t). (3.28)

θ± ∈ G±
and the diagonals of θ+ and θ− are inverses.
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Proof. We want to solve

d

dt
L = [M±, L] with M± = −R±dH(L)

Since M± ∈ g± we can solve

θ̇± = M±θ± with θ±(0) = 1.

Then
L(t) = θ+(t)L(0)θ−1

+ (t) = θ−(t)L(0)θ−1
− (t).

Since M+ −M− = −dH(L(t)) we get

dH(L(t)) = −θ̇+θ
−1
+ + θ̇−θ

−1
− (t) = −θ−

(
d

dt
(θ−1
− (t)θ+(t))

)
θ−1

+

We recall that H is a Casimir. Hence

dH(θ−L(0)θ−1
− ) = θ−dH(L(0)θ−1

−

and
d

dt
(θ−1
− θ+)(θ−1

− θ+)−1 = −dH(L(0))

hence
θ−1
− (t)θ+(t) = exp(−tdH(L(0)))

There is a unique solution to this factorization problem for small t since there
is a unique decomposition at the level of the Lie algebra.

3.8.2 Jacobi matrices and orthogonal polynomials

We will obtain a much more explicit expression for the Toda flow, which we
relate to this section. The strongest results are due to Kostant, [17]. Our
presentation follows Deift [6] and Moser [23] contains much more interesting
and reasonably elementary material. The survey von van Moerbecke [19] puts
this part into a far reaching and much more demanding algbraic context.

LetH be a Hilbert space, T a bounded self adjoint operator onH, x0 ∈ H,
‖x0‖ = 1. Let recursively

x̂n+1 = T x̂n

and assume that the x̂n are linearly independent. x0 is called cyclic if the
closure of the span of the x̂n is H. We apply the Gram-Schmidt procedure
to obtain an orthogonal sequence xn,

〈xn, xm〉 = δnm
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Clearly we can write

Txn =
n+1∑
j=0

cjxj.

We observe that
〈Txn, xm〉 = 〈xn, Txm〉 = 0

unless |n − m| ≤ 1. Let ak = 〈Txk, xk〉 and bk = 〈Txk, xk−1〉 for k ≥ 1
(b0 = 0) . Then

Txk = bk+1xk+1 + akxk + bkxk−1 (3.29)

and T has a representation as Jacobi matrix.

Lemma 3.24. Let T be a (N + 1) × (N + 1) Jacobi matrix. Then T has
N + 1 simple real eigenvalues.

Proof. We claim that if Tx = λx, x 6= 0 then x0 6= 0 and xN 6= 0. It is not
hard to see that otherwise x is trivial. Now suppse Tx = λx and Ty = λy.
If a1x0 + a2y0 = 0 then

a1x+ a2y = 0

and hence the two vectors are linearly independent.

Let x̃n be linearly independent, and x0 cylic. The spectral theorem states
that there is a probability measure µ with bounded support on R so that the
map

H 3 xn → tn ∈ L2(µ)

is an isometry. The Jacobi flow becomes a flow on the probability measures

µ(t) =
1´

etydµ(y)
etxµ.

A particular case is if

µ =
N∑
j=0

β2
j δxj

so that L2(µ) is a vector space of dimension N + 1. In this case we consider

Tf = tf

and we start with x0 = 1 and x̃n = tn.
Let |x0| = 1 and xn be the orthogonal bases constructed through T nx0.

Let
G(z) := 〈x0, (T − z)−1x0〉

75 [February 2, 2023]



where we chose the convention that the inner product is complex linear in
the second compenent. We compute for Im z > 0

ImG(z) =
1

2i

(
〈x0, (T − z)−1x0〉 − 〈x0, (T − z̄)−1x0〉

)
= 〈x0, Im z(T − z)−1(z − T )−1x0〉 > 0.

We diagonalize T and obtain

G(z) =
N∑
j=0

β2
j

1

zj − z

for some βj ≥ 0 and

1 = lim
y→∞

(x+ iy)G(x− iy) =
∑

β2
j

Theorem 3.25. Let T (RN−1) be the set of Jacobi operators. Then

T (RN+1) 3 T → (z, β) ∈ {z0 < z1 < . . . zN , 0 < βj < 1}

is a diffeomorphismus. The Toda flow is equivalent to

d

dt
zj = 0,

d

dt
βj = −(zj −

N∑
k=0

zkr
2
k)βj.

We begin with describing the inverse of the map. Let µ be a compactly
supported probablitiy measure (a sum on N + 1 Diracs in our case) and we
define

Definition 3.26. The moment matrix is for n ≤ N

Mn =
(ˆ

ti+jdµ
)

0≤i,j≤n

and
Dn = detMn

Dn(x) = det


´
t0dµ

´
tdµ . . .

´
tndµ´

tdµ
´
t2dµ . . .

´
tn+1dµ

...
...

. . .
...

1 x . . . xn

 .
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We observe

0 ≤ ‖
n∑
j=0

sjt
j‖2
L2(µ) = (s,Ms)

and hence M is positive definite for n ≤ N and Dn > 0. We claim the the n
th orthogonal polynomial are

pn(x) =
1√

Dn−1Dn

Dn(x).

First ˆ
xjDn(x)dx = 0

if j < n since two rows of the marix coincide and similarly
ˆ
xnDn(x)dµ = Dn.

Moreover
Dn(x) = Dn−1x

n + . . .

and we complete the argument with
ˆ
Dn(x)2dx = Dn−1

ˆ
xnDn(x)dx = DnDn−1.

We compare to the three term recursion (3.29) and find the formulary

b2
n =

Dn−1Dn+1

D2
n

.

With some more effort

an = ∂t log(Dn+1/Dn).

This completes the contruction of an explicit inverse.
By the Lax equation the eigenvalues of T are independent of time and it

remains to deduce the differential equations for βj.
Let Ak(z) be the lower right k × k submatrix of z − T and ∆k(z) =

det(Ak(z)). We expand the first column to obtain a recursion formula

∆k = (z − aN+1−k)∆k−1 − b2
N+2−k∆k−2 (3.30)

with the obvious modification for k = 1, 2. We claim that

G(z) =
∆N(z)

∆N+1(z)
(3.31)
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We determine the componente of (z − T )−1e0:

((z − T )−1x0)k =

{
∆N

∆N+1
if k = 0

∆N−k
∆N+1

b1 . . . bk if k = 1, . . . , N

using the recursion formula for w = (z − T )−1e0 for 1 ≤ j ≤ N − 1

bjwj−1 − (z − aj)wj + bj+1wj+1 = 0

and
(λ− a0)w0 − b1w1 = 1

and comparing it to (3.30).
We compute the time derivative of βn. Let R = (z − T )−1. Then

d

dt
R = R

d

dt
TR = R(BT − TB)R = RB −BR

and

d

dt
G(z) = 〈e0, (RB −BR)e0〉 = 2b1R01 = 2b2

1

∆N−1

∆N+1

.

Clearly

d

dt
G(z) =

n∑
k=1

βkβ̇k
z − zk

.

We compare the residue at z = zk in both expressions using again the recus-
rion formula (3.30) and ∆N+1(zk) = 0

∆N−1(zk) =
zk − a0

b2
1

∆N(zk)

and the residue is the same as the one of

2(z − a0)
∆N

∆N+1

.

and
2βkβ̇k = 2(zk − a0)r2

k.

Since
0 =

∑
k

βkβ̇k =
∑

zkβ
2
k − a0

we obtain
a0 =

∑
zkβ

2
k .

This completes the proof.
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4 The Korteweg-de Vries equation

A large part of this section is motivated by Killip and Visan [16]. There is a
huge literature on the KdV equation. The original papers are still of interest.
An interesting perspective is Segal’s contribution in [10].

4.1 The Schrödinger operator

4.1.1 Sobolev spaces

We denote the Sobolev space

Hk(R) = {f ∈ L2 : ∂jxf ∈ L2 for j ≤ k}

with norm (for τ > 0)

‖f‖2
Hk
τ

=
k∑
j=0

τ 2(k−j)‖f (j)‖2
L2 = ‖(τ 2 + |ξ|2)k/2f̂‖2

L2 .

The second equality is a consequence of the theorem of Plancherel for the
Fourier transform. We use it to define the norm (and the space) for k ∈ R.
The dual space is

(Hk
τ )∗ = H−k(R)

with the formal duality map

Hk ×H−k 3 (f, g)→
ˆ
fgdx.

The fundamantal theorem of calculus yields the Sobolev esimate

‖f‖2
L∞ ≤ |f |L2‖fx‖L2 ≤ 1

2
‖f‖2

H1

by

|f(0)|2 ≤ 2

ˆ ∞
0

|ffx|dx ≤ 2‖f‖L2(0,∞)‖fx‖L2(0,∞)

by taking the smaller value on (−∞, 0) resp (0,∞). Even more is true:
Functions on H1 are Hölder continuous with exponent 1

2
. We obtain the

embeddings (with Cb(R) the space of bounded continuous functions)

H1 ⊂ Cb(R) L1(R) ⊂ H−1(R).

As a consequence H1 is an algebra,

‖fg‖2
H1 = ‖fg‖2

L2+‖∂x(fg)‖2
L2 ≤ ‖f‖L∞(‖g‖L2+‖gx‖L2)+‖fx‖L2‖g‖L∞ ≤ 2‖f‖H1‖g‖H1
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By duality
‖fg‖H−1 ≤ 2‖f‖H1‖g‖H−1 .

The map
H1
τ 3 f → ±fx + τf ∈ L2

is an isometry which is seen by the Fourier transform. It is invertible with

(±∂ + τ)−1f =

{
−e−τx if +
−eτx if −

}
∗ f.

By duality
L2 3 f → ∓fx + τf ∈ H−1

τ

also an isometric isomorphism and we can write f ∈ H−1
τ in the form

f = ∓gx + τg

with g ∈ L2 and ‖g‖L2 = ‖f‖H−1
τ

.

4.1.2 Definition of the Schrödinger operator

The key object is the Schrödinger operator

Lφ = (−∂2 + u)φ

where u ∈ H−1(R). The operator L defines formally a symmetric quadratic
form on H1

Bu(φ, ψ) =

ˆ
φxψx + uφψdx. (4.1)

which we define first and understand L as an operator

L : H1 → H−1.

We claim that the quadratic form of L + τ 2 : H1 → H−1 has an inverse
which defines a bounded self adjoint map L2 → H2 ⊂ L2 is τ is sufficiently
large. The first claim is a consequence of the lemma of Lax-Milgram and the
second follows from the calculation below. Suppose that u = vx + τv. Then,
with Bτ (φ) = B(φ, φ) + τ 2‖φ‖2

L2 ,

Bτ (φ, φ) = ‖φ2
x‖2

L2 + τ 2‖φ‖2
L2 +

ˆ
(vx + τv)φ2dx
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and ˆ
(∂xv + τv)φ2dx+

ˆ
hφdx

≤ 2‖v‖L2‖φ‖L∞‖φ‖H1
τ

+ ‖h‖L2‖φ‖L2

≤ 2τ−1/2‖u‖H−1
τ
‖φ‖

1
2

L2‖φ‖
3
2

H1
τ

+ ‖h‖2
L2 +

1

4
‖φ‖2

L2

≤
(
τ−1/2‖u‖H−1

)4

‖φ‖2
L2 + ‖h‖2

L2 +
3

4
‖φ‖2

H1

hence, if τ is sufficiently large the form Bτ is coercive and

L+ τ 2H1 → H−1

is invertible. As a byproduct

‖φ‖H1 ≤ c(‖u‖H−1)‖φ‖L2 + ‖Lφ‖H−1).

It is not hard to deduce more regularity if u and Lφ are more regular.

Lemma 4.1.
‖φ‖H2 ≤ c(1 + ‖u‖L2)‖φ‖L2 + ‖Lφ‖L2 . (4.2)

4.1.3 Eigenvalues and Eigenfunctions

Lemma 4.2. Let u ∈ H−1 and τ > 0. Then there is at most a finite number
of eigen values below −τ 2.

Proof. We will verify that there is a subspace V of H1 of finite codimension
so that the quadratic form Bτ is nonnegative in it. This implies the claim.
We write

L+ τ 2 = (∂x + τ)(1 + (∂ + τ)−1u(−∂ + τ)−1)(−∂x + τ).

It suffices to find a subspace of finite codimension in L2 so that the inner
bracket is nonnegative on it. This follows once we prove that the inner
operator is identity plus compact. We even prove that

(∂ + τ)−1u(−∂ + τ)−1

it is Hilbert-Schmidt (i.e. it integral kernel is square integrable. We write
u = vx + τv. The operator becomes

v(−∂ + τ)−1
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with integral kernel

k(x, y) = −v(x)χx>y exp(τ(y − x))

with (by Fubini)

‖k‖L2(R×R) =
1√
2τ
‖v‖L2

As a consequence negative eigen functions can only accumulate at 0.
There may of may not be negative eigenvalues. If there are there is a lowest
eigen value, called the ground state energy with an eigenfunction called the
ground state. It is the minimizer of

B(φ, φ)

‖φ‖2
L2

.

This function is bounded from below by the arguments for Lax-Milgram. Let
φ ∈ H1 with ‖φ‖L2 = 01 be a minimizing sequence. It is not hard to see
that there is a converging subsequence, and hence there exists a minimizer
φ0. Then also |φ0| is a minimizer which does not change sign.

4.1.4 The Sturm oscillation argument

Let λ ∈ C\[0,∞) and suppose that φ ∈ H1 is an eigen function

Lφ = λφ.

Then λ ∈ (−∞, 0) and φ ∈ H2 ⊂ C1(R).
In the sequel we neglect the regularity of the potential u and other func-

tions under consideration for some time and pretent that it is always suffi-
ciently smooth. Other the arguments remain essentially the same, but they
are more technical.

Lemma 4.3. Suppose that φ, ψ ∈ H1(I;R), ψ(a) = ψ(b) = 0. We assume

Lψ

ψ
≤ Lφ

φ

whenever φ 6= 0 resp. ψ 6= 0. Then either φ has a zero in (a, b) or φ and ψ
are linearly dependent.
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Proof. Without loss of generality (restricting the interval) we may assume
that ψ > 0 in the interior and, by arguing by constradiction, also that φ > 0
in the interior.

Let
W = ψ′φ− ψφ′.

Then
d

dx
W = ψ′′φ− ψφ′′ ≥ ψφ ≥ 0.

Since ψ(a) = 0, ψ′(a) ≥ 0 and φ(a) ≥ 0 we see that W (a) ≥ 0 and W (b) ≤ 0,
which can only be true if W = 0 and the functions are linearly dependent.
This argument also works in the case b =∞.

As a consequence we obtain

Theorem 4.4. If φ1 and φ2 are eigenfunctions to the eigenvalues −τ 2
1 and

−τ 2
2 with τ2 < τ1 then there is a zero of φ2 between two zeros of φ1 (by

an abuse of notation we allow semiinfinite nodal intervals. ) The negative
eigenvalues are simple. The ground state, the lowest eigenfunction has no
zero. If we order the eigenvalues

−τ 2
0 < −τ 2

1 < · · · < −τ 2
N < 0

then the eigenfunctions to −τ 2
n have exactly n zeros.

Proof. The first statement, the interlacing follows from Lemma 4.3. Let φ
and ψ be eigenfunctions to the eigenvalue −τ 2. By the interlacing property
they are either linearly dependent, or the zeros are interlaced, but this is not
possible since the number of nodal intervals has to be the same.

We turn to the ground state. It is the minimizer of

ˆ
φ2
x + uφ2dx, under the constraint ‖φ‖2

L2

Using a minimizing sequence one can prove existence of a minimizer unless
the functional is nonnegative. If φ is a minimizer then also |φ| is a minimzer
and we may assume that φ is nonnegative. It satisfies the Euler Lagrange
equation with the Lagrangian multiplier λ

−φ′′ + uφ = λφ.

Multiplication by φ and integration shows that λ is the ground state energy.
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Let V(n) the set of n dimensional subspaces of H1. Then

−τ 2
n = inf

V ∈V(n)
sup
v∈V

B(v)

|v|2

assuming that this number is negative.
We complain that the nth eigenfunction φ has exactly n + 1 nodal in-

tervals. By interlacing it has at least n + 1 nodal intervals. Suppose φ has
m > n + 1 nodal intervals Ik 0 ≤ k ≤ m. Then we find constants cj with
c0 = 0 so that

φ̃ =
∑

cjχIkφ

is orthogonal to all the previous eigenfunctions and has norm 1. This con-
tradicts the simplicity of the eigenvalue.

4.1.5 Bounds on the number of eigenvalues

Lemma 4.5. Let a ∈ R, b ∈ (a,∞] , a < b and τ ≥ 0. Suppose that
φ ∈ H1(a, b) satisfies φ ≥ 0, φ(a) = φ(b) = 0 (if b =∞, we assume φ(a) = 0
and τ > 0) and

−φ′′ + (u+ τ 2)φ = 0 on (a, b).

Then ˆ b

a

(x− a)u−dx > 1. (4.3)

Proof. We have seen that φ is the ground state and it minimizes´
φ2
x + uφ2 + τ 2φ2dx

‖φ‖2
L2

in a suitable function spaces. This minimum is a continuous strictly mono-
tonically decreasing function of b (including b → ∞ if τ > 0) which tends
to ∞ as b → a. If we replace u by −u− we decrease the functional and by
decreasing b we may assume that u = −u− and φ′(a) > 0. Then φ′′ ≤ 0

φ′(a) = 1 +

ˆ x

a

φ′′(y)dy = 1 +

ˆ x

a

uφdy ≥ 1−
ˆ x

a

u−(y − a)dy

which leads to a contradiction unless (4.3) holds.

Theorem 4.6. Suppose that ˆ
u−|x|dx ≤ N

Then L has at most N + 1 negative eigen values.
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Proof. Suppose that the eigenfunction φ has M zeros. It then has M + 1
nodal intervals. On M of them we apply the previous lemma. Then

ˆ
u−|x|dx > M

Theorem 4.7. Suppose that

u ∈ L1 ⊂ H−1.

then there is no positive eigenvalue.

Proof. Suppose that
−φxx + uφ = τ 2φ

Let g(x, y) be the Green’s function of −∂2 − τ 2 supported in x ≤ y.

g(x, y) =

{
0 if x > y

sin(τ(x−y))
τ

Then

φ(x) =

ˆ ∞
x

g(x, y)u(y)φ(y)dy

hence

‖φ‖L∞(x,∞)

≤
ˆ ∞
x

|g(x, y)u(y)|dy‖φ‖L∞(x,∞)

≤ sup
1

τ

ˆ ∞
x

|u(y)|dy‖φ‖L∞(x,∞).

We choose x large so that ‖u‖L∞(x,∞) is small and see that φ vanishes for
large arguments. We solve the Cauchy problem for the ODE starting with
large values for x and obtain that φ = 0.

Example: Let κ > 0. Then

(−∂2 − 2κδ0)e−κ|x| = −κ2e−κ|x|
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4.2 Jost solutions and the Miura map

Let Im z > 0. We study solutions to

−φxx + (−2izf + fx)φ = z2φ.

which we rewrite as system with

ψ := −φx + fφ− izφ

φx = −ψ + fφ− izφ
ψx = −φxx + fxφ+ fφx − izφx

= 2izfφ+ z2φ− izφx − fψ − izfφ+ f 2φ

= (iz − f)ψ + f 2φ

Let

Φ = eizx−
´ x
0 fdy

(
φ
ψ

)
Then

Φx =

(
0 −1
f 2 2iz − 2f

)
Φ. (4.4)

We search

Φ =

(
1
0

)
+ Φ̃.

The equation
ψx = 2(iz − f)ψ + f 2φ

can be solved for ψ, using ψ(x)→ 0 as x→ −∞,

ψ(x) =

ˆ
−∞

exp
(

2iz(x− y)− 2

ˆ x

y

fdt
)
f 2φ(y)dy

and φ satisfies

φ(x̃) = Sφ(x̃) :=

ˆ
y<x<x̃

exp
(

2iz(x− y)− 2

ˆ x

y

fdt
)
f 2φ(y)dy.

Lemma 4.8.

‖S‖Cb−>Cb ≤ exp
(

(Im z)−1/2‖f‖L2

)
(Im z)−1‖f‖2

L2
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Proof. The norm is given by

sup
x̃
‖k(x̃, y)‖L1(−∞,x)

where

k(x̃, y) =

ˆ x̃

y

exp(2iz(x− y)− 2

ˆ x

y

fdt)f 2(y)dx

and

2iz(x−y)−2

ˆ x

y

fdt ≤ −2 Im z|x−y|+2|x−y|
1
2‖f‖L2 ≤ − Im z|x−y|+(Im z)−1‖f‖2

L2 .

and, with C = exp
(

Im z−1‖f‖2
L2

)
|k(x̃, y)| ≤ C

ˆ x̃

y

exp(− Im z(x− y))dxf 2(y) ≤ C(Im z)−1f 2(y)

Assuming that ‖f‖L2 ≤ Im z−1 we obtain a expansion

φ(x) =
∞∑
n=0

φ2n(x)

with

φ2n(x̃) =

ˆ
y1<x1<y2<x2···<x̃

∏
k(xj, yj)dyxdxj

and
φ2n ≤ (C Im z−1‖f‖2

L2)n.

There are a number of consequences. The Jost solution satisfies

φl ∼ e−izx+
´ x
0 f(y)dy

near −∞ for all Im z > 0, since we can always argue on an interval of the
type (−∞, a) on which the |f‖L2 norm is small. It depends holomophically
on z and smootly on f .

A calculation shows that

φ = φl

ˆ x

b

φ−2
l dx

is a second solution, which grows exponentially near −∞. We obtain a basis
for space of solutions, similarly on the right hand side.
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We obtain a representation

φl = c1φr + c2φr

ˆ x

a

φ−2
r dy

and we define
a(z) = lim

x→∞
eizx−

´ x
0 f(y)dyφl(x)

which is holomorphic. It vanishes exactly at the eigenvalues.
We define for either Im z > 0 or, Re z = 0 and z2 is below the ground

state the function w
w = ∂x log φl + iz.

This is possible since either condition ensures that φl never vanishes. There
is no way to define the logarithm uniquely, but we choose a branch. We
calculate

wx + w2 − 2izw = u. (4.5)

It is related to a factorization

−∂2 + u− z2 = (∂ + w − iz)(−∂ + w − iz)

and in particular, if z = iτ
ˆ
φ(−∂2+u+τ 2)φdx =

ˆ
φ(∂+w+τ)(−∂+w+τ)φdx = ‖(−∂+w+τ)φ‖2

L2 .

Lemma 4.9. Let τ > 0. The Miura map

M : L2(R) 3 w →M(w) = wx+2τw+w2 ∈ {u ∈ H−1 : L+τ 2 is positive definite }.

is a diffeomorphism.

Proof. The map is quadratic and smooth. Let u ∈ H−1 with L+ τ 2 positive
definite. Then φl is real without zeros and∥∥∥∂xφ

φ
− τ
∥∥∥
L2(x−1,x+1)

→ 0

as x→ ±∞. We write u = fx + 2τf . Then, by (4.5)

w(x) =

ˆ x

−∞
exp

(
− 2τ(x− y)− 2

ˆ x

y

wdt
)

(f ′ + 2τf)dy.

Then

−2τ(x− y)−
ˆ x

y

wdt ≤ −τ(x− y) + C.
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Schur’s lemma gives the bound for the ’f ’ part. We integrate by parts to
remove the derivative from f and we have to bound

−
ˆ x

−∞
exp

(
− 2τ(x− y)− 2

ˆ x

y

wdt
)

((w + 2τ)f)dy.

in L2, which is left as exercise. Let wj be solutions for uj and w = w2 − w1.
Then

∂xw + 2τw + (w1 + w2)w = u2 − u1

and we argue as above. Similarly we invert the linearization and obtain
differentiability of the inverse.

4.2.1 Creating eigenvalues: The Bäcklund transform

Suppose L+ τ 2 is positive definit, φr resp φl the left and right Jost solution,
c1, c2 > 0 and

φ = c1φl + c2φr.

Both φl and φr are positive, hence the same is true for φ. Moreover φ→∞
as x→ ±∞. Let

w = ∂x log φ

Then again
−∂2 + u+ τ 2 = (∂ + w)(−∂ + w).

We obtain a map u to ũ by replacing w by −w, or equivalently, by changing
the order. Then

ũ = −wx + w2 − τ 2.

Lemma 4.10. We have

(−∂2 + u)(∂ + w) = (∂ + w)(−∂2 + ũ)

Moreover −τ 2 is an eigenvalue of −∂2 + ũ with eigenfunction φ−1. The
remaining spectrum does not change.

There is an instructive example: u = 0, ψl = 1
2
eτx ψr = 1

2
e−τx, φ =

cosh(τx), φ−1 = sech(τx),

w = ∂x(cosh(τx)) = τ tanh(τx)

ũ = −wx + w2

= −τ 2 sech2(τx) + τ 2 tanh2(τx)− τ 2

= −2τ 2 sech2(τx).
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4.3 The Green’s function

Let u ∈ H−1, Im z > 0 and either Re z 6= 0 or L+ τ 2 positive definite.

Lemma 4.11. The operator (L− z2)−1 has an integral kernel given by

g(x, y) = − 1

2iz

{
φl(y)φr(x) if y < x
φr(y)φl(x) if y > x

Proof. We obverse the the integral kernel is symmetric and continous. For
fixed y R\{y} 3 x → k(x, y) is clearly a solution. We have exponential
decay away from the diagonal. The jump of ∂xk(x, y) on the diagonal is the
Wronskian 1

2iz
W (φl, φr). The Wronskian is constant and we check at ±∞

that the jump is −1.

Since
−∂2 + u− z2 = (∂ + w − iz)(−∂ + w − iz)

and since we can invert the first operator operators explicitly we obtain an
expression of the integral kernel in terms of w. First

(−∂ + w − iz)f = g

can be inverted by

f(x) = −
ˆ ∞
x

exp

(
−iz(x− y)−

ˆ y

x

w(t)dt

)
g(y)dy

and
(∂ + w − iz)f = g

we invert by

f(x) =

ˆ x

−∞
exp

(
iz(x− y)−

ˆ x

y

w(t)dt

)
g(y)dy

hence we invert
(−∂2 + u− z2)f = g

f(x) =

ˆ ˆ ∞
max{x,y}

exp

(
−iz(x+ y − 2t)−

ˆ t

x

w(t)dt−
ˆ t

y

w(t)dt

)
dtdy

so that

g(x, y) =

ˆ ∞
max{x,y}

exp

(
−iz(x+ y − 2t)−

ˆ t

x

w(s)ds−
ˆ t

y

w(s)

)
dt
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and

g(x) := g(x, x) =

ˆ ∞
x

exp(

(
−2iz(x− t)− 2

ˆ t

x

w

)
dt

hence
∂xg + 2(iz − w)g = −1 (4.6)

We substitute g = − 1
2iz(v+1)

and obtain

2iz = − v′

(v + 1)2
+

2iz

v + 1
− 2

w

v + 1
.

Lemma 4.12.

− 1

2
∂x log(v + 1)− izv = w (4.7)

4.3.1 Regularized Fredholm determinant

Let K be a compact operator on a Hilbert space which does not have an
eigenvalue 1. Then by Lidskii’s theorem one can define a determinant so
that

tr(1 +K) =
∏
j

(1 + λj)

where λj are the eigenvalues. We want to apply it to

−∂2 + u− z2 = (−∂ − iz)(1 + (−∂ − iz)−1(∂f + izf)(∂ − iz)−1)(∂ − iz)

= (−∂ − iz)(1− f(∂ − iz)−1 − (−∂ − iz)−1f∂(∂ − iz)−1)(∂ − iz)

where the bracket has the form 1 +K, K Hilbert-Schmidt.
We will be interested in something like log detL up to constants indepen-

dent of u. So it suffices to try to define

log det(1 + (−∂ + iz)−1u(∂ + iz)−1).

This is still not good since the operator is only Hilbert-Schmidt, but lets ig-
nore this point for a moment. For matrices we would have (for diagonalizable
matrices which are dense we check that by diagonalization)

log det(1 + A) = −
∞∑
n=1

(−1)n+1

n
trAn

provided ‖A‖ < 1. This can be justified for trace class operators as well,
where it is a consequence of Lidskii’s theorem

log det(1 +K) =
∞∑
n=1

(−1)n+1

n
trKn.
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This is almost good, since trKn is defined for K Hilbert-Schmidt if n ≥ 2
(we have AB is trace class of both A and B are Hilbert-Schmidt).

Definition 4.13. Let K be a trace class operator. We define

det2(1 +K) = det(1 +K) exp(− trK)

Theorem 4.14. There is a unique continuous extension of det2(1 + K) to
Hilbert-Schmidt operators K. Moreover, if K is Hilbert-Schmidt and satisfies
‖K‖H→H < 1 then

log det2(1 +K) =
∑
n≥2

(−1)n+1

n
tr(Kn).

Let
R± = (±∂ − iz)−1.

Then

log det2(1 +R−uR+) =
∑
n≥2

(−1)n+1

n
tr((R−uR+)n

=
∑
n≥2

(−1)n+1

n
tr(((−∂2 − z2)−1u)n.

(4.8)

We calculate

d

ds
log det(1 +R−(u+ sφ)R+)− s tr(R−φR+)|s=0

=
d

ds

[
log det(1 +R−uR+) + log det(1 + s(1 +R−uR+)−1R−φR+)− s tr(R−φR+)

] ∣∣∣
s=0

= tr(1 +R−uR+)−1R−vR+)− tr(R−vR+)

= tr(∂ − iz)(−∂2 − z2 + u)−1(−∂ − iz)(R−φR+)) +
1

2iz

ˆ
φdx

= tr
[
(−∂2 − z2 + u)−1φ

]
+

1

2iz

ˆ
φdx

=

ˆ (
g(x, x) +

1

2iz

)
φdx.

We recall that the integral kernel of −∂2 − z2 is

g0(x, y) = − 1

2iz
eiz|x−y|
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The summands are not defined since the functions u, v are not assumed to
be in L1, and the operators are Hilbert-Schmidt but not trace class. This
is dealt with either by approximation, or the definition via the series: Let
φ ∈ L2 and ‖R−uR+‖L2→ L2 < 1. Then

d

ds
log det2(1 +R−(u+ sv)R+)

∣∣∣
s=0

=
∞∑
n=2

(−1)n+1 tr
(

(R−uR+)n−1R−φR+

)
= tr

( ∞∑
n=1

(−1)n(−∂2 − z2)−1u)n−1(−∂2 − z2)−1φ
)

= tr
(

(1− (−∂2 − z2)−1u)−1(−∂2 + z2)−1v
)
− tr(−∂2 + z2)−1v

= tr(−∂2 − u− z2)u)−1φ− (−∂2 + z2)φ
)

=

ˆ (
g(x, x) +

1

2iz

)
φdx

Theorem 4.15. The following identities hold:

a(z) = det2(1 +R−uR+), (4.9)

δ

δu
a = g(x, x) +

1

2iz
. (4.10)

Proof. We observe that a(z, 0) = 1 = det2(1 + R−0R+). Both a and log2 T
are defined by some expansion, from which it is not hard to see that the
derivatives above are continuous in φ ∈ L2.

We want to calculate d
ds
a(z, u + sφ)|s=0 which is defined by the Jost so-

lution φl which satisfies
−φ′′l + uφl = z2φl

We denote the derivative of φl with respect to s at s = 0 by φ̇l. It satisfies

−φ̇′′l + uφ̇l − z2φ̇l = −φφl
and

φ̇l = cφl −
1

2iz
φl(x)

ˆ
φr(y)φl(y)φ(y)dy +

1

2iz
φr(x)

ˆ
φ2
l (y)φ(y)dy.

Then

lim
x→∞

exp
(
izx−

ˆ x

0

fdy
)

(− 1

2iz
φl

ˆ
φrφlφdy +

1

2iz
φr(x)

ˆ
φl(y)φ(y)dy

)
= a(z)

ˆ
g(x, x)φ(x)dx.
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Differentiating (recall ∂f + 2izf = u hence 2iz
´
f =
´
u)

lim
x→−∞

eizx−
´ x
0 fdxφl(x) = 1

we obtain

0 = lim
x→−∞

eizx−
´ x
0 fdxφ̇l +

ˆ 0

−∞
ḟdy

and

c = −
ˆ 0

−∞
v̇dx

We obtain

d

ds
log a(z, u+ sv)|s=0 =

ˆ (
g(x, x) +

1

2iz

)
v(y)dy

Since
a(z, 0) = det2(1) = 1

and
∂s log(a(z, su)) = ∂s det2(1 + s(−∂ − iz)−1u(∂ − iz)−1)

(4.9) follows from the fundamental theorem of calculus. The identity (4.10)
is a consequence of the calculations.

The expansion consist of the summands (−1)n+1

n
tr
(

(−∂ − iz)−1u(∂ −

iz)−1
)n

and

tr
(

(−∂−iz)−1u(∂−iz)−1
)n

= (−2iz)−n
(−1)n+1

n

ˆ
Rn

n∏
j=1

eiz|xj+1−xj |uj(xj)dxj

where xn+1 = x1 where uj = u,

Lemma 4.16.∣∣∣∣∣
ˆ
Rn

n∏
j=1

eiz|xj+1−xj |uj(xj)dxj

∣∣∣∣∣ ≤ (Im z/2)−n/2
n∏
j=1

‖uj‖L2 (4.11)

and, if
∑

1
pj

= 1∣∣∣∣∣
ˆ
Rn

n∏
j=1

eiz|xj+1−xj |uj(xj)dxj

∣∣∣∣∣ ≤ (Im z/2)1−n
n∏
j=3

‖uj‖Lpj (4.12)
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Proof. We estimate by taking the absolute value of the integrand and omit
the exponential term with |xn+1 − xn|. It suffices to bound for τ > 0∣∣∣∣∣

ˆ
Rn

n∏
j=1

e−τ |xj+1−xj |uj(xj)dxj

∣∣∣∣∣ ≤ (τ)−n/2
n∏
j=1

‖uj‖L2 .

Similarly we deal with the second estimate. If n = 2 we interpret the estimate
as the inner product of the an operator applied to the first function. By
Schur’s lemma we obtain the bound∣∣∣∣ˆ

R2

e−τ |x2−x1|u1(x1)u2(x2)dx1dx2

∣∣∣∣ ≤ sup
x

ˆ
e−τ |x−y|dy‖u1‖Lp‖u2‖Lq .

Similar we writeˆ
Rn

n−1∏
j=1

e−τ |xj+1−xj ||uj(xj)|dxj =

ˆ ( ˆ
Rn−2

n−2∏
j=1

e−τ |xj+1−xj |uj(xj)(Tun)(xn−1)dxn−1

where T is the integral operator defined above. Then, by Cauchy-Schwarz

‖Tun‖L∞ ≤
√

2

τ
‖un‖L2 .

For the second estimate we let

1

p′n−1

=
1

pn
+

1

pn−1

and
u′n−1 = un−1Tun

with
‖u′n−1‖Lp′n−1

≤ ‖un−1‖Lpn−1‖Tun‖Lpn
which we estimate by Schur’s lemma. Induction yields the full estimate.

Theorem 4.17. There is an asymptotic expansion

− i
2

log a(z) ∼
∞∑
n=0

Hn(2z)−3−2n.

where Hn are functions on Hn given as integrals over differential polynomials

HN =

ˆ
1

2
|u(n)|2 + cubic and higer .

To be more precise: There exists δ > 0 so that if (Im z)−3/2‖u‖L2 < δ Then∣∣∣(2z)2n+3(−i/2) log a(z)−
n−1∑
j=0

Hn(2z)2(n−j)
∣∣∣ ≤ C(1 + ‖u‖nL2)‖u‖2

Hn (4.13)
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A consequence of the estimate is that

(2z)2n+3(−i/2) log a(z)−
n−1∑
j=0

Hn(2iz)2(n−j) → Hn

for u ∈ Hn and Im z →∞.
We will later see that

H0 =
1

2

ˆ
u2dx, H1 =

ˆ
1

2
u2
x + u3dx, H2 =

ˆ
1

2
u2
xx − 10uu2

x + 5u4dx

Proof. By the previous argument we it suffices to show the expansion for a
finite number of terms. We begin with the first

1

ξ2 − 4z2
=

1

−4z2
+

1

4z2

ξ2

ξ2 − 4z2

hence iteratively

1

(2iz)2

ˆ
e2iz|x1−x2|u(x1)u(x2)dx1dx2

= − 1

iz

ˆ
(ξ2 − 4z2)−1û(ξ1)û(ξ)dξ

=
n−1∑
j=1

‖u(j)‖2
L2(2z)−2j−3 − 1

(2z)2(n−1)

ˆ
1

ξ2 − 4z2
|û(n)|2dξ

For n = 3 we use Fubini and integrate by partsˆ
R3

u(x1)u(x2)u(x3)eiz(|x1−x2|+|x2−x3|+|x1−x3|dx1dx2dx3

=
1

iz

ˆ
R3

u(x1)u(x2)u(x3)

(
x1 − x2

|x1 − x2|
+

x1 − x3

|x1 − x3|

)
∂x1e

iz(|x1−x2|+|x2−x3|+|x1−x3|)dx1dx2dx3

= − 1

iz

ˆ
R3

u′(x1)u(x2)u(x3)
x1 − x2

|x1 − x2|
eiz(|x1−x2|+|x2−x3|+|x1−x3|)dx1dx2dx3

− 1

iz

ˆ
R3

u′(x1)u(x2)u(x3)
x1 − x3

|x1 − x3|
eiz(|x1−x2|+|x2−x3|+|x1−x3|)dx1dx2dx3

+
1

iz

ˆ
R2

2(u(x2) + u(x3))u(x2)u(x3)e2iz(|x2−x3|dx2dx3

We iterate that until we either obtain one dimenionsal integrals over dif-
ferential polynomials or sufficient decay, since we gain a power 1

iz
in each

integration by parts or we reduce the integration dimension by 1. It remain
to do the proper counting.
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We will use also the epansion for the variational derivatives. Again we
reduce matters to a finite number of terms, and to variational derivatives
of integrals over differential polynomials. The Hamiltonians Hn and their
variation derivatives can be computed by the Lenard recursion. Let φ, ψ be
solutions to ¸

(−∂2 − z2 + u)φ = 0.

Then
∂(φψ) = φ′ψ + φψ′

∂2(φψ) = φ′′ψ + 2φ′ψ′ + φψ′′ = 2(−z2 + u)(φψ) + 2φ′ψ′

∂3(φψ) = 4(−z2 + u)∂(φψ) + 2u′(φψ)

and we arrive at the crucial equation

∂3(φψ) + 4(z2 − u)∂(φψ)− 2u′φψ = 0 (4.14)

Now, by Lemma 4.10 and (4.10)

δ log a

δu
= − 1

2iz
(φψ + 1)

so that

− (∂3 + 4u∂ + 2u′)
δ log a

δu
= ∂

(
z2 δ log a

δu
− 1

iz
u
)

(4.15)

We expand and we obtain the Lenard recursion

∂
δHn+1

δu
= (−∂3 + 4u∂ + u′)

δHn

δu

with

H0 =
1

2

ˆ
u2dx,

δH1

δu
= u

and

∂
δ

δu
H1 = (−∂3 + 4u∂ + 2u′)u = −u′′′ + 6uu′ = ∂(−uxx + 3u2)

H1 =

ˆ
1

2
u2
x + u3dx

∂
δ

δu
H2 = (−∂3+4u∂+2u′)(−uxx+3u2) = ∂x

(
u(4)−3∂2u2−10∂x(uux)+5u2

x+10u3
)

H2 =
1

2

ˆ
u2
xx + 10uu2

x + 5u4dx.

The amazing story of Lenards contribution is told by Praught and Smirnov
in [24].
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4.4 Computing Poisson brackets

On nice functions on S(R) (including integrals over differential polynomials,
and a(z)) we define the Gardner-Poisson bracket

Definition 4.18.

{F,G} =

ˆ
δF

δu
∂x
δG

δu
dx

The Hamiltonian vector field of F is then

∂x
δF

δu
.

Then

{u(x), F} =

ˆ
δx∂x

δF

δu

in the distributional sense for test functions{ˆ
φudx, F} = −

ˆ
δF

δu
∂xφdx.

In particular
{u,H0} = ∂xu

{u,H1} = −∂xxxu+ 6uux.

Lemma 4.19. The Gardner Poisson structure and the Magri structure are
compatible in the sense that for F (w) = f(wx − 2izw + w2)

ˆ
δF

δw
∂x
δG

δw
dx =

ˆ
δf

δu
|u=wx−iτw+w2(−∂3+∂(u−z2)+(u−z2)∂)

δg

δu
|u=wx−iτw+w2dx.

Proof. This is a consequence of the chain rule. Let

u = (w + sω)x − 2iz(w + +sω) + (w + sω)2

Then

d

ds
F (w + sω)|s=0 =

d

ds
f(∂x(w + sω)− 2iz(w + sω) + (w + sω)2)|s=0

=

ˆ
δf

δu
(ωx − 2iZω + 2wω)dx

=

ˆ
(−∂ − 2iz + 2w)

δf

δu
ωdx
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andˆ
δ

δw
F∂x

δ

δw
Gdx

=

ˆ
(−∂x − 2iz + 2w)

δf

δu
∂x(−∂x − 2iz + 2w)

δg

δu
dx

=

ˆ
δf

δu
(∂ − 2iz + 2w)∂(−∂ − 2iz + 2w)

δg

δu
dx

=

ˆ
δf

δu
(−∂3 + 4(wx − 2izw + w2 − 4z2)∂ + 2(∂(wx − 2izw + w2))

δg

δu
dx

=
δf

δu
(−∂3 + 4u∂ + 2ux)

δg

δu
dx

Theorem 4.20. The functions a(z1, u), a(z2, u) and Hn all Poisson com-
mute.

Proof.

− 8z1z2

ˆ
δ

δu
log a(z1)

δ

δu
log a(z2)

= 2

ˆ
(φl(x, z1)φr(x, z1) +

1

2iz1

)∂x

(
φl(x, z2)φr(x, z2) +

1

2iz2

)
dx

=

ˆ (
φl(z1)φr(z1) +

1

2iz1

)
∂x

(
φl(z2)φr(z2)) +

1

2iz2

)
−
(
φl(z2)φr(z2) +

1

2iz2

)
∂x

(
φl(z1)φr(z1) +

1

2iz1

)
dx

= lim
X→∞

ˆ X

X

(z2
1 − z2

2)∂x

(
W (φl(z1)φr(z2))W (φl(z1)φr(z2))

)
+ ∂x

( 1

2iz2

(
φl(z1)φr(z1) +

1

2iz1

)
− 1

2iz1

(
φl(zz)φr(z2) +

1

2iz2

))
dx

= 0

Formula (4.14) shows that formally det(1+RuR+) is a Casimir for a linear
combination of the Gardner and the Magri Poisson bracket.

Theorem 4.21. The following identities hold{
u,−iz ln a

}
=

1

2
∂x

v

v(z) + 1
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{u,H0} = ux

{u,H1} = −uxxx + 6uux

{v(z̃),−iz ln a} =
1

4z2 − 4z̃2
∂
v(z̃)− v(z)

v(z) + 1

{v,H0} = vx

{v,H1} = 2∂x((1 + v)u)

= ∂x

[
− vxx +

3

2

v2
x

v + 1
+ 2τ 2v3 + 6τ 2v2

]
{w,H0} = wx

{w,H1} = −wxxx + ∂x(2w
3 + 6τw2)

Proof. We begin with (recall g = − 1
2iz(v+1)

)

{u,−iz log a} = −iz∂x
δ

δu
log a

= −iz∂x
(
g(x, x) +

1

2iz

)
= −1

2
∂x

( 1

v + 1
− 1
)

=
1

2
∂

v

v + 1{
u,

1

2

ˆ
u2dx

}
= ∂xu{

u,

ˆ
1

2
u2
x + u3

}
= ∂x(−∂2u+ 6uux).

By translation invariance

{w,H0} = wx, {v,H0} = vx.
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Next

{v(z1),−2iz2 log a(z2)} = −2iz2

2iz1

{ 1

g(z1, x)
, log a(z2)

}
=
z2

z1

1

g2(z1, x)
{g(z1, x), log a(z2)}

= −z2

z1

(g(z1, x))−2
(
L−1
z1
{u, log a(z2)}L−1

z1
δx

)
(x)

= −z2

z1

1

g2(z1)

ˆ
g(z1, x, y)∂g(z2, y)g(z1, y, x)dy

= − z2/z1

4z2
1 − 4z2

2

1

g2(z1)

ˆ
g(z1, x, y)

× (−∂3 + 2∂u+ 2u∂ − 4z2
1∂)g(z2, y)g(z1, y, x)dy

= − z2/z1

4z2
1 − 4z2

2

1

g2(z1)

ˆ
g(z1, x, y)

{
Lz1g

′(z2) + g′(z2)Lz1

− 2Lz1g(z2)∂ + 2∂g(z2)Lz1

}
g(z1, y, x)dy

= −2
z2/z1

4z2
1 − 4z2

2

g−2(z1)(g′(z2)g(z1)− g(z2)g′(z1))

= 2
z2/z1

4z2
2 − 4z2

1

∂
g(z2)

g(z1)

= 2
1

4z2
2 − 4z2

1

∂
v(z1) + 1

v(z2) + 1

= 2
1

4z2
2 − 4z2

1

∂
v(z1)− v(z2)

v(z2) + 1
.

We recall

− i
2

(2z)5a(z)− (2z)2 1

2

ˆ
u2dx→ 1

2

ˆ
u2
x + 2u3dx

at least for smooth u. We are interested in the limit

lim
Im z→¸∞

{
v(z), (2z̃)5 i

2
a(z̃)− (2z̃)2 1

2

ˆ
u2dx

}
= − lim

Im z→∞
(2z̃)2∂

(v(z)− v(z̃)− v(z)(1 + v(z̃)

1 + v(z̃)

)
= ∂x((1 + v(z))u)

We recall
wx − 2izw + w2 = u
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and

−1

2
∂x log(1 + v) + izv = w

The map
L2 3 w → wx − 2izw + w2 =: u ∈ H−1

is a diffeomorphism with derivative (see Lemma 4.9

ẇ → ẇx − 2izẇ

at w = 0 which we can explicitly invert. Similarly

{v ∈ H2 : v 6= −1} 3 v → −1

2
∂ log(1 + v)− izv ∈ L2

is a diffeomorphism with derivative

v̇ → −1

2
v̇x − izv̇

at v = 1 which is again invertible. Thus w → u is invertible near zero and
the deirvative at 0 is

u̇→ v̇ = 2(∂2 − 4z2)−1u̇

Lemma 4.22. We have
lim
τ→∞

2τ 2v(iτ) = u

in H−1.

We compute

∂x(1 + v)u = ∂x(1 + v)(wx − 2izw + w2)

= ∂x

[
(1 + v)

(
− 1

2
∂x

vx
1 + v

+ izvx − 2iz
vx

1 + v
+ z2v

+
1

4

v2
x

(1 + v)2
− iz vvx

1 + v
− z2v2

)]
= ∂x

[
− vxx +

3

2

vx
1 + v

− 2z2v3 − 6z2v2
]

and

{w,H1} = {−∂x log(1 + v)− izv,H1} − ∂x{log(1 + v), H1} − iz{v,H1}

= −∂x
1

1 + v
{v,H1} − iz{v,H1}

and by the chain rule one arrives at the formula for w after a massive calcu-
lation.
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4.5 Wellposedness of KdV in H−1

4.5.1 The τ flow

We consider the τ flow

ut = ∂x
δτa(iτ)

δu
=

1

2
∂x

v

v + 1
(4.16)

where we omit iτ in the argument.

Proposition 4.1. There exists δ > 0 so that for n ≥ −1 the map

Bδτ1/2(0)H
−1 ∩Hn 3 u→ v ∈ Hn+2

is smooth and satisfies

c−1
n ‖u‖Hn

τ
≤ ‖v‖Hn+2

τ
≤ cn‖u‖Hn

τ

and
c−1
n ‖u2 − u1‖Hn

τ
≤ ‖v2 − v1‖Hn+2

τ
≤ cn‖u2 − u1‖Hn

τ
.

Proof. By Lemma 4.9 the map w → u is a diffeomorphism in suitable spaces.
By the triangle inequality∣∣∣‖u‖H−1

2τ
− ‖w‖L2

∣∣∣ ≤ ‖w2‖H−1
τ

≤ (2τ)−1/2‖w2‖L1

≤ (2τ)−1/2‖w‖2
L2

and ∣∣∣‖w‖L2 − 1

2
‖v‖H1

τ

∣∣∣ ≤ ‖1

2
vx

v

v + 1
‖L2

≤ ‖v‖H1
2τ

1

2
‖ v

v + 1
‖L∞

≤ ‖v‖H1
2τ
‖v‖L∞

≤ τ−1/2‖v‖2
H1

2τ

assuming

‖v‖L∞ ≤ τ−1/2‖v‖H1
τ
≤ 1

2

Similarly we estimate differences. The arguments for larger n is the same,
but it requires some interpolation.
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As a consequence we obtain a local solution in Hn for n ≥ −1 to the
Cauchy problem for (4.16) by the Cauchy-Lipschitz theorem which holds in
Banach spaces. The functions a(z) Poisson commute and hence they are
preserved by the τ flow.

Lemma 4.23. Let τ be sufficiently large. Then

−τ log a(iτ) =

ˆ
w2dx

Proof.

−τ log a(iτ) = −τ lim
X→∞

(
log

φl(X)e−τX

φl(−X)eτX
− 1

2τ

ˆ X

−X
udx

)
= −τ lim

X→∞

(ˆ X

−X
w − 1

2τ
udx

)
= lim

X→∞

(
−τ
ˆ X

−X
w − 1

2τ
(wx + 2τw + w2)dx

)
=

1

2

ˆ
w2dx.

We obtain by the triangle inequality which implies a uniform bound by
Proposition 4.1 (or its proof)

‖u(t)‖H−1
τ
≤ 2‖u0‖H−1

τ
(4.17)

is δ is sufficiently small. In particular the flow is global in Hn, n ≥ −1.

Definition 4.24. Let X be a translation invariant Banach space. We call a
subset Q ⊂ X equicontinuous if for all ε there exists h0 so that

‖f(.+ h)− f‖X < ε for |h| ≤ h0

Lemma 4.25. A bounded set Q ⊂ H−1 is equicontinuous if and only if

lim
τ→∞

sup
f∈Q
‖f‖H−1

τ
= 0

Proof. Suppose that Q is equicontinuous and ε > 0. Let h0 be as in the
definition and j ∈ C∞c (−h0, h0) with

´
j = 1. Then

‖f − f ∗ j‖H−1 ≤ ε
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‖f‖H−1
τ
≤ ‖f − f ∗ j‖H−1 + ‖(ξ2 + 1)−1/2ĵ(ξ)f̂‖L2

= ε+ sup
(ξ2 + 1)ĵ

ξ2 + τ 2
‖f‖H−1

which implies the uniform convergence. Vice versa, suppose that

lim
τ→∞

sup
u∈Q
‖u‖H−1

τ
= 0

and let ε > 0. There exists τ so that

‖u‖H−1
τ
≤ ε.

We write u = u<τ + u>τ with

u<τ = F−1
(
χ|ξ|≤τ û

)
so that ‖|ξ|−1u>τ‖L2 < ε and ‖u<τ‖H−1 < C. Then

‖u>τ (.+ h)− u>τ (.)‖H−1 ≤ 2ε

and
‖u<τ (.+ h)− u<τ‖H−1 ≤ h‖u<τ‖L2 ≤ hτ‖u‖H−1 .

Let Q ⊂ H−1 be a bounded and equicontinuous set of initial data, let
ε > 0 and τ ≥ τ0 so for u ∈ Q

‖u‖H1
τ
< ε

and suppose that τ0 is sufficiently large. Let u(t; τ) be the τ flow applied to
u0 ∈ Q. Then

‖u(t; τ)‖H−1
τ
≤ 2ε

for all τ ≥ τ0 and t ∈ R. With Lemma 4.25 and Propositon 4.1 we see that

{u(t; τ) : u0 ∈ Q} ⊂ H−1

is bounded and equicontinuous and the corresponding set Qv ∈ H1 is also
equicontinuous.
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4.5.2 Wellposedness in H−1

Theorem 4.26 (Wellposedness of KdV in H−1). The Korteweg-de Vries
equation is wellposed in H1. The flow has a unique continuous extension to
H−1

The key is

Proposition 4.2. The map

BH−1

δτ
1/2
0

× [τ0,∞)× R 3 (u0, τ, t)→ u(t, τ)

has a unique continuous extension to

BH−1

δτ
1/2
0

× [τ0,∞]× R

Proof. We have seen that the τ flows are global in time and the orbits are
equicontinuous. In the v coordinates we obtain solutions to

vt = ∂x

( 1

4τ 2
0 − 4τ 2

v − v(iτ)

1 + v(iτ)
− v
)

(4.18)

The corresponding us form a bounded and equicontinuous set in H−1, hence
{v(t, τ)} is bounded (and small) and equicontinuous in H1.

Lemma 4.27. Let Q̃ ⊂ H1
τ ∩ {v > −1

2
} be a bounded and equicontinuous

set. Then ( 1

4τ 2
0 − 4τ 2

v − v(iτ)

1 + v(iτ)
− v
)
→ 2(1 + v)u ∈ H−1

uniformly for v ∈ Q̃.

Proof. This is a quantitative version of the arguments for Theorem 4.21 using
the estimates of Propositon 4.1.

As a consequence (compare the Hamiltonian vector fields in Theorem
4.21)

v(t, τ)→ v(t) ∈ H−2

uniformly for compact time intervals where v(t) is uniformly bounded in H1.
We obtain convergence in H1.

Lemma 4.28. Let vn(t), t ∈ I be a uniformly bounded and equicontinuous
sequence in H1 which converges uniformly to v(t) in H−2. Then uniformly
v(t) ∈ H1 and vn → v in H1.
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In particular v is a solution to the KdV equation in the v coordinates,

vt = 2∂x

(
(1 + v)u

)
.

Proof. Given t there exists a weakly converging subsequence of vn(t) in H1

satisfying

|v(t)‖H1 = ‖ lim
n→∞

vn(t)‖H1 ≤ lim inf
n→∞

‖vn(t)‖H1 <∞

uniformly in t. We subtract v and reduce the problem to v = 0. Let h0 be
such that

‖vn(t, .+ h)− vn(t)‖H1 < ε for |h| ≤ h0.

we decompose vn = vn,>τ + vn,<τ . Then as above

‖vn,<τ‖H1 ≤ τ−3‖vn,<τ‖H−2 → 0 as n→∞

and
‖vn,>τ (t)‖H1 < ε.

Now suppose that u0 ∈ H2. Then H0 = 1
2
‖u‖2

L2 is conserved and the L2

is uniformly bounded. Moreover

‖ux‖2
L2 ≤ 2H1 + ‖u‖3

L3 ≤ ‖ux‖
1
2

H1‖u‖
5
2

L2

and hence ‖u(t)‖H1 is uniformly bounded. Similarly

‖uxx‖2
L2 ≤ H2 + ‖u‖4

L4 + |u‖L∞‖ux‖2
L2

hence ‖u(t)‖H2 is uniformly bounded.
By the diffeomorphismus property ‖v(t)‖H2 is uniformly bounded. We

first compute

wt = ∂t(−
1

2

vx
1 + v

+ τv) = −wxxx + ∂x(2w
3 + 6τw2)

in H−1 and
ut = ∂t(wx + 2τw + w2) = −uxxx − 6uu− x

in H−2. Let u1 and u2 be two solutions. Then, formally,

d

dt
‖u1 − u2‖2

L2 = 3

∣∣∣∣ˆ (u2
2 − u2

1)(u2 − u1)xdx

∣∣∣∣
=

3

2

∣∣∣∣ˆ (u2 + u1)x(u2 − u1)2dx

∣∣∣∣
≤ ‖u2 − u1‖2

L2(‖u′2‖L∞ + ‖u′1‖L∞)

≤
(
‖u2‖H2 + ‖u1‖H2

)
‖u2 − u1‖2

L2
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where we used the Sobolev inequality. Now Grönwall’s lemma implies unique-
ness.

4.5.3 Results on wellposedness of the KdV equation

1. Inverse scattering methods: Sufficiently regular and decaying initial
data. Schuur [25] gives a fairly precise description of general solutions.

2. Bona-Smith [3] use energy estimates (integration by parts) to prove
wellposedness in H2 . The essential part is the uniqueness argument
we used above.

3. Kenig. Ponce and Vega [14] use dispersive techniques to lower the
regularity.

4. Bourgain introduced a large number of new ideas to deal with initial
data in L2, [4].

5. Kenig, Ponce and Vega [13] use bilinear estimates to push wellposedness
to negative regularity s > −3

4
. This type of argument cannot be pushed

below s = −3
4
.

6. Kappeler and Topalov [11] proved a similar result for periodic solution.
Their argument depends on complex algebraic geometry, more precisely
on Riemann surfaces.

7. Molinet showed that no wellposedness can hold in Hs s < −1. [20, 21].

8. Higher order KdV equations?

4.6 The inverse scattering technique for KdV

Consider the Schrödinger equation

i∂tφ+ φxx − uφ = 0

assuming ‖(1 + |x|)u‖L1 < ∞ and u ∈ L2. Then there are finitely many
eigenvalues whose eigenfunctions span a finite dimensional space Hp ⊂ L2

corresponding to the point spectrum. The orthogonal complement is Hc.
The operator H = −∂2 + u is self adjoint with domain H2 and generates

by Stone’s theorem a unitary semigroup

exp(−itH) exp(−it(−∂2 + V ))
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One defines the wave operators via H0 = −∂2 by

Ω± = lim
t→±∞

eit(H)e−itH0

Then Ω± is a unitary map L2 → Hc, they intertwine the evolutions

Ω±e
−itH0 = e−itHΩ±

and the scattering operator is defined by

S = Ω−1
+ Ω− : L2 → L2.

A Fourier transform in t allows to describe Ω± in terms of ’eigen functions’
φl,r(x, ξ), ξ ∈ R. At the boundary z = ξ ∈ R the equation Lφ = ξ2φ is
invariant under complex conjugation. We can write

φl(x, ξ) = a(ξ)φr(x, ξ) + b(ξ)φr(x, ξ)

where we normalize by
lim

x→−∞
eiξxφl(x, ξ) = 1

The interpretation is that φr describes the incoming wave, φr the reflected
and φl the transmitted wave.

In our situation the Jost solutions can be defined in the closed upper
halfplane with the normalization

lim
x→−∞

eiξxφl(x, ξ) = 1

The Wronskian W (φl, φl) is constant and has the limit 2iξ at −∞. Thus

2iξ = lim
x→∞

W (a(ξ)φr(x, ξ) + b(ξ)φr(x, ξ), a(ξ)φr(x, ξ) + b(ξ)φr(x, ξ))

= 2iξ(|a(ξ)|2 − |b(ξ)|2)

hence
1 = |a(ξ)|2 − |b(ξ)|2.

We call T (z) = a(z)−1 the transmission coefficient and

R(ξ) = a(ξ)−1b(ξ)

the reflection coefficient. We obtain the relation

|T (ξ)|2 + |R(ξ)|2 = 1

or equivalently the matrix(
a(ξ) b̄(ξ)
b(ξ) ā(ξ)

)
∈ SU(1, 1).
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4.6.1 The Lax pair and the KdV equation

The Lax pair for the KdV equation is

Lφ = (−∂2 + u) = z2φ

Pφ = (−4∂3 + 3(∂u+ u∂))φ

so that the Korteweg-de Vries equation arises as compatibility condition for

Lφ = z2φ Lt = [P,L] ⇐⇒ [∂t − P,L] = 0. (4.19)

If we want to solve the two equation

Lφ = z2φ (∂t − P )φ = 0

simultaneously we need a more flexible variant of the Jost solutions. Recall
that we assume

´
(1 + |x|)|u|dx <∞ so that we can set

φl(z, t, x) = κ(t, z)φl(z, t, x)

with κ(0, z) = 1 where we normalize

lim
x→−∞

eizxφl(z, t, x) = 0.

We assume fast decay of u or even compact support so that

φl(z, t, x) = κ(t, z)e−izx

for x close to −∞. Similarly

φr(z, t, x) = κr(t, z)e
izx

for x near ∞ with κr(0, z) = 1. Then

κt + 4(−iz)3κ = 0

and
κ = e−4iz3t.

Similarly
κr = e4iz3t

Now we turn to z = ξ ∈ R. Then, as above, with the standard normal-
ization

φl(t, x; ξ) = a(ξ)φr(t, x, ξ) + be8iξ3tφr(t, x, ξ).
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Similarly at eigenvalues −τ 2
j

φr(t, x, iτj) = γj(t)φr(t, x, iτj)

where
γj(t) = γj(0)e−8i(iτj)

3t = γj(0)e−8τ3j t.

The inverse scattering approach consists in

1. Study the map
u0 → (R(0, ξ), τj, γj(0))

2. evolve by the linear equations

3. Study
(R(t, ξ), τj(t), γj(t))→ u(t)

Observe that b determines |T | and hence |a|. If there is no eigenvalue
then log a(z) is a holomorphic function with real part log |a|. Then on the
real line

Im log a = H Re log a

where H is the Hilbert transform and hence a is determined by |b| on the
real line. Slightly more work is needed for the general case.

4.6.2 Scattering for the Lax operator

Recall
H = −∂2 + u

as usual and H0 = −∂2. It is a selfadjoint operator, which by Stone’s theorem
defines a unitary group e−itH by

i∂tφ = Hφ.

The Möller resp. wave operators are motivated by the following question:
Let φ0 ∈ L2 and φ(t) = e−tH0φ0. Does there exists ψ0 so that

lim
t→±∞

‖e−itHψ0 − e−itH0φ0‖L2 = 0?

The answer is yes and it is given by

Ω±φ = lim
t→±∞

eitHe−itH0φ0

The Möller operators
Ω± : L2 → L2
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are isometric and the range is the orthogonal complement of the span of the
eigenvalues. The scattering operator is

Sφ = Ω−1
+ Ω−φ.

At least formally

d

dt
eitHe−itH0 = ieitH(H −H0)eitH0 = ieitHue−itH0

hence

Ω+ = φ(t) + i

ˆ ∞
0

eitHvφ(t)dt = φ(t) + i lim
0<ε→0

ˆ ∞
0

eitH−εtvφ(t)dt.

By the inverse Fourier transform we write

φ =
1√
2π

ˆ
a(p)eipxdp

and

φ(t) =
1√
2π

ˆ
a(p)eipx−ip

2tdp

so that

φ =
1√
2π

ˆ
R
a(p)

(
eixp + i lim

ε→0

ˆ ∞
0

eit(H−|p|
2)−εtueipx

)
dtdp

=
1√
2π

ˆ
R
a(p)

(
eixp − i(H − p2 + i0)−1ueixp

)
dp

we arrive at (formally, but this can be justified)

ψ(p) = eixp − lim
ε→0

i(H − p2 + iε)−1ueixp

which can be seen by looking at the assumptotics to be

φr(p) = a−1(p)φl(p)−
b(p)

a(p)
φr(p)

It is a interpretated as a wave φr coming in from the right, with φl being the
transmitted partd and φr(p) the reflected part.
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Vol. PM027. Les Publications CRM (Centre de Recherches Mathématiques
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