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1 Geometric Brascamp-Lieb inequalities and
Gaussian Extremizers

After J.Bennett, A.Carbery, M.Christ and T.Tao [BCCT08]
A summary written by Michele Ferrante

Abstract
We introduce the notion of Brascamp-Lieb inequalities and prove

that gaussians are extremizers for the geometric Brascamp-Lieb in-
equalities.

1.1 Definitions and Examples
In their paper [BL76], Brascamp and Lieb were interested in the study of the
sharp constant for the Young Convolution inequality

‖f ∗ g‖r ≤ ‖f‖p‖g‖q, (1)

where 1 + 1/r = 1/p+ 1/q, 1 ≤ p, q ≤ ∞. It is easy to see that, by duality,
this is equivalent to∣∣∣∣ˆ f(x)g(x− y)h(y)dxdy

∣∣∣∣ ≤ ‖f‖p‖g‖q‖h‖t, (2)

where 2 = 1/t+1/p+1/q. They observed this was a particular case of a more
general class of multilinear inequalities which we call nowadays Brascamp-
Lieb inequalities.
Definition 1. We define an Euclidean space H to be a real Hilbert space of
finite dimension, endowed with the usual Lebesgue measure. If m ≥ 0 is an
integer, we define an m-transformation B to be a triple

B := (H, (Hj)1≤j≤m, (Bj)1≤j≤m)

where H,H1, . . . , Hm are Euclidean spaces and, for each j, Bj : H → Hj is
a linear transformation. We define a Brascamp-Lieb datum to be a couple
(B,p), where B is an m-transformation and p is an m-tuple (pj)1≤j≤m ∈
Rm

+ . For each Brascamp-Lieb datum (B,p), we can consider the m-linear
Brascamp-Lieb inequality

ˆ
H

m∏
j=1

(fj ◦Bj)
pj ≤ BL(B,p)

m∏
j=1

(

ˆ
Hj

fj)
pj , (3)

where fj : Hj → R+ are non-negative measurable functions and BL(B,p) ∈
(0,+∞] is the best constant for which the inequality holds.
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The Young inequality (2) is a Brascamp-Lieb inequality for them-transformation

B = (Rd × Rd, (Rd)1≤j≤3, (Bj)1≤j≤3),

where
B1(x, y) = x, B2(x, y) = y, B3(x, y) = x− y.

In particular we know that BL(B,p) is finite if and only if p1 + p2 + p3 =
2, 0 ≤ p1, p2, p3 ≤ 1, and, in these cases, it equals to

BL(B,p) =

(
3∏
j=1

(1− pj)1−pj
p
pj
j

)d/2

.

The Hölder inequality is also a particular case of Brascamp-Lieb inequal-
ity, which is obtained with

B = (H, (H)1≤j≤m, (IdH)1≤j≤m).

In this case BL(B,p) = 1 if
∑m

j=1 pj = 1, 0 ≤ pj ≤ 1 for each j, and is
infinite otherwise.

Another classical example is the Loomis-Whitney inequality. Here we
take

B = (Rn, (e⊥j )1≤j≤n, (Pj)1≤j≤n)

where e1, . . . , en is the standard basis of Rn, e⊥j ⊂ Rn is the orthogonal
complement of ej, and Pj is the orthogonal projection onto e⊥j . The Loomis-
Whitney inequality states that BL(B,p) = 1 if p = ( 1

n−1
, . . . , 1

n−1
), and is

infinite otherwise.

Both Hölder inequality and Loomis-Whitney inequality are in fact cases
of what are usually called geometric Brascamp-Lieb inequalities.

Definition 2. We say that a Brascamp-Lieb datum (B,p) is a geometric
Brascamp-Lieb datum if

BjB
∗
j = IdHj

, (4)

for every j, and
m∑
j=1

pjB
∗
jBj = IdH . (5)

Since (4) implies that B∗
j is an isometry, it is easy to see that this is equiv-

alent to ask that each Hj is a subspace of H and the Bj are the projection
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maps from H to Hj.

It can be proved that the Young inequality is equivalent to a geometric
Brascamp-Lieb inequality, in the sense that there exist some linear changes
of coordinates that make (B,p) into a geometric Brascamp-Lieb datum.

1.2 Gaussian Extremizers via Heat Flow Method
We will now prove a sharp result for geometric Brascamp-Lieb inequalities
and, in particular, that gaussians are extremizers. The main idea is that, to
prove A ≤ B, we want to generate a quantity Q(t) which is monotone and

lim
t→−∞

Q(t) = A, lim
t→+∞

Q(t) = B.

To do so, we want to use a property of supersolutions of the transport equa-
tion.

Proposition 3. Let I ⊆ R, let H be a Euclidean space, let u : I ×H → R+

be a smooth non-negative function, and v⃗ : I × H → H be a smooth vector
field, such that v⃗u(t, x) is rapidly decreasing for x→∞ locally uniformly in
t. Suppose that we have the transport inequality

∂tu(t, x) +∇(v⃗(t, x)u(t, x)) ≥ 0 (6)

for all (t, x) ∈ I ×H, where ∇ is the divergence on the Euclidean space H.
Then the quantity

Q(t) :=

ˆ
H

u(t, x) dx ∈ [0,+∞]

is non-decreasing.

Proof. Let t1 < t2. From Stokes’ theorem we can write
ˆ
H

u(t2, x)ψ(x) dx−
ˆ
H

u(t1, x)ψ(x) dx

=

ˆ t2

t1

ˆ
H

(∂tu(t, x)ψ(x) +∇(ψ(x)v⃗(t, x)u(t, x)) dxdt

for any non-negative smooth cutoff function ψ. Using the product rule and
(6) we conclude
ˆ
H

u(t2, x)ψ(x) dx−
ˆ
H

u(t1, x)ψ(x) dx ≥
ˆ t2

t1

ˆ
H

〈∇ψ(x), v⃗(t, x)u(t, x)〉 dxdt.
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Letting ψ approach the constant function 1 and since v⃗u is rapidly decreasing,
uniformly in [t1, t2], the right-hand side tends to 0 and we obtain the claim.

A multilinear version of the previous result is the following.

Proposition 4. Let p1, . . . , pm > 0, let H be a Euclidean space, and for each
1 ≤ j ≤ m let uj : R+ ×H → R+ be a smooth strictly positive function, and
v⃗j : R+×H → H be a smooth vector field. Suppose we have a smooth vector
field v⃗ : R+ × H → H, such that v⃗

∏m
j=1 u

pj
j (t, x) is rapidly decreasing for

x→∞ locally uniformly in t, and we have the inequalities

∂tuj(t, x) +∇(v⃗juj(t, x)) ≥ 0 for all 1 ≤ j ≤ m (7)

∇(v⃗ −
m∑
j=1

pj v⃗j) ≥ 0 (8)

m∑
j=1

pj〈v⃗ − v⃗j,∇ log uj〉H ≥ 0. (9)

Then the quantity

Q(t) :=

ˆ
H

m∏
j=1

uj(t, x)
pj dx (10)

is non-decreasing.

The idea of the proof is to apply Proposition 3 by proving

∂t

m∏
j=1

u
pj
j +∇(v⃗

m∏
j=1

u
pj
j ) ≥ 0.

Theorem 5. Let (B,p) be a geometric Brascamp-Lieb datum. Then BL(B,p) =
1. Moreover BL(B,p) is achieved by a gaussian.

Sketch of Proof. Assume, without loss of generality, that Hj ≤ H and that
Bj are the orthogonal projections fromH toHj. By choosing fj = exp(−π‖x‖2Hj

),
we see that we must have BL(B,p) ≥ 1. So we only need to prove BL(B,p) ≤
1 to obtain our claim.

It thus suffices to show that, for any fj : Hj → R+, we have
ˆ
H

m∏
j=1

(fj ◦Bj)
pj ≤

m∏
j=1

(

ˆ
Hj

fj)
pj . (11)
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Now let uj : R+ ×H → R+ be the solution to the heat equation Cauchy
problem

∂tuj(t, x) = ∆Huj(t, x)

uj(0, x) = fj ◦Bj(x)

where ∆H is the Laplacian on H.
In order to apply Proposition 4, we rewrite the heat equation as a trans-

port equation
∂tuj +∇(v⃗juj) = 0

where v⃗j := −∇ log uj; thus (7) is trivially satisfied. Next we set

v⃗ :=
m∑
j=1

pj v⃗j

so that (8) is also trivially satisfied.
One has to verify (9) and the technical condition that v⃗

∏m
j=1 u

pj
j is rapidly

decreasing in space.
By invoking Proposition 4 we conclude that the quantity

Q(t) :=

ˆ
H

m∏
j=1

u
pj
j (t, x) dx

is non-decreasing for 0 < t <∞. From Fatou’s lemma we have
ˆ
H

m∏
j=1

(fj ◦Bj)
pj ≤ lim sup

t→0+
Q(t).

The result follows by showing that

lim inf
t→∞

Q(t) ≤
m∏
j=1

(ˆ
Hj

fj

)pj

.
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2 On Gaussian Brunn-Minkowski inequalities
After F. Barthe and N. Huet [BH]

A summary written by Marco Fraccaroli

Abstract
We prove versions of the Brunn-Minkowski (BM) and the Prékopa-

Leindler (PL) inequalities in the case of a Gaussian measure, as well
as the equivalence between them, by means of an evolution lemma.
We use the same lemma to recover the Brascamp-Lieb (BL) inequality
result of [BCCT], as well as the reverse Brascamp-Lieb one.

2.1 Lebesgue BM and PL inequalities
Let n ≥ 1. For the Lebesgue measure µn on Rn, we have the BM inequality.

Theorem 1 (Lebesgue BM). For all Borel sets A,B ⊆ Rn, we have

µn(A+B)
1
n ≥ µn(A)

1
n + µn(B)

1
n ,

where A+B is the Minkowski sum of the two sets

A+B := {a+ b : a ∈ A, b ∈ B}.

An equivalent reformulation is the following one.

Theorem 2 (Logarithmic Lebesgue BM). For every λ ∈ [0, 1], for all Borel
sets A,B ⊆ Rn, we have

µn(λA+ (1− λ)B) ≥ µn(A)
λµn(B)1−λ.

In fact, the BM inequality is equivalent also to its a priori stronger functional
version, the PL inequality.

Theorem 3 (Lebesgue PL). Let λ ∈ [0, 1]. For all Borel functions f, g, h : Rn →
[0,∞) if

∀y, z ∈ Rn, h(λy + (1− λ)z) ≥ f(y)λg(z)1−λ,

then ˆ
Rn

h dµn ≥
(ˆ

Rn

f dµn

)λ( ˆ
Rn

g dµn

)1−λ
.

Setting

H = h, F = fλ, G = g1−λ, λ = p−1, for p ∈ [1,∞],

the previous inequality can be interpreted as a reverse Hölder’s inequality,
the prototype of the reverse BL one.
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2.2 Heat flow
Let γn be the Gaussian measure associated with the density

dγn(x) = (2π)−
n
2 e−

|x|2
2 dx,

and let Φ: R→ [0, 1] be the cumulative distribution associated with γ1

Φ(x) =

ˆ x

−∞
dγ1(y).

For every non-negative Borel function f on Rn, let Ptf be its heat flow defined
on [0,∞)× Rn by

Ptf(x) = f ∗D1√
t
γn(x) =

ˆ
Rn

f(x− y)(2πt)−
n
2 e−

|y|2
2t dy.

Since the rescaled Gaussian D1√
t
γn satisfies the heat equation

2∂tu = ∆xu,

then, for f smooth enough, integrating by parts, Ptf does too. Moreover,
Ptf reproduces both the pointwise evaluation of f and its integral

∀x ∈ Rn,

P0f(x) = f(x),
√
t
n
Ptf(x)→ C

ˆ
Rn

f dµn, t→∞.

2.3 Gaussian BM and PL inequalities
As in the Lebesgue case, for the Gaussian measure γn on Rn, we have a BM
and a PL inequality, and they are equivalent.

Theorem 4 ([BH], Thm 1). Let m ≥ 1, αi ∈ [0,∞), i ∈ {1, . . . ,m}. TFAE

1.
m∑
i=1

αi ≥ 1, and ∀j /∈ Iconv, αj −
∑
i ̸=j

αi ≤ 1.

2. (Gaussian BM) For all Borel sets Ai ⊆ Rn such that Ai is convex when
i ∈ Iconv, we have

Φ−1 ◦ γn
( m∑
i=1

αiAi

)
≥

m∑
i=1

αiΦ
−1 ◦ γn(Ai).
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3. (Gaussian PL) For all Borel functions h, fi : Rn → [0, 1] such that
Φ−1 ◦ fi is concave when i ∈ Iconv, if

∀x1, . . . , xm ∈ Rn, Φ−1 ◦ h
( m∑
i=1

αixi

)
≥

m∑
i=1

αiΦ
−1 ◦ fi(xi),

then

Φ−1
(ˆ

Rn

h dγn

)
≥

m∑
i=1

αiΦ
−1
(ˆ

Rn

fi dγn

)
.

4. (HF Gaussian PL) For all Borel functions h, fi : Rn → [0, 1], i ∈
{1, . . . ,m}, such that Φ−1 ◦ fi is concave when i ∈ Iconv, if

∀x1, . . . , xm ∈ Rn, Φ−1 ◦ h
( m∑
i=1

αixi

)
≥

m∑
i=1

αiΦ
−1 ◦ fi(xi),

then, for every t ∈ [0,∞),

∀x1, . . . , xm ∈ Rn, Φ−1 ◦ Pth
( m∑
i=1

αixi

)
≥

m∑
i=1

αiΦ
−1 ◦ Ptfi(xi).

It is easy to see that
(4)⇒ (3)⇒ (2)⇒ (1).

In particular, in the last case it is enough to consider sets Ai given by either
balls with centre in the origin and appropriate radii or their complements.
In [BH], to complete the proof of the Theorem, the authors show the following
chain of implications

(1)⇒ (4) for “smooth” functions⇒ (2),

(2) in Rn+1 ⇒ (4) for arbitrary functions on Rn.

“Smooth” functions are twice continuously differentiable functions h, fi such
that for f = h or f = fi, we have

∀t > 0,∀x ∈ Rn, |∇f(x+
√
ty)|e−

|y|2
2 → 0 for |y| → ∞.

Moreover, they satisfy another technical condition guaranteeing that C de-
fined below satisfies the second condition in Lemma 5. Such functions provide
arbitrarily close approximations of characteristic functions of Borel sets.
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For all such Borel functions h, fi : Rn → [0, 1], i ∈ {1, . . . ,m}, we define the
auxiliary function C on [0,∞)× Rnm by

C(t, x) = C(t, x1, . . . , xm) = Ht

( m∑
i=1

αixi

)
−

m∑
i=1

αiFi,t(xi),

where, for all Borel functions f : Rn → [0, 1], we set

Ft(x) = Φ−1 ◦ Ptf(x).

The auxiliary function C satisfies the following properties

C(0, x) ≥ 0, ∀x ∈ Rnm,

2∂tC =
(
∆Ht −

m∑
i=1

αi∆Fi,t

)
+
(
−Ht|∇Ht|2 +

m∑
i=1

αiFi,t|∇Fi,t|2
)
.

Therefore, we obtain the desired inequality, at least for “smooth” functions,
via the following evolution lemma.

Lemma 5. Let C : [0,∞)× Rnm → R be twice differentiable such that

• (Evolution conditions) For every (t, x) ∈ [0,∞)× Rnm, we have
Hessx(C)(t, x) ≥ 0

∇xC(t, x) = 0

C(t, x) ≤ 0

⇒ ∂tC(t, x) ≥ 0

• For some T > 0, we have

lim inf
|x|→∞

(
inf

t∈[0,T ]
C(t, x)

)
≥ 0.

• (Initial condition) For every x ∈ Rnm, we have C(0, x) ≥ 0.

Then, for all t ∈ [0, T ], x ∈ Rnm, we have

C(t, x) ≥ 0.

We extend the result to arbitrary functions upon the following observations.
The integral of a function f on Rn with respect to the measure γn can be
represented as the γn+1-measure of a certain set in Rn+1. In particular, the
association between functions and sets is well-behaved with respect to linear
combinations.

Finally, we observe that a version of Theorem 4 above with the function
Φ−1 replaced by the logarithm follows from the reverse BL statement in
Theorem 6 below for an appropriate choice of the parameters.
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2.4 BL and reverse BL inequalities via evolution lemma
Theorem 6 ([BH], Thm 4 & 5). Let m,N ≥ 1. Let ni ≥ 1, Bi : RN → Rni

linear map, αi ∈ [0,∞), i ∈ {1, . . . ,m}. TFAE

1.
m∑
i=1

αiB
∗
iBi = IdN , and BiB

∗
i = Idni

, ∀i ∈ {1, . . . ,m}.

2. (HF BL) For all Borel functions h : RN → [0,∞), fi : Rni → [0,∞) if

∀x ∈ RN , log(h(x)) ≤
m∑
i=1

αi log(fi(Bix)),

then, for every t ∈ [0,∞),

∀x ∈ RN , log(Pth(x)) ≤
m∑
i=1

αi log(Ptfi(Bix)).

3. (HF reverse BL) For all Borel functions h : RN → [0,∞), fi : Rni →
[0,∞) if

∀xi ∈ Rni , log
(
h
( m∑
i=1

αiB
∗
i xi

))
≥

m∑
i=1

αi log(fi(xi)),

then, for every t ∈ [0,∞),

∀xi ∈ Rni , log
(
Pth
( m∑
i=1

αiB
∗
i xi

))
≥

m∑
i=1

αi log(Ptfi(xi)).

Taking t→∞ and x = 0 in the second statement of Theorem 6, we recover
the BL inequality

ˆ
RN

m∏
i=1

fi(Bix)
αi dµN(x) ≤

m∏
i=1

(ˆ
Rni

fi(xi) dµni
(xi)

)αi

.

Taking t → ∞ and x = 0 in the third statement of Theorem 6, we recover
the reverse BL inequality

ˆ
RN

sup
{ m∏
i=1

fi(xi)
αi : xi ∈ Rni ,

m∑
i=1

αiB
∗
i xi = x

}
dµN(x) ≥

≥
m∏
i=1

( ˆ
Rni

fi(xi) dµni
(xi)

)αi

.
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The proof follows via the evolution lemma as before. For example in the case
of reverse BL inequality, for every Borel function f : Rn → [0, 1], we set

Ft(x) = log(Ptf(x)),

and we define the auxiliary function C on [0,∞)× Rnm by

C(t, x) = C(t, x1, . . . , xm) = Ht

( m∑
i=1

αiB
∗
i xi

)
−

m∑
i=1

αiFi,t(xi).

It is worth noting that in both case the auxiliary function C satisfies stronger
properties, namely for every (t, x) ∈ [0,∞), we have{

Hessx(C)(t, x) ≥ 0

∇xC(t, x) = 0
⇒ ∂tC(t, x) ≥ 0

We conclude with a comparison between the proof of BL inequality by
the evolution lemmata appearing in [BH] and [BCCT].
Let Bi be linear maps, αi be coefficients satisfying the algebraic conditions
stated in Theorem 6. Let fi : Rni → [0,∞) be Borel functions.
In [BH], the authors prove that the quantity

m∏
i=1

Ptfi(Bix)
αi − Pt

( m∏
i=1

fi(Bi · )αi

)
(x),

is non-negative on [0,∞)× ∈ RN . In [BCCT], the authors prove that the
quantity

Q(t) =

ˆ
RN

m∏
i=1

Ptfi(Bix)
αi dµN(x),

is non-decreasing in t ∈ [0,∞).
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3 Inequalities in the Euclidean and Gaussian
settings

After R. J. Gardner and R. Latała

A summary written by Georgios Dosidis

Abstract

We obtain the Prékopa-Leindler and Shannon-Stam inequalities
as limits of the sharp Young inequality. We also deduce Brunn–
Minkowski and isoperimetric inequalities. Moreover, we prove the
Gaussian isoperimetric, Bobkov, and Gross log-Sobolev inequalities
as limits of Ehrhards inequality. The aim is to expose relations be-
tween the various inequalities and to compare the Euclidean and the
Gaussian cases.

3.1 The Euclidean case
3.1.1 The isoperimetric and Brunn-Minkowski inequalities

The isoperimetric inequality states that amongst appropriately well behaved
sets of a given volume, balls minimize the surface area. Minkowskis definition
of the surface area S(M) of a suitable set M in Rn is

S(M) = lim
ε→0+

V (M + εB)− V (M)

ε
.

Here V (X) is the n-dimensional (Lebesgue) volume of X, B = Bn is the ball
in Rn, the sum X + Y = {x + y : x ∈ X, y ∈ Y } stands for the Minkowski
sum and rX = {rx : x ∈ X} is a dilation. The set M + εB is the ε-
enlargement of M . We will use this definition for the surface area when M
is a convex body (compact convex set with nonempty interior) or a compact
domain with piecewise C1 boundary.

Theorem 1 (Isoperimetric inequality for convex bodies in Rn). Let K be a
convex body in Rn. Then(

V (K)

V (B)

)1/n

≤
(
S(K)

S(B)

)1/(n−1)

, (1)

with equality if and only if K is a ball.
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About a century ago, not long after the first complete proof of the classical
isoperimetric inequality was found, Minkowski proved the following inequal-
ity.

Theorem 2 (Brunn-Minkowski, standard form). Let K and L be convex
bodies in Rn, 0 < λ < 1. Then

V
(
(1− λ)K + λL

)1/n ≥ (1− λ)V (K)1/n + λV (L)1/n. (2)

Equality holds in (2) if and only if K and L are homothetic (i.e., equal up
to translation and dilatation).

More generally, for (2) to hold it is enough to assume that K,L are
bounded, nonempty measurable sets such that (1−λ)K+λL is also measur-
able for all λ. The inequality (2) had been proved for n = 3 earlier by Brunn,
and now it is known as the Brunn-Minkowski. Using the homogeneity of the
volume, we see that for all t, s > 0,

V
(
sK + tL

)1/n ≥ sV (K)1/n + tV (L)1/n.

The isoperimetric inequality (Theorem 1) follows from Brunn-Minkowski.

Proof of Theorem 1. From the Brunn-Minkowski we have that

V (K + εB) ≥
(
V (K)1/n + εV (B)1/n

)n ≥ V (K)

(
1 + nε

(
V (B)

V (K)

)1/n
)

since (1 + x)n ≥ 1 + nx for all x ≥ 0. Thus

S(K) = lim
ε→0+

V (K + εB)− V (K)

ε
≥ nV (K)

(
V (B)

V (K)

)1/n

,

which, along with the familiar identity S(B) = nV (B) for the ball yields

S(K)

S(B)
=

S(K)

nV (B)
≥
V (K)

(
V (B)
V (K)

)1/n
V (B)

.

Rearranging we obtain (1). If K is not homothetic to a ball, the Brunn-
Minkowski is a strict inequality, which yields the equality condition.
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3.1.2 The Prékopa-Leindler inequality

The Brunn-Minkowski inequality can be stated in the following form: For
K,L convex bodies and 0 < λ < 1,

V
(
(1− λ)K + λL

)
≥ V (K)1−λV (L)λ. (3)

The two forms are equivalent. Indeed, the standard form implies the multi-
plicative form via the weighted arithmetic-geometric means inequality (AM-
GM), whereas the inverse is also immediate using standard techniques (see
[Ga, Corollary 5.3]).

The Prékopa-Leindler inequality is a functional generalization of this form
of Brunn-Minkowski.

Theorem 3 (The Prékopa-Leindler inequality). Let 0 < λ < 1 and let f, g,
and h be nonnegative integrable functions on Rn satisfying

h ((1− λ)x+ λy) ≥ f(x)1−λg(y)λ, (4)

for all x, y ∈ Rn. Then
ˆ
Rn

h(x)dx ≥
(ˆ

Rn

f(x)dx

)1−λ(ˆ
Rn

g(x)dx

)λ
. (5)

Proof of Brunn-Minkowski. Set h = 1(1−λ)K+λL, f = 1K and g = 1L. If
x, y ∈ Rn, then f(x)1−λg(y)λ > 0 (and in fact equals 1) if and only if x ∈ X
and y ∈ Y . The latter implies (1− λ)x+ λy ∈ (1− λ)X + λY , which is true
if and only if h((1− λ)x+ λy) = 1. Therefore (4) holds. Thus

V ((1− λ)X + λY ) =

ˆ
Rn

h(x)dx

≥
(ˆ

Rn

f(x)dx

)1−λ(ˆ
Rn

g(x)dx

)λ
= V (K)1−λV (L)λ.

3.1.3 Young’s inequality

Theorem 4 (Young’s inequality). Let 0 < p, q, r satisfying 1
p
+ 1

q
= 1 + 1

r
,

and let f ∈ Lp(Rn) and g ∈ Lq(Rn) be nonnegative. Then

(Young’s inequality) ‖f ∗ g‖r ≤ ‖f‖p‖g‖q, for p, q, r ≥ 1 (6)

and

(Reverse Young’s inequality) ‖f ∗ g‖r ≥ ‖f‖p‖g‖q, for p, q, r ≤ 1. (7)
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Here C = CpCq/Cr, where

C2
s =

|s|1/s

|s′|1/s′

for 1/s+ 1/s′ = 1 (that is, s and s′ are Hölder conjugates).

The reverse Young implies the following (stronger) form of the Prékopa-
Leindler.

Theorem 5 (Prékopa-Leindler inequality, essential form). Let 0 < λ < 1
and let f, g ∈ L1(Rn) be nonnegative. Let

s(x) = ess sup
y
f

(
x− y
1− λ

)1−λ

g
(y
λ

)λ
.

Then s is measurable and

‖s‖1 ≥ ‖f‖1−λ1 ‖g‖λ. (8)

To see that Theorem 5 implies the usual form note that if h is any inte-
grable function satisfying

h((1− λ)x+ λy) ≥ f(x)1−λg(y)λ,

we must have h ≥ s almost everywhere and thus ‖h‖1 ≥ ‖s‖1 ≥ ‖f‖1−λ1 ‖g‖λ.
We will prove the essential form of the Prékopa-Leindler using the limiting

case r → 0 of the reverse Young’s inequality, thus linking the chain of proofs
all the way to the isopemetric inequality.

Proof of Theorem 5. Using a standard limiting argument, it suffices to prove
the theorem when f and g are bounded measurable functions with compact
support. Assuming this, note that s(x) = limm→∞ Sm(x), where

Sm(x) =

(ˆ
Rn

f

(
x− y

(1− λ)m

)1−λ

g
(y
λ

)λm)1/(m−1)

.

Note that ‖s‖1 = limm→∞‖Sm‖1 because the Sm’s are uniformly bounded
with compact supports.

Applying the reverse Young inequality to Sm withm > max{(1−λ)−1, λ−1},
p = 1/((1− λ)m), q = 1/(λm), and r = 1/(m− 1), we obtain
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‖Sm‖1 =
ˆ
Rn

(ˆ
Rn

f

(
x− y

(1− λ)m

)1−λ

g
(y
λ

)λm)1/(m−1)

dx

≥

(
Cn

(ˆ
Rn

f

(
x

1− λ

)
dx

)(1−λ)m(ˆ
Rn

g
(y
λ

)
dy

)λm)1/(m−1)

→ ‖f‖1−λ1 ‖g‖λ1 .

as m→∞, since limm→∞Cn/(m−1) = (1− λ)−(1−λ)λ−λ.

3.1.4 The Shannon–Stam inequality

Suppose thatX is a discrete random variable taking possible values x1, . . . , xm
with probabilities p1, . . . , pm, respectively, where

∑m
i=1

1
pi

= 1. Shannon in-
troduced a measure of the average uncertainty removed by revealing the value
of X. This quantity,

Hm(p1, . . . , pm) = −
m∑
i=1

pi log pi,

is called the entropy of X. It can also be regarded as a measure of the missing
information; indeed, the function Hm is concave and achieves its maximum
when p1 = · · · = pm = 1

m
, that is, when all outcomes are equally likely.

If X is a random vector in Rn with probability density f , the entropy
h1(X) of X is defined analogously:

h1(X) = h1(f) = −
ˆ
Rn

f(x) log f(x)dx.

The entropy power N(X) of X is

N(X) =
1

2πe
exp
( 2
n
h1(X)

)
.

Theorem 6 (Entropy power inequality). Let X and Y be independent ran-
dom vectors in Rn with probability densities in Lp(Rn) for some p > 1. Then

N(X + Y ) ≥ N(X) +N(Y ). (9)

This can be proved via the following lemma
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Lemma 7. Let f and g be nonnegative functions in Ls(Rn) for some s > 1,
such that

ˆ
Rn

f(x)dx =

ˆ
Rn

g(x)dx = 1.

Then for 0 < λ < 1,

h1(f ∗ g)− (1− λ)h1(f)− λh1(g) ≥ −
n

2
((1− λ) log(1− λ) + λ log λ) . (10)

The proof follows from Young’s inequality (see [Ga, Lemma 18.2]) Putting

λ =
N(Y )

N(X) +N(Y )
and simplifying the resulting inequality leads directly to

(9).

3.2 The Gaussian case
3.2.1 Gaussian isoperimetry

A Gaussian measure µ is a probability measure on Rn that is the affine image
of the canonical Gaussian measure γn with probability density dγn(x) =
(2π)−n/2exp(−|x|2/2)dx. Linear images of γn are called centered Gaussian
measures. For a Banach space F , µ is called a centered Gaussian measure
on F if there are g1, g2, . . . independent N (0, 1) random variables (r.v.) and
vectors x1, x2, . . . in F such that the series X =

∑∞
i=1 xigi is convergent

almost surely and in every Lp, 0 < p <∞, and is distributed as µ.
We will denote by Φ the distribution function of the standard normal

N (0, 1) r.v., that is

Φ(x) = γ1(−∞, x) =
1√
2π

ˆ x

−∞
e−t

2/2dt, −∞ ≤ x ≤ ∞,

and by ϕ(x) = Φ′(x) = (2π)−1/2e−x
2/2 its derivative.

We saw that in the Euclidean case, balls are the minimizers of the surface
area among sets of equal volume. In the Gaussian case, amongst Borel sets of
given Gaussian measure, the minimizers of the Gaussian boundary measure
are the half-spaces. For a Borel set A let At = A+ tB be its t-enlargement.

Theorem 8 (Gaussian isoperimetric inequality). Let A be a Borel set in Rn

and let H be an affine halfspace such that γn(A) = γn(H) = Φ(a) for some
a ∈ R. Then

γn(At) ≥ γn(Ht) = Φ(a+ t) (11)

for all t ≥ 0.
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Let I(t) = ϕ ◦ Φ−1(t), t ∈ [0, 1] be the Gaussian isoperimetric function.
The equivalent form of Theorem 8 is that for all Borel sets A in Rn

γ+n (A) := lim inf
t→0+

γn(At)− γn(A)
t

≥ I(γn(A)). (12)

The equality in (12) holds for any affine halfspace.

3.2.2 Ehrhard’s inequality

Theorem 9 (Ehrhard’s inequality). If µ is a centered Gaussian measure on
a separable Banach space F and A,B are Borel sets in F , with at least one
of them convex, then

Φ−1
(
µ(λA+ (1− λ)B)

)
≥ λΦ−1(µ(A)) + (1− λ)Φ−1(µ(B)) (13)

for λ ∈ [0, 1].

Theorem 9 implies the isoperimetric inequality (11). Indeed let A be a
Borel set in Rn with γn(A) = Φ(a) for some a ∈ R. Then

Φ−1(γn(At)) = Φ−1(γn(λ(λ
−1A) + (1− λ)((1− λ)−1tB)))

≥ λΦ−1(γn(λ
−1A)) + (1− λ)Φ−1(γn((1− λ)−1tB))

→ Φ−1(γn(A)) + t

as λ→ 1−1 and thus γn(At) ≥ Φ(a+ t).
Ehrhards inequality has the following Prékopa-Leindler type functional

version. Suppose that λ ∈ (0, 1) and f, g, h : Rn → [0, 1] are such that for all
x, y ∈ Rn

Φ−1(h(λx+ (1− λ)y)) ≥ λΦ−1(f(x)) + (1− λ)Φ−1(g(y)),

then

Φ−1
( ˆ

Rn

hdγn

)
≥ λΦ−1

( ˆ
Rn

fdγn

)
+ (1− λ)Φ−1

( ˆ
Rn

gdγn

)
.

3.2.3 Gross-Gauss and Bobkov’s inequalities

Gross showed that the Gaussian measures γn satisfy the logarithmic Sobolev
inequality

ˆ
Rn

g2 log g2dγn −
ˆ
Rn

g2dγn log

(ˆ
Rn

g2dγn

)
≤ 2

ˆ
Rn

|∇g|2dγn (14)
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for all smooth functions g : Rn → R. It can be shown that (14) implies the
concentration inequality

γn

(
h ≥
ˆ
Rn

hdγn + t

)
≤ e−t

2/2, t ≥ 0 (15)

for all Lipschitz functions h.

Theorem 10 (Bobkov’s inequality). For any locally Lipschitz function f :
Rn → [0, 1] we have

I

(ˆ
Rn

fdγn

)
≤
ˆ
Rn

√
I(f)2 + |∇f |2dγn. (16)

Theorem 10 easily implies the isoperimetric inequality (12) by approxi-
mating the indicator function 1A by Lipschitz functions. On the other hand
if we apply (12) to the set A = {(x, y) ∈ Rn × R : Φ(y) < f(x)} in Rn+1 we
get (16). It is also not hard to derive the logarithmic Sobolev inequality (14)
as a limit case of Bobkovs inequality. One should use (16) for f = εg2 (with
g bounded) and let ε tend to 0, using that I(t) ∼ t

√
2 log(1/t) as t→ 0+.
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4 Dimension conditions for non-geometric BL
inequalities

After J. Bennett, A. Carbery, M. Christ, and T. Tao [BCCT08]
and D. Maldague [M19]

A summary written by Aleksandar Bulj

Abstract

We present the dimension conditions for non-geometric Brascamp
Lieb inequalities using two different approaches. The first approach,
from [BCCT08], uses Gaussian extremizers for reduction to geometric
Brascamp - Lieb inequalities and heat flow method for the proof of ge-
ometric Brascamp Lieb inequalities, while the second approach, form
[M19] uses induction on dimension and Hölder’s inequality/complex
interpolation.

4.1 Introduction
We are interested in the question of determining necessary and sufficient
conditions for the Brascamp - Lieb inequality to hold. Let us quickly recall
the definitions we need.

Definition 1. Let m ≥ 1 be an integer. Let H,H1, . . . , Hm be finite dimen-
sional real Hilbert spaces with Lebesgue measure dx, let (Bj)1≤j≤m be a m-
tuple of surjective linear transformations Bj : H → Hj, let (pj)1≤j≤m ∈ Rm

+

be a m-tuple of nonnegative real numbers and let (fj)1≤j≤m be a m-tuple of
nonnegative measurable functions. We denote:

B := (H, (Hj)1≤j≤m, (Bj)1≤j≤m), p := (pj)1≤j≤m, f := (fj)1≤j≤m

and we call pair (B,p) Brascamp - Lieb datum.
We define:

BL(B,p;f) :=

´
H

∏m
j=1 fj(Bj(x))

pj∏m
j=1

(´
Hj
fj(xj)dxj

)pj .
Finally, we define the Brascamp - Lieb constant, BL(B,p) as:

BL(B,p) := sup

{
BL(B,p;f) : fj ≥ 0, 0 <

ˆ
Hj

fj <∞

}
. (1)
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Definition 2. Brascamp - Lieb datum (B,p) is called geometric if BjB
∗
j =

idHj
for j = 1, . . . ,m and:

m∑
j=1

pjB
∗
jBj = idH .

Restricting the supremum in (1) to gaussian inputs f = (exp (−π〈Ajx, x〉))1≤j≤m,
where Aj : Hj → Hj is positive definite transformation and explicitly calcu-
lating the expression, we arrive to the following definition.

Definition 3. For Brascamp - Lieb datum (B,p) we define BLg(B,p) as:

BLg(B,p) = sup


( ∏m

j=1(detHj
Aj)

pj

detH(
∑m

j=1 pjB
∗
jAjBj)

) 1
2

: Aj > 0

 , (2)

where Aj > 0 means that Aj : Hj → Hj is positive definite transformation.
We say that the (B,p) is gaussian-extremisable if there exists m-tuple of

positive definite matrices (Aj)1≤j≤m for which the supremum is attained in
(2).

It is obvious from the definition that BLg(B,p) ≤ BL(B,p). The theo-
rem 1.9 in [BCCT08] (first observed by Lieb) claims that actually the equality
holds, while the theorem 1.15 in [BCCT08] gives the necessary and sufficient
conditions for Brascamp - Lieb constant to be finite. We state both theorems
simultaneously.

Theorem 4 (1.9 and 1.15 in [BCCT08]). Let (B,p) be Brascamp - Lieb
datum. Then:

BL(B,p) = BLg(B,p)

and BL(B,p) is finite if and only if the following two conditions hold.

dim(H) =
m∑
j=1

pj dim(Hj) (3)

dim(V ) ≤
m∑
j=1

pj dim(Bj(V )) for all V ≤ H (4)

For the other approach we need the following "local" definition of the
Brascamp - Lieb constant.
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Definition 5. Let B = (Rn, (Rnj)1≤j≤m, (Bj)1≤j≤m) with p ∈ Rm
+ be Bras-

camp - Lieb datum. We define

BL(B,p, R) := sup
f

´
[−R,R]n

∏m
j=1 fj(Bj(x))

pj∏m
j=1

(´
Rnj fj(xj)dxj

)pj , (5)

where the supremum is taken over m-tuples f = (fj)1≤j≤m, of nonnegative
functions that are constant on the cubes v + [0, 1)nj , v ∈ Znj .

In [M19], Maldague quantified the growth rate of BL(B,p, R) as a func-
tion of R.

Theorem 6 (1 in [M19]). Let (B,p) be a Brascamp - Lieb datum with Bj

surjective for j = 1, . . . ,m. Then

BL(B,p, R) �(B,p) sup
V≤H

Rmax{dimV−
∑m

j=1 pj dimBj(V ), 0} (6)

4.2 Proofs of theorems 4 and 6 (outline)
4.2.1 Proof of theorem 4

Necessary conditions for finiteness of BL(B,p)
Necessity of both (3) and (4) can be showed by testing (1) against Gaus-

sian m-tuples f = (exp(−π〈Ajx, x〉))1≤j≤m.
To see that BL(B,p) <∞ implies (3), we set Aj = λ idHj

, where λ > 0.
Letting λ→ 0 and λ→∞, we conclude that (3) holds.

To see that BL(B,p) < ∞ implies (4), for arbitrary V ≤ H, we set
Aj = ϵ idBjV ⊕ id(BjV )⊥ , where 0 < ϵ < 1. Bounding the denominator of (1)
above with Cϵ

dim(V )
2 and letting ϵ→ 0, (4) follows.

Sufficient conditions for finiteness of BL(B,p)
If (3) or (4) doesn’t hold, it follows from the previous paragraph that

BLg(B,p) = ∞, so because BLg(B,p) ≤ BL(B,p), the equality holds in
this case. Therefore, it remains to prove that if (3) and (4) hold, then

BL(B,p) = BLg(B,p) <∞ (7)

We need the following definition.

Definition 7. A proper, non-zero subspace V ≤ H is called critical with
respect to datum (B,p) if

dim(V ) =
m∑
j=1

pj dim(Bj(V ))

A datum (B,p) is called simple if H has no critical subspaces.
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Now we prove the statement (7) using induction on dim(H). We consider
two cases.

In the first case, when (B,p) is simple (this case covers the basis of the
indution because every 1-dimensional space is simple), one can show (5.2
in [BCCT08]) that BLg(B,p) < ∞ and (B,p) is gaussian - extremisable.
After that, one can show (3.6 in [BCCT08]) that there exists a geometric
Brascamp - Lieb datum (B′,p′) such that:

BL(B,p) = BL(B′,p′)BLg(B,p)

At last, one uses knowledge that Brascamp - Lieb constant is equal to 1 for
geometric Brascamp - Lieb datum (2.8 in [BCCT08]) so the step induction
step is proved in this case.

In the second case, if (B,p) has critical subspace V , one can show (4.7
and 4.8 in [BCCT08]) that the Brascamp - Lieb constants split:

BL(B,p) = BL(BV ,p)BL(BH/V ,p)

and the same for BLg, where BV = (V, (Bj(V ))1≤j≤m Bj,V ) and BH/V =
(H/V, (Hj/(Bj(V )))1≤j≤m, Bj,H/V ) are appropriately defined Brascamp - Lieb
data that both satisfy conditions (3) and (4). Since dimensions of V and
H/V are strictly less than dimension of H, the claim (7) in this case follows
inductively and the theorem 4 is proved.

4.2.2 Proof of theorem 6

Lower bound
The lower bound follows by discreztizing functions used to prove necessity

of the condition (4) in the previous proof. Formally, for any subspace V ,
one tests inequality (5) against m-tuple of functions fj that are constant on
cubes that intersect the super-level set of the function x 7→ −〈Ajx, x〉, where
Aj =

1
R
idBjV ⊕ id(BjV )⊥ .

Upper bound
First we define the discretized quantity suitable for induction. Let H ≤

Rn be a subspace and Bj : H → Rnj a linear operator. Let L0
j ⊂ Znj be a

subset such that Bj(H) ⊂ ∪v∈L0
j
(v + [0, 1)nj). For A > 0 we define:

‖f‖A,L0
j
:=
∑
v∈L0

j

‖fj‖L∞((v+A[0,1)nj )∩Bj(H)).

The theorem will follow from the following lemma by choosing H = Rn and
noting that the product of the norms on the right hand side is comparable
to the denominator of (5) when all Bj are surjective.
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Proposition 8. Let H ≤ Rn be arbitrary subspace and let Bj : H → Rnj be
linear operators. There exist parameters Aj ≥ 1, j = 1, . . . ,m such that
ˆ
{x∈H,|x|≤R}

m∏
j=1

fj(Bj(x))
pj ≲ sup

V≤H
Rmax{dimV−

∑m
j=1 pj dimBj(V ), 0}

m∏
j=1

‖fj‖
pj
Aj ,L0

j

for all R ≥ 1 and nonnegative measurable functions fj : Hj → R+

In this proof we say that a proper, nonzero subspace V ≤ H is critical
with respect to datum (B,p) if

dim(V )−
m∑
j=1

pj dim(Bj(V )) = sup
V≤H

[
dim(V )−

m∑
j=1

pj dim(Bj(V ))

]
and we call Brascamp - Lieb datum simple if H has no critical subsets.
Now, we prove the proposition by induction on m + dim(H). When m = 1
the statement follows from change of variables and when dim(H) = 1, the
statement follows form Hölder’s inequality and monotonicity of lp(Z)-norms.
Now, the step of the induction is proved considering two cases.

In the first case, when (B,p) is not simple with critical subset W , one can
see that the supremum of exponent of R in the assumption for W equals to
the wanted exponent and the exponent of R for W⊥ equals to 0 so we can use
Fubini’s theorem and induction assumption (because dim(W ), dim(W⊥) <
dim(H)) to prove the inequality in this case.

In the second case, when (B,p) is simple, one considers set of all m-
tuples p for which the datum is simple. One can easily see that the set
is intersection of finitely many half spaces so it has finitely many extreme
points. It is enough to prove the inequality for extreme points because of
complex interpolation. Therefore, if p′ is an extreme point, there are two
possibilities - either there exists a critical subset for (B,p′) and we are in the
first case of the induction or p′ has some coordinate equal to zero in which
case the inequality is reduced to the case with m − 1 functions. Therefore,
the theorem is proved.
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5 Duality and geometry of optimal transporta-
tion problems

After C. Villani [V]

A summary written by Constantin Bilz

Abstract

We introduce the optimal transportation problems of Kantorovich
and Monge, discuss the Kantorovich duality and apply it to charac-
terise optimal transference plans in an important special case.

5.1 Introduction
Let (X,µ) and (Y, ν) be topological spaces equipped with Borel probability
measures and let c : X × Y → [0,∞] be a measurable cost function. The
optimal transportation problem asks for the most efficient way to transfer
all the mass from µ to ν, given that one unit of mass can be moved from a
point x ∈ X to a point y ∈ Y at cost c(x, y).

More precisely, a transference plan is a probability measure π on X × Y
with marginals πX = µ and πY = ν, i.e.

π[A× Y ] = µ(A) and π[X ×B] = ν(B)

for any measurable sets A ⊆ X and B ⊆ Y . Hence π[A × B] determines
how much mass we transfer from the set A to the set B and the marginal
conditions ensure that all of the mass in A is transferred to Y and that B
receives the prescribed amount of mass. There always exists at least one
transference plan, namely the tensor product µ⊗ ν. The total transportation
cost associated to a transference plan is

I(π) =

ˆ
X×Y

c(x, y) dπ(x, y).

Let Π(µ, ν) be the nonempty set of all transference plans. Kantorovich’s
optimal transportation problem from the 1940s is the following minimisation
problem:

Minimise I(π) over all π ∈ Π(µ, ν). (1)

If the optimal transportation cost infπ∈Π(µ,ν) I(π) is attained for some trans-
ference plan π, then we say that π is optimal.
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Note that the statement of (1) does not involve the topological structure
of X and Y . We will however need this structure for the results in the
following sections.

Historically, Kantorovich’s problem originated from a stronger and in gen-
eral harder problem first considered by Monge in 1781. Monge’s additional
assumption is that no mass can be split, meaning that the only allowed trans-
ference plans are those of the form π = µ ◦ (id × T )−1 for some measurable
map T : X → Y . In other words, Monge’s optimal transportation problem is
the following:

Minimise
ˆ
X

c(x, T (x)) dµ(x) over all measurable T with ν = µ ◦ T−1. (2)

Since Kantorovich’s problem is linear while Monge’s problem is highly
nonlinear, we will mostly focus on Kantorovich’s problem. However, under
certain circumstances, the solutions to both problems turn out to coincide.
This is the case for example if X = Y = Rn, the cost function is strictly
convex and µ and ν assign no mass to sets of Hausdorff dimension at most
n− 1, see e.g. Theorem 4 below and [V, p. 6f.].

In Subsection 5.2 we will introduce the duality theory of the Kantorovich
problem, which we will then use in Subsection 5.3 to characterise optimal
transportation plans in an important special case.

5.2 Kantorovich duality via Fenchel–Rockafellar dual-
ity

That Kantorovich’s problem admits a useful dual formulation may be ex-
pected because of the linearity of both I and the conditions defining Π(µ, ν).
In fact, this duality is related to the duality of finite-dimensional linear pro-
gramming, a subject that was, a few years previously, also founded by Kan-
torovich.

We now describe the dual problem to Kantorovich’s problem. Let Φc be
the set of pairs (ϕ, ψ) ∈ L1(X,µ)× L1(Y, ν) such that

ϕ(x) + ψ(y) ≤ c(x, y)

for µ-almost every x and ν-almost every y. Define

J(ϕ, ψ) =

ˆ
X

ϕ dµ+

ˆ
Y

ψ dν.

The following result contains the duality between (1) and the maximisation
problem for J on Φc. The assumptions are very general, but a typical case for
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applications is the Euclidean space X = Y = Rn together with the quadratic
cost function c(x, y) = |x− y|2.

A Polish space is a separable completely metrisable topological space.

Theorem 1 (Kantorovich duality). Let (X,µ) and (Y, ν) be Polish spaces
equipped with Borel probability measures. If c is lower semi-continuous, then
Kantorovich’s problem (1) admits an optimal transference plan and

min
π∈Π(µ,ν)

I(π) = sup
(ϕ,ψ)∈Φc

J(ϕ, ψ).

Just like the duality of linear programming, Theorem 1 can be proved
by using a minimax principle, in this case the Fenchel–Rockafellar duality
from convex analysis. For this, let E be a normed space and let E∗ be its
topological dual. For our purposes, E will be the space of bounded continuous
functions on X × Y . Hence if X and Y are compact, then E∗ will be the
space of Radon measures on X × Y .

Given a convex function Θ on E with values in R∪ {+∞}, its Legendre–
Fenchel transform (or convex conjugate) is the convex function Θ∗ on E∗

with values in R ∪ {+∞} given by

Θ∗(z∗) = sup
z∈E
〈z∗, z〉 −Θ(z).

Theorem 2 (Fenchel–Rockafellar duality). Let Θ and Ξ be convex functions
on E with values in R ∪ {+∞} and let z0 ∈ E be such that Θ(z0) and Ξ(z0)
are finite and Θ is continuous at z0. Then,

inf
z∈E

Θ(z) + Ξ(z) = sup
z∗∈E∗

−Θ∗(−z∗)− Ξ∗(z∗)

and the supremum is attained.

The proof of this result is rather short and uses the Hahn–Banach theo-
rem. If X and Y are compact and c is continuous, then Theorem 1 is an easy
consequence of Theorem 2. The general case follows from this by a technical
approximation argument.

5.3 Optimality criteria
We will apply the Kantorovich duality to characterise optimal transference
plans in the case of the quadratic cost function on Euclidean space.

In order to formulate the results in this section, we need the notion of
the subdifferential of a convex function. Let ϕ be a convex function on Rn
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with values in R ∪ {+∞}. By Rademacher’s theorem, ϕ is differentiable
almost everywhere on dom(ϕ) = {x ∈ Rn | ϕ(x) < ∞}. At every point x of
differentiability it holds that for y = ∇ϕ(x),

ϕ(z) ≥ ϕ(x) + 〈y, z − x〉 for any z ∈ Rn. (3)

While the gradient ∇ϕ is only defined almost everywhere on dom(ϕ), the
subdifferential ∂ϕ is a set-valued function defined everywhere as follows: For
y ∈ Rn we let y ∈ ∂ϕ(x) if and only if (3) holds. One can show that
∂ϕ(x) = {y} if and only if ϕ is differentiable at x with y = ∇ϕ(x). In the
following it may be helpful to identify the graph of the subdifferential with
a subset of X × Y = Rn × Rn.

Theorem 3 (Knott–Smith criterion). Let µ and ν be Borel probability mea-
sures on Rn with finite second moments and consider the quadratic cost func-
tion c(x, y) = |x− y|2. A transference plan π is optimal if and only if there
exists a convex lower semi-continuous function ϕ such that

y ∈ ∂ϕ(x) for π-almost every pair of points (x, y).

In this case, the dual Kantorovich problem is maximised by the pair(
|x|2

2
− ϕ(x), |y|

2

2
− ϕ∗(y)

)
,

where ϕ∗ is the convex conjugate defined in the last subsection.

Uniqueness is ensured by the next theorem if we make an additional
assumption on the regularity of µ.

Theorem 4 (Brenier’s theorem). Under the assumptions of Theorem 3, if
additionally µ gives no mass to sets of Hausdorff dimension at most n − 1,
then there exists a unique optimal transference plan π and it holds that

π = µ ◦ (id×∇ϕ)−1,

where ∇ϕ is the µ-almost everywhere unique gradient of a convex function
such that ν = µ ◦ (∇ϕ)−1.

In this case, ∇ϕ is called the Brenier map pushing µ forward to ν. It
also follows from the theorem that ∇ϕ is the unique solution to the Monge
transportation problem (2).
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6 Existence and regularity of the Brenier’s
map

After R. J. McCann [McC95] and S. Alesker, S. Dar, and V. Mil-
man [ADM99].

A summary written by Mateus Sousa

Abstract

We present the construction of the Brenier map by McCann and
its regularities properties proved by Caffareli.

6.1 Introduction
Given a pair of probability measures µ and ν in Rd, a natural question
one might ask is if there is a canonical way of transporting one measure to
another. More precisely, what is the "natural" way can one produce a map
T : (Rd, µ)→ (Rd, ν) such that for every Borel set M ⊂ Rd

T#µ(M) := µ(T−1(M)) = ν(M).

In dimension d = 1, as long as the measures µ and ν are free from atoms,
one can choose a function T satisfying

µ((−∞, x]) = ν((−∞, T (x)]), (1)

where T is non-decreasing and T (x) ∈ R ∪ {±∞}, and is uniquely deter-
mined µ-almost everywhere, and one could say such transformation is indeed
very natural and a good answer to the aforementioned question. In higher
dimensions, such a natural map might not be clear at first glance, but an
answer to this questions was given by Brenier [Bre87, Bre91] under certain
restrictions on µ and ν. In the class of measures which Brenier was working
with, he proved that one can produce a transformation T : (Rd, µ)→ (Rd, ν)
such that T = ∇ψ, where ψ is a convex function, and such transformation
T is unique µ-almost everywhere. Brenier’s result was later improved by
McCann [McC95], in the form of the following result.

Theorem 1. Let µ and ν be probability measures on Rd, such that µ vanishes
on Borel sets of Hausdorff dimension d − 1. Then there exists a convex
function ψ on Rd such that (∇ψ)#µ = ν. Although ψ might not be unique,
the map ∇ψ is uniquely determined µ-almost everywhere.
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One interesting face of this problem happens when the measures µ and
ν are both absolutely continuous with respect to the Lebesgue measure, i.e,
if there are nonnegative functions f and g such that dµ(x) = f(x)dx and
dν(x) = g(x)dx. In the one-dimensional case, assuming enough regularity
on f and g, one can formally differentiate equation (1) to obtain

T ′(x)g(T (x)) = f(x).

In the higher dimension setting, when in the presence of the Brenier map
∇ψ, this formally generalizes to the following equation

det(D2ψ(x))g(∇ψ(x)) = f(x), (2)

and one can found results in the literature about how smoothness of the
densities f and g ensures regularity of ψ, and is one the techniques to produce
convex solutions to the Monge-Ampère equation (2). One instance of such
regularity results was proven by Caffarelli [ADM99, Theorem 1.3]. Assume
that

(i) f is locally bounded and locally bounded away from zero, i.e, for every
R > 0 and |x| ≥ R

0 < c(R) ≤ f(x) ≤ C(R).

(ii) The measure ν is supported in (the closure of) a bounded open convex
set Γ, and there are constants λ,Λ > 0 such that

λ ≤ g(y) ≤ Λ

for every y ∈ Γ.

Theorem 2 ([ADM99]). Under conditions (i) and (ii), the Brenier map

∇ψ(Rd, µ)→ (Rd, ν)

is continuous. Moreover, ∇ψ belongs to the Hölder class Cα, for some α > 0.
Furthermore, if f and g are locally Hölder, then ψ is C2.α, for some α > 0.

The proof of Theorem 2 relies on several geometric observations about of
convex functions and affine invariance properties of solutions to the Monge-
Ampère equation (2); see the appendix in [ADM99] and the references in
there for more details.

On the remainder of this summary, we focus on the main ingredients
behind the proof of existence of the map ∇ψ in Theorem 1.
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6.2 McCann’s result
6.2.1 Preliminaries

In the context of Theorem 1, a convex function ψ : Rd → R ∪ {+∞} is a
function such that

ψ(tx+ (1− t)y) ≤ tψ(x) + (1− t)ψ(y),

whenever the right-hand side above is finite, and t ∈ (0, 1). Any such function
is known to be continuous on the interior of the convex set domψ := {ψ <
∞}, and differentiable outside of set of Hausdorff dimension at most d − 1.
This clearly justifies the very natural hypothesis that µ vanishes on sets of
dimensions d− 1 in Theorem 1. Although the gradient might not be defined
everywhere, for every point in the interior of domψ there is a y ∈ Rd such

ψ(z)− ψ(x) ≥ 〈y, z − x〉 (3)

for all z ∈ Rd. Such a point y is called a subgradient of ψ at x. Whenever
∇ψ(x) exists, it is a subgradient of ψ at x. This motivates the following
definition:

Definition 3. The subdifferential of a convex function ψ on Rd is the subset
∂ψ ⊂ Rd × Rd of pairs (x, y) such that y is a subgradient of ψ at x.

If one sums inequality (3) over a cyclic sequence {xi} on domψ such that
x1 = xn+1 and choose zi = xi+1 one has

〈y1, x2 − x1〉+ · · ·+ 〈yn, x1 − xn〉 ≤ 0. (4)

Definition 4. A set S ⊂ Rd × Rd is said to be cyclically monotone if any
finite number of points (xi, yi) ∈ S, i = 1, . . . , n satisfies the inequality (4).

By the previous observation, it is obvious any subset of the subdifferen-
tial of a convex function is cyclic monotone. Rockafeller’s theorem [Vil03,
Theorem 2.27] provides a converse to this principle: any cyclic monotone set
has to be contained in the subdifferential of some convex function. This fact
is the key ingredient in order to prove existence of ψ in Theorem 1.

Definition 5. A measure γ in Rd×Rd is said to have µ and ν as its left and
right marginals respectively if µ(M) = γ(M × Rd) and ν(M) = γ(Rd ×M)
for any borel set M ⊂ Rd. We denote the set of all such measures as Γ(µ, ν).
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6.2.2 A glimpse of the proof

The following proposition explicits the connection between measures sup-
ported in cyclic monotone sets with marginals µ and ν and the Brenier map.
Here id×∇ψ denotes the map x 7→ (x,∇ψ(x).

Proposition 6. Supposed a probability measure γ in Rd × Rd is supported
on a subset of a subdifferential ∂ψ of a convex function ψ. Let γ ∈ Γ(µ, ν).
If µ vanishes on Borel sets of Hausdorff dimension d − 1, then the gradient
∇ψ pushes µ into ν, i.e, (∇ψ)#µ = ν. Furthermore, γ = (id×∇ψ)#µ.

Given Rockafeller’s theorem, Proposition 6 implies directly the desired
result in case Γ(µ.ν) contained at least one measure γ supported on a subset
of a subdifferential a convex function, and that is the content of the following
result.

Theorem 7 (Existence of monotone correlations). There is a a measure
γ ∈ Γ(µ, ν) supported in a cyclic monotone set.

This result follows in three steps. First, in the case where µ and ν are spe-
cial sums of point masses, this result is straightforward. Second, the property
in the result is preserved by weak-* limits. Finally, the aforementioned set
of special sums of point masses will form a dense set in the weak-* topology.
Explicitly, this is the content of the following three lemmas.

Lemma 8 (Cyclical monotonicity of correlated pairs). Fix n points xi ∈ Rd

and n points yi ∈ Rd. There is a permutation σ of the set {1, . . . , n} such
that the set S = {(xσ(i), yi), i = 1, . . . , n} is cyclic monotone.

Lemma 9 (Weak-* density of point mass sums). The set of measures of the
form

1

n

n∑
i=1

δxi

with x1, . . . , xn ∈ Rd forms a weak-* dense set of the set all probability mea-
sures in Rd.

Lemma 10 (Weak-* limits preserve monotone correlations). Consider a se-
quence γk of probability measures in Rd×Rd that converges in the weak-* to
γ. Then

(i) γ will have cyclic monotone support if all the γn have cyclic monotone
support;
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(ii) If the left and right marginal of γn converge in the weak-* sense to
limits µ and ν respectively, then γ ∈ Γ(µ, ν).

And now we can conclude the existence of the desired ∇ψ such that
(∇ψ)#µ = ν in Theorem 1, as we wished.
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7 BL and reverse BL via mass transport
After Franck Barthe [BAR1]

A summary written by Aswin Govindan Sheri

Abstract
We prove that multi-dimensional Brascamp–Lieb inequality and

its reverse form are exhausted by centred gaussians. The proof is
based on a theorem of Brenier on mass-preserving maps between mea-
sure spaces.

7.1 Introduction
We begin by describing the problem of Brascamp–Lieb inequality in its multi-
dimensional form. Let m ≥ n, p = (pi)1≤i≤m ∈ (0,∞)(m) and B = (Bi)1≤i≤m
be chosen such that Bi : Rn → Rni are linear maps. The Brascamp–Lieb
constant BL(B,p) is defined as

BL(B,p) := sup
fi∈L1

+(Rni )

{
B :

ˆ m∏
j=1

(fj ◦Bj(x))
pjdx ≤ B

m∏
j=1

(ˆ
fj

)pj}
.

(1)
We are interested in the extremisers of (1). Moving in that direction, let

us restrict our focus to the centred gaussians. Suppose S+(Rk) denote the
space of all k× k symmetric, positive definite matrices. For A ∈ S+(Rk), let
gA denote the centred gaussian function on Rn defined by

gA(x) = e−⟨Ax,x⟩.

Slightly modifying (1), we can introduce the constant BLg(B,p) that takes
the optimal value of B in (1), now restricted to all the centred gaussians. i.e.

BLg(B,p) : = sup
Ai∈S+(Rni )

[ˆ m∏
j=1

(gAj
◦Bj(x))

pjdx

][
m∏
j=1

(ˆ
gAj

)−pj
]

= π
1
2
(n−

∑m
i=1 pini) sup

Ai∈S+(Rni )

det( m∑
j=1

pjB
∗
jAjBj

)− 1
2

[ m∏
j=1

(detAj)
pj
2

]
(2)

where we have made use of the the identity
ˆ
Rn

e−⟨Ax,x⟩dx = π
n
2 · (detA)−

1
2 , whenever A ∈ S+(Rn).
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By its very definition, BLg(B,p) ≤ BL(B,p). The question that interests
us is the validity of its converse. In other words, is the BL inequality (1)
exhausted by centred gaussians? This question was first answered positively
by a classical theorem of Lieb[LIEB] and later by Barthe[BAR1].

In [BAR1], the proof begins from a dual formulation of (1), called the
reverse BL inequality. The philosophy of dualising comes from convexity
theory in order to attack optimisation problems with convex constraints.
For fi ∈ L1

+(Rni), consider the function

I((fi)1≤i≤m) :=

ˆ ∗

Rn

sup

{
m∏
i=1

fpii (yi) :
m∑
i=1

piB
∗
i yi = x and yi ∈ Rni

}
dx (3)

where
´ ∗ represents an outer integral. The reverse BL constant is defined as

RBL(B,p) := inf
fi∈L1

+(Rni )

I((fi)1≤i≤m)∏m
j=1

(´
fj
)pj . (4)

As before, we shall restrict the space of all functions where the infimum is
taken in (4) to define

RBLg(B,p) := inf
Ai∈S+(Rni )

I((gAi
)1≤i≤m)∏m

j=1

(´
gAj

)pj .
Having all the basic definitions in place, we are ready to state the result of
Barthe.

Theorem 1 ([BAR1]). Let a BL datum (B,p) be chosen such that
m∑
i=1

pini = n,
⋂
i≤m

kerBi = {0},

and Bi’s are linear surjections onto Rni for each i. Then,

BL(B,p) = BLg(B,p) and RBL(B,p) = RBLg(B,p). (5)

Moreover, they are related to each other by the relation

BL(B,p) = [RBL(B,p)]−1. (6)

7.2 Proof of Theorem 1
We begin by proving a statement of duality that relates the forward and
reverse BL constants for the gaussians.
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Lemma 2. Let (B,p) satisfies the assumptions in Theorem 1. Then,

BLg(B,p) · RBLg(B,p) = 1 and RBLg(B,p) = 0 ⇐⇒ BLg(B,p) =∞.
(7)

Proof. Fix an m-tuple (Ai)1≤i≤m, where Ai ∈ S+(Rni). Consider a quadratic
form

Q(y) :=

〈
m∑
i=1

piB
∗
iAiBiy, y

〉
, y ∈ Rn.

Note that the assumptions on (B,p) make sure that detQ 6= 0. The dual
quadratic form of Q is defined by the relation

Q∗(x) := sup{|〈x, y〉|2 : Q(y) ≤ 1}, x ∈ Rn.

As it turns out, one can give an alternate expression for Q∗. We claim that

Q∗(x) = inf
Ai∈S+(Rni )

{
m∑
i=1

〈
piA

−1
i xi, xi

〉
: x =

m∑
i=1

piB
∗
i xi

}
(8)

Indeed, if x =
∑m

i=1 piB
∗
i xi, Cauchy–Schwartz tells us that

〈x, y〉2 =

〈
m∑
i=1

piB
∗
i xi, y

〉2

=

〈
m∑
i=1

piA
− 1

2
i xi, A

1
2
i Biy

〉2

≤

〈
m∑
i=1

piA
−1
i xi, xi

〉
Q(y).

In fact, we will have an equality above if xi = AiBiy and y = (
∑m

i=1 piB
∗
iAiBi)

−1x.
Thus the supremum in (8) and the infimum in the definition of Q∗ coincide.

Recalling the definition of the operator I in (3), we can write

I((gAi
)1≤i≤m) =

ˆ
Rn

sup

{
e−

∑m
i=1〈piA−1

i xi,xi〉 : x =
m∑
i=1

piB
∗
i xi

}
dx

=

ˆ
Rn

e−Q
∗(x)dx = π

n
2 (detQ∗)−

1
2 .

However, detQ∗ · detQ = 1 by the classical duality relation. Thus,

RBLg(B,p) = inf
Aj∈S+(Rni )

π
n
2 (detQ∗)−

1
2

m∏
j=1

(ˆ
gAj

)−
pj
2

= inf
Aj∈S+(Rni )

π
1
2
(n−

∑m
i=1 pini)(detQ)

1
2

m∏
j=1

(detAj)
−

pj
2

= [BLg(B,p)]−1.
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The next lemma uses techniques from mass transport theory to find a
relation between RBL(B,p) and BL(B,p).

Lemma 3.
BL(B,p) ≤ (BLg(B,p))2RBL(B,p). (9)

Before proceeding to its proof, let us see how Theorem 1 follows now.
Indeed, using (9) and (7), one can create the chain

BL(B,p) ≤ (BLg(B,p))2RBL(B,p)
≤ (BLg(B,p))2RBLg(B,p) = BLg(B,p) ≤ BL(B,p).

Thus, all inequalities in this chain are in fact equalities, which concludes the
proof of (5) and (6).

Proof of Lemma 3. Let us begin with certain reductions in the problem. Of-
course, we can assume that 0 < BLg(B,p) < ∞. Let fj, hj ∈ L1

+(Rni) for
1 ≤ i ≤ m such that

´
fj =

´
hj = 1. Define a multi-linear operator J by

J(h1, · · · , hm) :=
ˆ m∏

j=1

(hj ◦Bj(x))
pjdx.

By (1) and (4), it is enough to prove that

J(h1, · · · , hm) ≤ (BLg(B,p))2I(f1, · · · , fm) (10)

for any such choice of functions. Let CL(Rn) denote the subset of L1
+(Rn)

whose elements are restrictions to some open Euclidean ball of positive lip-
chitz function on Rn. Using standard density arguments and the mono-
tonicity of I and J , one can see that it is enough to prove (10) when
fi, hi ∈ CL(Rni).

To proceed from here, we need to invoke a result from the mass transport
theory about measure preserving maps. Its usage is motivated by an earlier
result of Barthe[BAR2] where the one dimensional version of this lemma
was proved using measure-preserving maps in R. In the multi-dimensional
case, Brenier[BRE] proved the existence of a mass preserving map, deriving
out of a convex potential provided some strong integral assumptions on the
moments of boundary measures are met. Later, these extra assumptions
were removed by McCann[McC]. Moreover, A result by Caffarelli provides
an insight into the regularity properties of such Brenier mappings. For the
purpose of our proof, all these results are combined and written as a single
theorem below.
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Theorem 4 ([CAR],[BRE],[McC]). For i = 1, 2, let Ωi be a bounded region
of Rk with Ω2, convex. Let fi ≥ 0 be integrable functions supported on Ωi

with
´
f1 =

´
f2. Assume also that fi’s are lipchitz and that both fi and

f−1
i are bounded on Ωi. There exists a convex, twice continuously differen-

tiable function Φ : Rk → R such that ∇Φ is a measure preserving map from
(Ω1, f1dx) to (Ω2, f2dx). Moreover, Φ satisfies the Monge–Ampére equation

det(∇2Φ(x))f2 ◦ ∇Φ(x) = f1(x) for all x ∈ Ω1.

In order to apply this theorem in our setup, let Ωhi denote the region
where hi is positive. By Theorem 4 we obtain a continuously differentiable
map Ti = ∇Φi : Rni → Rni such that

det(dTi(x))fi ◦ Ti(x) = hi(x) for all x ∈ Ωhi . (11)

Since Φ is convex and hi is non-vanishing on Ωhi , dTi(x) lies in S+(Rni).
Define a function Θ : S :=

⋂m
i=1B

−1
i (Ωhi)→ Rn by

Θ(y) :=
m∑
i=1

piB
∗
i Ti(Biy).

Clearly, dΘi(y) is positive semi-definite. Also, (2) tells us that

det(dΘ(y)) ≥ [BLg(B,p)]−1

m∏
i=1

(det dTi(Biy))
pi > 0

for any y ∈ S. Thus, dΘ(y) ∈ S+(Rn) with which we can conclude that Θ is
injective. Using (2) and (11), we see that

(BLg(B,p))−1J((hi)1≤i≤m)

= (BLg(B,p))−1

ˆ
S

m∏
i=1

hpii (Biy)dy

= (BLg(B,p))−1

ˆ
S

m∏
i=1

[det(dTi ◦Bi(y))fi(Ti ◦Biy)]
pi dy

≤
ˆ
S

det (dΘ(y))
m∏
i=1

[fi(Ti ◦Biy)]
pi dy

≤
ˆ
S

det (dΘ(y)) sup

{
m∏
i=1

fi(yi)
pi : Θ(y) =

m∑
i=1

piB
∗
i yi

}
dy

=

ˆ
Rn

sup

{
m∏
i=1

fi(yi)
pi : x =

m∑
i=1

piB
∗
i yi

}
dx

= I((fi)1≤i≤m).
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By taking the supremum over all hi’s and infimum over all fi’s, one can
finally obtain (9).
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8 Positive Gaussian kernels also have Gaus-
sian minimizers

After F. Barthe and P. Wolff [BW]

A summary written by Valentina Ciccone

Abstract

Following the results of [BW], lower bounds for certain operators
with Gaussian kernels are discussed and conditions under which the
sharpest constant can be computed by considering centered Gaussian
functions only are provided.

8.1 Introduction
The celebrated work of Lieb “Gaussian kernels have only Gaussian maximiz-
ers” [L] studies operators with Gaussian kernels from Lp to Lq and provides
conditions under which the operator norm can be computed by consider-
ing centered Gaussian functions only. For the particular case of multilinear
operators with real valued Gaussian kernel Lieb’s result [L] reads as follows.

Theorem 1. Let m be a positive integer and for i = 1, ...,m let pi ≥ 1 and
Bi : Rn → Rni be linear surjective maps. Let Q be a positive semi-definite
quadratic form on Rn. For functions fi ∈ Lpi(Rni ,R) non-identically zero
define the functional

H(f1, ..., fm) =

´
Rn e

−Q(x)
∏m

i=1 fi(Bix)dx∏m
i=1‖fi‖pi

.

Then the supremum of H over all m−tuples of such functions is equal to the
supremum of H over m−tuples of centered Gaussian functions only.

Observe that by setting ci = 1
pi

and substituting fi with f cii one gets the
same result for the following functional on non-negative integrable functions:

I(f1, ..., fm) =

´
Rn e

−Q(x)
∏m

i=1 fi(Bix)
cidx∏m

i=1

( ´
Rni

fi

)ci .

In the particular case in which Q = 0 one may recover from the above
theorem the celebrated Brascamp-Lieb inequalities.

48



Several related inverse inequalities have been studied in the literature
over the years.

In particular, in [BW] inequalities of the following form are considered
ˆ
H

e−Q(x)

m∏
k=1

f cki (Bkx)dx ≥ C

m∏
k=1

( ˆ
Hk

fi

)ck
,

where:

• 0 ≤ m+ ≤ m are integers;

• H,H1, ..., Hm are Euclidean spaces endowed with the usual Lebesgue
measure;

• for k = 1, ...,m, ck ∈ R are such that ci > 0 for i ≤ m+ and ci < 0 for
i > m+;

• Bk : H → Hk are surjective linear maps;

• Q : H → R is a quadratic form with signature (s+(Q), s−(Q));

• fk : Hk → [0,+∞] are measurable functions satisfying 0 <
´
Hk
fk <

+∞.

We refer to this inequalities as inverse Brascamp-Lieb inequalities.
The objective is to provide a counterpart to Lieb’s result and to answer

questions like: When is it possible to compute the optimal constant C by
considering only (centered) Gaussian functions? Under what conditions is
the inequality non-trivial, i.e. when is C > 0?

To address these questions we introduce the linear functional

J(f1, ..., fm) =

´
H
e−Q(x)

∏m
k=1 f

ck
i (Bkx)dx∏m

k=1

( ´
Hk
fi

)ck ,

and assume the convention 0 · ∞ = 0 for the product
∏m

k=1 f
ck
i (Bkx).

Then, the objective is to study a minimization problem for the functional J .
We denote by infG J the infimum of J over m−tuples of Gaussian functions
(not necessarily centered) and by infCG J the infimum of J over m−tuples of
centered Gaussian functions.

In this summary we focus on the Gaussian extremizability of geometric
versions of inverse Brascamp Lieb inequalities, see the forthcoming Theorem
5.
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8.2 Non-degeneracy conditions and Gaussian infimiz-
ers

Let B+ denote the linear map (B1, ..., Bm+), namely

B+ : H → H1 × ...×Hm+ ,

x 7→ (B1x, ..., Bm+x).

We introduce the following non-degeneracy assumptions:

(i) Q is positive definite on kerB+;

(ii) dimH ≥ s+(Q) + dimH1 + ...+ dimHm+ .

When assumptions (i) and (ii) are not verified, inf J can only be 0 or +∞,
we refer to [BW, Section 2] for a detailed case by case analysis. Hence, the
cases in which (i) and (ii) hold are, to some extent, the only non-degenerate
cases.

Theorem 2. ([BW, Th. 2.9]) Assume that (i), (ii) hold. Then inf J =
infCG J .

Therefore, assumptions (i) and (ii) allow to compute the sharpest constant
in the inverse Brascamp-Lieb inequalities by considering centered Gaussian
functions only.

We briefly sketch the main steps of the proof of Theorem 2 following [BW,
Subsection 3.3]. We refer to [BW, Section 3] for the precise arguments.

Sketch of the proof. The first step consists in introducing a decomposition of
the Gaussian kernel e−Q. This is achieved by relying on the following lemma
[BW, Lemma 3.1].

Lemma 3. Assumptions (i) and (ii) hold if and only if there exist vector
spaces H0, Hm+1, linear surjective maps B0 : H → H0, Bm+1 : H → Hm+1,
and positive definite quadratic forms Q+ on H0 and Q− on Hm+1 satisfying:

• (B0, B+) : H → H0 × ...×Hm+ is bijective;

• kerB+ ⊂ kerBm+1;

• for all x ∈ H, Q(x) = Q+(B0x)−Q−(Bm+1x).
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With this notation, let Q+ : H0 → H0, Q− : Hm+1 → Hm+1 be such that
for all x ∈ H0 Q+(x) = π〈Q+x, x〉, and for all y ∈ Hm+1 Q−(y) = π〈Q+y, y〉.
Let f0 : H0 → [0,+∞], fm+1 : Hm+1 → [0,+∞] be defined as

f0(x) =
√

detQ+e
−π⟨Q+x,x⟩, fm+1(x) =

√
detQ−e

−π⟨Q−x,x⟩.

Fix c0 = 1, cm+1 = −1. For k = 1, ...,m, fix fk : Hk → [0,+∞] to be
measurable functions of integral one. Then

J(f1, ..., fm) =

√
detQ−

detQ+

ˆ
H

m+1∏
k=0

f ckk (Bkx)dx. (1)

For technical reasons throughout the proof the functions fk, k = 1, ...,m,
need to be chosen from some suitable classes of test functions. Generaliza-
tion to measurable functions is achieved by approximation arguments in the
very last step of the proof.
Next, a tuple of centered Gaussian functions on Hk of integral one, gk,
k = 0, ...,m+ 1, is introduced.
Then, using tools from optimal transport theory one can construct trans-
portation maps Tk which push forward fk(x)dx onto fk(y)dy. Such trans-
portation maps are used to construct a change of variable θ : H → H which
is surjective and which is used to rewrite (1) as an integral involving Gaus-
sian functions only.
Then, after some computation the desired sharp lower bound on J(f1, ..., fm)
is obtained.

8.3 Minimizers for geometric inverse Brascamp-Lieb
inequalities

We introduce the following geometric conditions:

(iii) BkB
∗
k = IdHk

, k = 1, ...,m;

(iv) Q+
∑m

k=1B
∗
kBk = IdH ;

where Q denotes the self-adjoint map on H such that Q(x) = π〈x,Qx〉 for
all x ∈ H.

Theorem 4. Assume that the non-degeneracy assumptions (i) and (ii) are
satisfied and that the geometric conditions (iii) and (iv) hold. Then

inf
CG
J = 1.
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For the proof we refer to [BW, Theorem 4.5] and its proof.
We are now ready to introduce the desired result [BW, Theorem 4.7].

Theorem 5. Let ck, k = 1, ...,m and Bk, k = 1, ...,m, be as defined in the
Introduction and assume that the geometric condition (iii) holds. Let Q :
H → H be a symmetric operator. Assume that also the geometric condition
(iv) and the non-degeneracy assumption (ii) hold. Then for all non-negative
integrable functions hk : Hk → [0,+∞] such that

´
hk > 0 it holds that

ˆ
H

e−π⟨x,Qx⟩
m∏
k=1

hckk (Bkx)dx ≥
m∏
k=1

( ˆ
Hk

fk

)ck
.

Equality holds when for all k and all y ∈ Hk, hk(y) = exp(−π|y|2).

Proof. The geometric condition (iv) implies that Q +
∑m+

i=1 ciB
∗
iBi is posi-

tive definite and in particular that the restriction of Q to kerB+ is positive
definite. Then, in view of Theorem 2 inf J = infCG J and Theorem 4 ensures
that infCG J = 1.
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9 Near-extremizers for the isoperimetric in-
equality
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10 The Borell-Boué-Dupuis formula
After Joseph Lehec [Leh13] (see also [LehHDR] )

A summary written by Giuseppe Negro

Abstract
We discuss the dual approach to the formulas of Borell and of

Boué-Dupuis in terms of the relative entropy, due to J. Lehec.

10.1 Introduction
In [Bor00], Borell established the following formula, for arbitrary measurable
and bounded below f : Rn → R, and pointed out its applications to various
functional inequalities;

log

ˆ
Rn

ef(x) dγn(x) = sup

{
E

[
f

(
B1 +

ˆ 1

0

us ds

)
− 1

2

ˆ 1

0

|us|2 ds
]}

. (1)

Here, dγn is the Gaussian measure on Rn and (Bt)t≥0 is a standard n-
dimensional Brownian motion; note that, following the probabilistic conven-
tion, we denote with subscript t or s the time variable of a stochastic process.
The supremum in (1) is taken over all n-dimensional processes (ut)t∈[0,1] that
are progressively measurable1 and that satisfy

´ 1
0
|us|2 ds <∞ almost surely.

In this note we discuss Lehec’s unified approach to (1) and to the more
general formula of Boué and Dupuis [BD98], which we will introduce in a
moment after establishing the necessary notation.

We consider the Wiener probability space (W,B, γ), where W denotes the
space of those w ∈ C([0, 1] → Rn) such that w(0) = 0, equipped with the
topology of uniform convergence, B is the Borel σ-algebra and γ is the Wiener
measure, defined as the law of B; that is, for all functionals F : W→ [0,∞],ˆ

W
F (w) dγ(w) = E [F ◦B] . (2)

(Note that t→ Bt is almost surely in W, hence the composition F ◦B makes
sense). An embedded subspace of W is the Cameron-Martin space H, whose
elements are absolutely continuous paths u : [0, 1]→ Rn, with u(0) = 0 and

‖u‖2H :=

ˆ 1

0

|u̇s|2 ds <∞. (3)

1We won’t give the technical definition of this; intuitively, a progressively measurable
process is one that only depends on past values of the Brownian motion. For such processes
it is possible to define a meaningful notion of stochastic integral.
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We can now state the formula of Boué and Dupuis. For all functionals
F : W→ R that are measurable and bounded below,

log

ˆ
W
eF dγ = sup

{
E

[
F (B + U)− 1

2
‖U‖2H

]}
, (4)

where the supremum is taken over all progressively measurable processes U
that belong to H almost surely; such processes are called drifts. Borell’s
formula (1) follows from (4) by letting

Ut :=

ˆ t

0

us ds and F (w) := f(w(1)).

We end the introduction by remarking that all these results have a counter-
part on the infinite time interval [0,∞).

10.2 Dual formulation; the entropy
Given a probability measure µ that is absolutely continuous with respect to
γ, that is, dµ = ρ dγ where ρ is a nonnegative function on W, the relative
entropy of µ with respect to γ is defined as

H(µ|γ) = −
ˆ
W
log(ρ(w)−1)ρ(w) dγ(w); (5)

note that H(µ|γ) ≥ 0 by the Jensen inequality. Conventionally, H(µ|γ) =∞
for those probabilities µ that are not γ-absolutely continuous.

The formula (4) is equivalent to the following theorem. A sketch of its
proof will be given in the next section.

Theorem 1. Let µ be a γ-absolutely continuous probability. Then

H(µ|γ) ≤ 1

2
E[‖U‖2H], (6)

for all drifts U such that B+U has law µ. With some technical assumptions
on µ, there is a drift that attains the equality.

Theorem 1 is, arguably, the main result of [Leh13]. Its relation to the
formula (4) is due to the following convex duality:

log

ˆ
W
eF dγ = sup

{ˆ
W
F dµ−H(µ|γ)

}
, (7)
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the supremum being over all Borel probabilities µ on W. Thus, for all drift
U such that B + U has law µ, Theorem 1 yields

log

ˆ
W
eF dγ ≥

ˆ
W
F dµ− 1

2
E‖U‖2H

= E

[
F (B + U)− 1

2
‖U‖2H

]
,

(8)

with equality for those U that attain equality in (6). We conclude that the
formula (4) follows from Theorem 1.

10.3 Some elements of the proof of Theorem 1.
For arbitrary Borel probability measures µ and λ, and for every measurable
map T : W→W,

H(µ ◦ T−1|γ ◦ T−1) ≤ H(µ|γ); (9)

this is proved via the Jensen inequality for conditional expectations.
To apply this to the proof of Theorem 1, the tool to use is the formula

of Girsanov, which, given an arbitrary drift U , allows us to construct a new
probability Q such that X = B + U has law γ under Q; recall that B is
a standard Brownian motion under the probability P . We will give more
details in a moment. Letting µ denote the law of X under P ,

H(µ|γ) = H(P ◦X−1|Q ◦X−1) ≤ H(P |Q). (10)

The probability Q is constructed in terms of the process

Dt = exp

(
−
ˆ t

0

〈U̇s, dBs〉 −
1

2

ˆ t

0

|U̇s|2 ds
)
, (11)

with some suitable integrability condition on U ; having ‖U‖H bounded suf-
fices. The probability Q is given by dQ = D1dP ; in particular, letting E
denote the expectation with respect to P ,

H(P |Q) = −E[logD1] =
1

2
E[‖U‖2H],

since the stochastic integral
´ t
0
〈U̇s, dBs〉 has expectation 0. Combining this

with (10) proves the inequality (6) of Theorem 1. We will not discuss the
cases of equality in this short note.
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11 Short probabilistic proofs of BrascampLieb
and Barthe theorems

After J. Lehec [Leh14]
A summary written by Víctor Olmos

Abstract

We give a short proof of the BrascampLieb theorem using a rep-
resentation formula for certain functionals of the Brownian motion
due to Boué and Dupuis. A similar argument is then applied to the
Barthe theorem regarding the reversed Brascamp-Lieb inequality.

11.1 Boué-Dupuis formula
Fix a finite time horizon T > 0 and let W = (Wt)t∈[0,T ] be an n-dimensional
Brownian motion on a filtered probability space (Ω,F ,P, (Ft)t∈[0,T ]). Let A
be the covariance matrix of W1 and let H be the Cameron-Martin space asso-
ciated with W , that is, the Hilbert space of absolutely continuous functions
u : [0, T ] −→ Rn with

‖u‖H :=

(ˆ T

0

〈A−1u′(t), u′(t)〉 dt
)1/2

<∞.

An adapted process U such that almost every path belongs to H is called a
drift. In 1998, Boué and Dupuis proved a very useful representation formula
that allows us to compute the expectation of certain functionals of W .

Proposition 1. Let g : Rn −→ R be a Borel measurable function bounded
from below. Then, with the notation above,

logE
[
eg(WT )

]
= sup

U drift
E
[
g(WT + UT )−

1

2
‖U‖H

]
.

The important detail of this formula that will be useful for us is that
the right hand side, once a drift has been chosen, is linear in g. Hence
appropriately decomposing g as a sum of certain gi and then applying the
proposition again we will obtain a product of expectations, precisely what is
needed for the Brascamp-Lieb inequality.
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11.2 The direct inequality
Let (c1, B1), . . . , (cm, Bm) be a Brascamp-Lieb datum on Rn, that is, each
ci is a positive number and each Bi is a surjective linear mapping from Rn

onto Rni for some ni ∈ N. The Brascamp-Lieb constant associated with that
datum is the smallest constant C such that

ˆ
Rn

m∏
i=1

fi(Bix)
ci dx ≤ C

m∏
i=1

(ˆ
Rni

fi(x) dx

)ci
(1)

for all non-negative integrable functions fi : Rni −→ R. From a standard
scaling argument it is easy to see that a necessary condition to have finiteness
of the constant C is that

m∑
i=1

cini = n.

We will assume this condition without further mention. The Brascamp-Lieb
theorem states that this inequality is saturated by Gaussian functions.

Theorem 2. For a Brascamp-Lieb datum as above, assume that there exists
a positive definite matrix A such that

A−1 =
m∑
i=1

ciB
∗
i (BiAB

∗
i )

−1Bi. (2)

Then the Brascamp-Lieb constant associated with the datum is

C =

(
det(A)∏m

i=1 det(BiAB∗
i )
ci

)1/2

,

and equality in (1) is obtained for the Gaussian functions

fi(x) = exp

(
−1

2
〈(BiAB

∗
i )

−1x, x〉
)
, 1 ≤ i ≤ m.

Sketch of the proof. The equality case follows by simply computing both
terms of (1). Then fix non-negative measurable functions f1, . . . , fn and
let W be a Brownian motion with covariance matrix A as in the previous
section. Define the functions gi = log(fi + δ) for some δ > 0 fixed and
g =

∑m
i=1 cigi ◦ Bi. By Proposition 1, for ε > 0 there exists a drift U such

that

logE
[
eg(WT )

]
≤

m∑
i=1

ciE[gi(BiWT +BiUT )]−
1

2
E[‖U‖H] + ε.
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Since the process BiW is again a Brownian motion on Rni with covariance
matrix Ai = BiAB

∗
i , we can define the respective Cameron-Martin spaces Hi

and express ‖·‖H with respect to the ‖·‖Hi
. Using again Proposition 1 we can

show that

logE
[
eg(WT )

]
≤

m∑
i=1

ci logE
[
egi(BiWT )

]
+ ε.

Finally we have
∏m

i=1(fi ◦Bi)
ci ≤ eg, so sending ε, δ → 0 we get

E[f(WT )] ≤
m∏
i=1

E[fi(BiWT )]
ci .

It only remains to use that WT is a Gaussian random variable with covariance
TA to compute both sides of the above expression, and then let T →∞.

Example 3. The Brascamp-Lieb inequality can be used for example to find
the best constant in Young’s convolution inequality, that is, the minimum
positive constant C such that

‖f ∗ g‖Lr(R) ≤ C‖f‖Lp(R)‖g‖Lq(R)

for all f ∈ Lp(R) and g ∈ Lq(R), with 1 + 1
r
= 1

p
+ 1

q
.

By duality, Young’s inequality is equivalent to

ˆ
R2

f(x+ y)1/pg(y)1/qh(x)1−1/r dy dx ≤ C

(ˆ
R
f

)1/p(ˆ
R
g

)1/q (ˆ
R
h

)1−1/r

,

so C is the Brascamp-Lieb constant associated with the data (1/p, (1, 1)),
(1/q, (0, 1)), (1− 1/r, (1, 0)). A computation shows that

C =

(
p1/p q1/q r′1/r

′

p′1/p′ q′1/q′ r1/r

)1/2

.

11.3 The reversed inequality
Again, given a Brascamp-Lieb datum as before, the reversed Brascamp-Lieb
constant associated with it is the smallest Cr such that for every family of
non-negative measurable functions f1, . . . , fm, f satisfying

m∏
i=1

fi(xi)
ci ≤ f

(
m∑
i=1

ciB
∗
i xi

)
(3)
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for every (x1, . . . , xm) ∈ Rn1 × . . .× Rnm , we have
m∏
i=1

(ˆ
Rni

fi(xi) dxi

)ci
≤ Cr

ˆ
Rn

f(x) dx. (4)

Again, under the same conditions as in the previous theorem, Gaussian func-
tions saturate this inequality.

Lemma 4. Let A1, . . . , Am be positive definite matrices on Rn1 , . . . ,Rnm,
and define A =

(∑n
i=1 ciB

∗
iA

−1
i Bi

)−1. Then for all x ∈ Rn we have

〈Ax, x〉 = inf

{
m∑
i=1

ci〈Aixi, xi〉 :
m∑
i=1

ciB
∗
i xi = x

}
.

Theorem 5. Let (c1, B1), . . . , (cm, Bm) be a Brascamp-Lieb datum such that
there exists a positive definite matrix A satisfying (2). Then the associated
reversed Brascamp-Lieb constant is

Cr =

(
det(A)∏m

i=1 det(BiAB∗
i )
ci

)1/2

.

Moreover, we have equality in (4) for the Gaussian functions

fi(xi) = exp

(
−1

2
〈BiAB

∗
i xi, xi〉

)
, xi ∈ Rni , 1 ≤ i ≤ m,

f(x) = exp

(
−1

2
〈Ax, x〉

)
, x ∈ Rn.

Sketch of the proof. The proof is similar to the one of the previous theorem.
Pick non-negative measurable f1, . . . , fm, f satisfying (3) and assume that
the fi are bounded, and let gi = log(fi + δ) as before. One can choose
c, C > 0 such that g = log(f + Cδc) satisfies

m∑
i=1

cigi(xi) ≤ g

(
m∑
i=1

ciB
∗
i xi

)
.

Again, take a Brownian motion (Wt)t∈[0,T ] with covariance matrix A.
Using the Cameron-Martin spaces associated with (BiAB

∗
i )

−1 and applying
Proposition 1 and Lemma 4, we can prove as before that

m∑
i=1

ci logE
[
egi(A

−1
i BiWT )

]
≤ logE

[
eg(A

−1WT )
]
.
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Finally, since fi ≤ egi and eg = f + Cδc, letting δ → 0 we obtain
m∏
i=1

E[fi(A−1
i BiWT )]

ci ≤ E[f(A−1WT )].

Letting T → ∞ proves the first part of the theorem. The equality case is
proven by a simple computation using Lemma 4.
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12 Euclidean forwardreverse BrascampLieb in-
equalities: finiteness, structure, and ex-
tremals

After T. Courtade, J. Liu [TL]
A summary written by Jaume de Dios Pont

Abstract
We describe and provide a proof a proof of the forward-reverse

Brascamp-Lieb inequality using the Boue-Dupuis formula for Gaus-
sian integrals. We provide necesssary and sufficient condigions for
Extremizability of the forward-reverse Brascamp-Lieb inequality.

12.1 Introduction
Let E =

⊕k
i=1Ei and F =

⊕m
j=1 F

j Euclidean spaces, and Bij : Ei → Fj
linear maps. Given non-negative lists of real numbers c := (c1, . . . ck),d :=
(d1, . . . dm) we are concerned with the best constant D such that:

k∏
i=1

(ˆ
Ei

fi

)ci
≤ eD

m∏
j=1

(ˆ
F j

gj(xi)

)dj
(1)

for all measurable functions fi : Ei → R+, gi : F i → R+ that satisfy the
inequality

k∏
i=1

f cii (xi) ≤
m∏
j=1

g
dj
j

(
k∑
i=1

ciBijxi

)
(2)

for all (x1, . . . xk) ∈
⊕k

i=1Ei.

We will call (c,d,B) a datum for the forward-reverse BL inequality, and
define D(c,d,B) as the smallest constant D such that (1) holds whenever
(2) holds. A necessary condition for D(c,d,B) to be finite is the scaling
condition

k∑
i=1

ci dimEi =
m∑
j=1

dj dimEj. (3)

As in the Brascamp-Lieb case, the necessity comes from considering dilations
of functions fi, gi satisfying (1) none of which are zero a.e.
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This family of inequalities extend simultaneously the Brascamp-Lieb in-
equalities (when k = 1) and Barthe’s reverse Brascamp-Lieb inequality (when
m = 1).

Finiteness and Gaussian extremisability
The first result concerns the situations in which Gaussians extremize forward-
reverse Brascamp-Lieb inequalities. It states that whenever there is an ex-
tremizer amongst all Gaussian functions, this must be an extremizer amongst
all functions as well.

Theorem 1. Let Dg(c,d,B) be the largest constant D in equation (2) under
the further constraint that fi, gj are restricted to be centered gaussians. If
a datum (c,d,B) is Gaussian extremizable (in the sense that Dg(c,d,B) is
attained by specific fi, gj) then

Dg(c,d,B) = D(c,d,B)

It han been long known that the sharp constants for the usual Brascamp-
Lieb inequalities and for Barthe’s reverse were the same (at least when writ-
ten in the formulation of 1). This has a generalization to the forward-reverse
Brascamp-Lieb inequality by defining (B∗)ij = Bj,i, in the form of:

Theorem 2. If (c,d,B) is gaussian-extremizable so is (d, c,B∗). Moreover

Dg(c,d,B) = Dg(d, c,B
∗),

regardless of whether the data are gaussian-extremizable.

Gaussian extremizability can be deduced from the operators Bij them-
selves. Before doing so, however, we must introduce some notation:

We will denote by Λc the matrix
⊗k

i=1 ciIEi
. Analogously, Λd will denote

the matrix
⊗k

i=1 diIVi . Given V1, . . . Vj symmetric matrices in Ei ⊗ Ei, we
will denote by Vc the matrix

⊗k
i=1 ciIEi

.

Last, given positive definite matrices A1, . . . Ak in Ai : Ei×Ei → R, we de-
fine Π(A1, . . . Ak) as the set of positive-definite bilinear forms in E =

⊕k
i=1Ei

that are equal to Ai that when restricted to each Ei.

Theorem 3. Let (c,d,B) be a Brascamp-Lieb datum. The following are
equivalent:
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1. (c,d,B) is Gaussian-extremizable.

2. There exist invertible linear maps (αi)i=1...k, (βj)j=1...m such that with
B̃ = (βjBijαi)ij, the datum (c,d, B̃) is geometric.

3. There exist positive definite matrices (Vi)i=1,...k ∈ S+(Ei) and Π ∈
Π(V −1

1 , . . . V −1
k ) such that:

m∑
j=1

djΛcB
∗
j (BjΛcΠΛcB

∗
j )

−1BjΛc ≤ Vc (4)

Moreover, from the last statement there an explicit construction of the
extremizers and optimal constant from Π, Vi can be deduced.

Key ideas of the proofs
Theorem 1 depends on the assertion [1. =⇒ 3] of Theorem 3, and is proven
in a similar fashion to the proof of forward and reverse Brascamp-Lieb using
the Boué-Dupuis formula. The existence of Π given in Theorem 3, Item 3.
gives the covariance of the Brownian motion to which the Boué-Dupuis for-
mula is applied.

The proof of Theorem 2 is self contained: One shows that if fi = exp(−x ·
Ui ·x), gj = exp(−x ·Vj ·x) are an admissible family of Gaussians for (c,d,B)
in the sense that (1) holds, then fi = exp(−x ·V −1

i ·x), gj = exp(−x ·U−1
i ·x)

is admissible for (d, c,B∗), with the same constant in (2). This is shwon
by explicitly writing condition 1 for Gaussians explicitly, which becomes a
problem about positive definiteness of certain matrices.

The proof of Theorem 3, on the other hand, is significantly more involved
in the forward-reverse scenario.

• [2. =⇒ 3.] By definition, all Geometric data satisfy 3., by directly
setting Vi = Π = Id.

• [3. =⇒ 2.] can be shown by constructing an explicit transformation
using (4).

• [3. =⇒ 1.] In fact follows from the proof of Theorem 3: If (4) holds,
one may use the Boué-Dupuis formula to construct the explicit Gaus-
sian extremizers.
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• The proof of [1. =⇒ 3.] is done by a careful transformation of the
constrained problem (minimize D in (2) for all gaussians with the con-
straint given by (1)) into an equivalent unconstrained problem. The
result then follows by setting the gradient of the unconstrained prob-
lem equal to zero. The main ingredients of the transformation is a
max-min inequality derived using the Fenchel-Rockafellar duality.

References
[TL] Courtade , T. and Liu, J. Euclidean forwardreverse BrascampLieb in-

equalities: finiteness, structure, and extremals In: J. Geom. Anal. 31.4
(2021), pp. 33003350.

Jaume de Dios Pont, UCLA
email: jdedios@math.ucla.edu

66



13 Functional Erhard inequality
After C. Borell [Bor03],[Bor07]

A summary written by Lukas Mauth

Abstract

If C is a domain in Rn, we denote the Brownian exit time of C
by TC . For given domains C and D in Rn we will establish an upper
bound for the distribution function of TC+D, when the distribution
functions of TC and TD are known. Furthermore, we will give a proof
of the classical functional erhard inequality.

13.1 Introduction
For two subsets C and D of Rn we define the Minkowski sum as

C +D := {x+ y|x ∈ C and y ∈ D}.

Moreover, we define for α > 0 the dilation αC = {αx|x ∈ C}. Throughout
W = (W (t))t≥0 denotes Brownian in Rn and if C is a domain in Rn,

TC = TWC := inf{t > 0|W (t) /∈ C}

is called the exit time from C. Below the notation Px[·] or Ex[·] indicates
that Brownian motion starts at the point x at time zero.

If H is an open affine half-space in Rn, the Bachelier formula (see [KaSh])
for the distribution of the maximum of real-valued Brownian motion yields

Px[TH > t] = Ψ

(
d(x,Hc)√

t

)
, t > 0, x ∈ H,

where d(x,Hc) = miny∈Rn\H |x− y| and

Ψ(r) = 2

ˆ r

0

e−
λ2

2
dλ√
2π
.

We the following the notation for the expected Brownian exit times.

Ex[TC ] =

ˆ ∞

0

Px[TC > t]dt.

The result on the distribution function of the Brownian exit time regard-
ing Minkowski sums, which we aim to prove, reads as follows.
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Theorem 1. Let C and D be domains in Rn and let f : C → [0, 1], g : D →
[0, 1] and h : C +D → [0, 1] be continuous functions such that for all x ∈ C
and y ∈ D

Ψ−1(h(x+ y)) ≥ Ψ−1(f(x)) + Ψ−1(g(y)).

Then, for all x ∈ C, y ∈ D and t > 0

Ψ−1(Ex[h(W (t));TC+D > t])

≥ Ψ−1(Ex[f(W (t));TC > t]) + Ψ−1(Ey[g(W (t));TD > t]).

In particular

Ψ−1(Px+y[TC+D > t]) ≥ Ψ−1(Px[TC > t]) + Ψ−1(Py([TD > t])),

where the equality gets exhausted if C and D are parallel affine half-spaces.

Our second goal is to establish the classical functional Erhard inequality.
To that end we denote by γn the centered gaussian measure on Rn. If there
is no ambiguity about the dimension n, we will drop it from the notation.
We set for r ∈ R

Φ(r) :=

ˆ ∞

0

e−
λ2

2
dλ√
2π
.

Theorem 2 (Functional Erhard inequality). Let C and D be any Borel sets
in Rn. Then we have for all 0 < θ < 1

Φ−1(γ(θC + (1− θ)D)) ≥ θΦ−1(γ(C)) + (1− θ)Φ−1(γ(D)).

We adopt here the convention that ∞−∞ = −∞+∞ = −∞.

The Erhard inequality lies at the heart of a large hierarchy of inequalities
in the Gaussian setting. For instance it implies the well known Gaussian
isoperimetric inequality, which in turn imples numerous geometric and ana-
lytic inequalities for Gaussian measures.

13.2 Methods
These two theorems go particularly well together, because their proofs are
based on the same method. We will just illustrate the proof of the functional
Erhard-inequality from which a proof of Theorem 1 will follow by simple
modfications.
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At the root of this is a geometric proof of the Erhard inequality in the
special case, where C and D are convex. Erhards original proof used a
Gaussian analogue of Steiner symmetrization, a classical tool in measure
theory, which is for example used to prove the isodiametric inequality. The
downside of this proof is that it relies heavily on the convexity of the sets
and is thus in nature rigid. Hence, the question if the inequality holds for
general Borel sets remained open for a long time.

It was then C. Borell who came up with an entirely different approach
relying more on analytic properties than geometric ones.

The starting point of the argument is the functional form of Theorem 2,
which states that if given functions f, g, and h satisfy

Φ−1(h(λx+ µy)) ≥ λΦ−1(f(x)) + µΦ−1(g(y)), (1)

then we find

Φ−1

( ˆ
Rn

hdγn

)
≥ λΦ−1

( ˆ
Rn

fdγn

)
+ µΦ−1

(ˆ
Rn

gdγn

)
. (2)

The statement of Theorem 2 can be recovered by setting f = χC , g = χD
and h = χC+D.

Thus, its proof is reduced to establishing (2). Borell now considers the
function

C(t, x, y) := Φ−1(uh(t, λx+ µy))− λΦ−1(uf (t, x))− µΦ−1(ug(t, y)),

where uf (t, ·) denotes the heat semigroup

uf (t, x) :=

ˆ
Rn

f(x+
√
tz)γn(dz).

Our assumption (1) is now equivalent to C(0, x, y) ≥ 0, while the erhard
inequality (2) can be rewritten as C(1, 0, 0) ≥ 0.

The crucial point is that the function C(t, x, y) is the solution of a certain
parabolic equation in the domain [0,∞) × Rn × Rn. Hence, we can employ
the weak parabolic maximum principle (see [Evans]), implying that minC =
minC(0, ·, ·) ≥ 0 and thus proving (2) as a direct consequence.

13.2.1 Further results

From the last proof one could expect to exhibit information when equality in
(1) is achieved, since a approach to substitute the weak maximum principle
by the strong version seems natural and in reach. Indeed, with a little more
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care we can prove the following more general result, which proof relies on the
same method used to prove Theorem 2.

Let F be a seperable Fréchet space and γ a centered Gaussian measure
on F such that each bounded linear functional on F has a centered Gaus-
sian distribution. Let B(F ) the Borel σ−algebra on F. The definition of
Minkowski sum carries over canonically to this more general setting.

Theorem 3. Suppose α, β > 0 are given. Then the inequality

Φ−1(γ(θC + (1− θ)D)) ≥ θΦ−1(γ(C)) + (1− θ)Φ−1(γ(D)). (3)

is valid for all C,D ∈ B(F ) if

α + β ≥ 1 and |α− β| ≤ 1. (4)

Moreover, if γ is not a Dirac measure at origin and (3) is valid for all
C,D ∈ B(F ), then (4) holds.

Equality occurs in (3) if C and D are parallel affine half-spaces. If in
addition α + β = 1, then equality in (3) occurs if C is convex and D = C.
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14 Functional Ehrhard inequality via stochas-
tic minimax

After "The Borell-Ehrhard game" by Ramon van Handel
A summary written by Ilseok Lee

Abstract
This summary of [HR] gives a proof of functional Ehrhard inequal-

ity using a game-theoretic mechanism:a minimax variational principle
for Brownian motion.

14.1 The Borell-Ehrhard Game
14.1.1 Setting and main result

Let (Ω,F , {Ft},P) be a probability space with a complete and right-continuous
filtration, and let {Wt} be a standard n-dimensional Brownian motion adapted
to the filtration {Ft}. Denote the standard Gaussian measure γn on Rn as

γn(dx) = e−|x|2/2 dx

(2π)n/2
,

and Φ(x) := γ1((−∞, x]).

Definition 1. A control is a progressively measurable n-dimensional process
β = {βt}t∈[0,1]. Denote C the family of all controls such that ‖β‖∞ <∞

Definition 2. A (Elliott-Kalton) strategy is a map α : C → C such that for
every t ∈ [0, 1] and β, β′ ∈ C such that βs(ω) = β′

s(ω) for a.e (s, ω) ∈ [0, t]×Ω,
we have αs(β)(ω) = αs(β

′)(ω) for a.e (s, ω) ∈ [0, t] × Ω. Denote by S the
family of all strategies such that sup{‖α(β)‖∞ : ‖β‖∞ ≤ R} < ∞ for all
R <∞

Theorem 3. Let f : Rn → R be bounded and uniformly continuous, and
define

Jf [α, β] := E

[ˆ 1

0

e−
1
2

´ t
0∥βs∥

2ds〈αt, βt〉dt+ e−
1
2

´ 1
0 ∥βt∥

2dtf

(
W1 +

ˆ 1

0

αtdt

)]
for α, β ∈ C. Then

Φ−1

(ˆ
Φ(f)dγn

)
= sup

α∈S
inf
β∈C

Jf [α(β), β] = inf
α∈S

sup
β∈C

Jf [α(β), β].

The process α(β) is progressively measurable by construction, so the
above theorem does not have measurability issues.
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14.1.2 The Borell PDE

Throughout the proof, we will assume without loss of generality that f is
bounded, smooth, and has bounded derivatives of all orders. Once the result
is proved in this case, the conclusion is readily extended to functions f that
are only bounded and uniformly continuous (see section 8.2 in [FG])

For (t, x) ∈ [0, 1] × Rn, define u(t, x) := E[Φ(f(W1 − Wt + x))] and
v(t, x) := Φ−1(u(t, x)) where u(t, x) and v(t, x) solve the following PDEs
respectively:

∂u

∂t
+

1

2
∆u = 0, u(1, x) = Φ(f(x))

and
∂v

∂t
+

1

2
∆v − 1

2
v‖∇v‖2 = 0, v(1, x) = f(x)

where the second PDE above is called Borell’s PDE.

Lemma 4. Let c be a constant such that 2c ≥ supx f(x). Then

−1

2
v‖∇v‖2 = sup

a∈Rn

inf
b∈Rn

{
〈a+ cb,∇v + b〉 − 1

2
v‖b‖2

}
,

where the optimizer a∗ = (c− v)∇v, b∗ = −∇v is a saddle point.

Proof. Denote H(a, b) := 〈a+cb,∇v+b〉− 1
2
v‖b‖2 for a, b ∈ Rn. Then simple

computations imply that H(a, b∗) = −1
2
v‖∇v‖2 and H(a∗, b) = 1

2
(2c−v)‖b+

∇v‖2 − 1
2
v‖∇v‖2. But note that as 2c ≥ f , we have 2c − v ≥ 0 by the

definition of v. Therefore supa infbH(a, b) ≤ supaH(a, b∗) = −1
2
v‖∇v‖2 =

infbH(a∗, b) ≤ supa infbH(a, b).

Proof of Theorem 3. Fix 2c ≥ f , and consider the stochastic differential
equation dXβ

t = (c − v(t,Xβ
t ))∇v(t,X

β
t )dt + cβtdt + dWt and Xβ

0 = 0 for
β ∈ C. The classical Picard scheme(Theorem 4.8 in [LR]) implies that since
(c− v)∇v is smooth with bounded derivatives, there exists a unique progres-
sively measurable map F : W → W such that Xβ = F [{

´ t
0
cβsds + Wt}],

where W denotes the space of continuous paths with its canonical filtration.
Consider α∗

t (β) := (c − v(t,Xβ
t ))∇v(t,X

β
t ) which depends causally on β by

construction and is uniformly bounded. Then α∗ ∈ S(see Definition 2).
Applying Itô’s formula to the process t 7→ e−

1
2

´ t
0∥βs∥

2dsv(t,Xβ
t ) gives

ˆ 1

0

e−
1
2

´ t
0∥βs∥

2ds〈α∗
t (β) + cβt, βt〉dt+ e−

1
2

´ 1
0 ∥βt∥

2dtf(Xβ
1 )

= v(0, 0) +

ˆ 1

0

e−
1
2

´ t
0∥βs∥

2ds〈∇v(t,Xβ
t ), dWt〉
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+

ˆ 1

0

e−
1
2

´ t
0∥βs∥

2ds
{∂v
∂t

(t,Xβ
t ) +

1

2
∆v(t,Xβ

t )

+〈α∗
t (β) + cβt,∇v(t,Xβ

t ) + βt〉 −
1

2
v(t,Xβ

t )‖βt‖2
}
dt.

Lemma 4 and Borell’s PDE imply that the last integral in the above ex-
pression is nonnegative. Since ∇v is bounded, the Brownian integral is a
martingale, so for every β ∈ C

v(0, 0) ≤ E

[ˆ 1

0

e−
1
2

´ t
0∥βs∥

2ds〈α∗
t (β) + cβt, βt〉dt+ e−

1
2

´ 1
0 ∥βt∥

2dtf(Xβ
1 )

]
= Jf [α

∗(β) + cβ, β]

Thus Φ−1
(´

Φ(f)dγn
)
= v(0, 0) ≤ supα∈S infβ∈C Jf [α(β), β].

Fix any α ∈ S and a time step δ = N−1(N ≥ 1). For t ∈ [0, δ), let βt :=
−∇v(0, 0). Extend β on [0, 1] as follows: suppose that β has been defined
on [0, kδ). Let βkt := βt1[0,kδ)(t). Define βt := −∇v

(
kδ,Wkδ +

´ kδ
0
αs(β

k)ds
)

for t ∈ [kδ, (k + 1)δ). Thus β ∈ C(arbitrarily choose β1 := 0).
Consider a process {Xt} defined by Xt := Wt +

´ t
0
αs(β)ds. Definition 2

implies that since βt = βkt for all t ∈ [0, kδ), αs(β)(ω) = αs(β
k)(ω) for a.e.

(s, ω) ∈ [0, kδ)× Ω. Also βt = −∇v(kδ,Xkδ) for every t ∈ [kδ, (k + 1)δ) a.s.
Applying Itô’s formula to t 7→ e−

1
2

´ t
0∥βs∥

2dsv(t,Xt) as in above gives
Jf [α(β), β] = v(0, 0) + E[Γ] where

Γ :=

ˆ 1

0

e−
1
2

´ t
0∥βs∥

2ds
{1
2
v(t,Xt)(‖∇v(t,Xt)‖2−‖βt‖2)+〈αt(β),∇v(t,Xt)+βt〉

}
dt.

As v is bounded and has bounded derivatives of all orders and ‖∇v(t,Xt)‖2−
‖βt‖2 = 〈∇v(t,Xt)− βt,∇v(t,Xt) + βt〉,

Γ ≤ C

N−1∑
k=0

ˆ (k+1)δ

kδ

(1 + ‖αt(β)‖)(δ + ‖Xt −Xkδ‖)dt

for a constant C depending on f only. Since E‖Xt−Xkδ‖ ≤ E‖Wt−Wkδ‖+
δ‖α(β)‖∞ ≤

√
nδ + δ‖α(β)‖∞ for t ∈ [kδ, (k + 1)δ],

E[Γ] ≤ C(1 +K)(
√
nδ + (1 +K)δ) ≤ C ′(1 +K)2

√
δ,

where K := sup{‖α(β′)‖∞ : ‖β′‖∞ ≤ ‖∇v‖∞} < ∞ by definition as α ∈ S,
and where C ′ depends only on f . Thus infβ′∈C Jf [α(β

′), β′] ≤ Jf [α(β), β] ≤
v(0, 0) + C ′(1 +K)2

√
δ which implies

sup
α∈S

inf
β∈C

Jf [α(β), β] ≤ v(0, 0) = Φ−1

(ˆ
Φ(f)dγn

)
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Thus combining above results gives

Φ−1

(ˆ
Φ(f)dγn

)
= sup

α∈S
inf
β∈C

Jf [α(β), β]

Also

Φ−1

(ˆ
Φ(f)dγn

)
= −Φ−1

(ˆ
Φ(−f)dγn

)
= − sup

α∈S
inf
β∈C

J−f [α(β), β]

= inf
α∈S

sup
β∈C

(−J−f [α(β), β]) = inf
α∈S

sup
β∈C

Jf [α(β),−β] = inf
α∈S

sup
β∈C

Jf [α(β), β].

14.2 The Functional Ehrhard inequality
Corollary 5 (Functional Ehrhard inequality). Let λ ∈ [0, 1], and let f,g,h
be uniformly continuous functions with values in [ϵ, 1 − ϵ] for some ϵ > 0.
Suppose that for all x, y ∈ Rn

λΦ−1(f(x)) + (1− λ)Φ−1(g(y)) ≤ Φ−1(h(λx+ (1− λ)y)).
Then

λΦ−1
( ˆ

fdγn

)
+ (1− λ)Φ−1

(ˆ
gdγn

)
≤ Φ−1

( ˆ
hdγn

)
.

Proof. Fix δ > 0, and choose αf , αg ∈ S and βh ∈ C such that

sup
α∈S

inf
β∈C

JΦ−1(f)[α(β), β] ≤ inf
β∈C

JΦ−1(f)[αf (β), β] + δ,

sup
α∈S

inf
β∈C

JΦ−1(g)[α(β), β] ≤ inf
β∈C

JΦ−1(g)[αg(β), β] + δ,

JΦ−1(h)[λαf (βh)+(1−λ)αg(βh), βh] ≤ inf
β∈C

JΦ−1(h)[λαf (β)+(1−λ)αg(β), β]+δ.

Then Theorem 3 implies that

λΦ−1
(ˆ

fdγn

)
+ (1− λ)Φ−1

( ˆ
gdγn

)
≤ λJΦ−1(f)[αf (βh), βh] + (1− λ)JΦ−1(g)[αg(βh), βh] + 2δ

≤ JΦ−1(h)[λαf (βh) + (1− λ)αg(βh), βh] + 2δ

≤ Φ−1
( ˆ

hdγn

)
+ 3δ

Letting δ ↓ 0 gives the result.
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15 Unification of Ehrhard and Prékopa-Leindler
inequalities

After P. Ivanisvili [1]
A summary written by Olli Saari

Abstract
Inequalities of Ehrhard and Prékopa-Leindler are obtained as spe-

cial cases of a further functional inequality involving an auxiliary func-
tion H. This is in the Gaussian case. Validity of the functional in-
equality is shown to be equivalent to H being a solution to a certain
partial differential equation.

15.1 Inequalities
Let n ≥ 1 be the dimension. Denote the Gaussian measure by

dγn(x) = (2π)−n/2e−|x|2/2 dx.

We set
Φ(x) =

ˆ x

−∞
dγ1(x).

We consider the following two inequalities.

• Prékopa-Leindler inequality: Let h, f, g be positive measurable func-
tions and λ ∈ (0, 1). If

h(λx+ (1− λ)y) ≥ f(x)λg(y)1−λ

Thenˆ
Rn

h(x) dγn(x) ≥
(ˆ

Rn

f(x) dγn(x)

)λ(ˆ
Rn

g(x) dγn(x)

)1−λ

.

• Ehrhard’s inequality: Let h, f, g : Rn → [0, 1] be functions such that
for all x, y ∈ Rn

Φ−1(h(λx+ µy)) ≥ λΦ−1(f(x)) + µΦ−1(g(y))

where λ, µ ≥ 0, λ+ µ ≥ 1 and |λ− µ| ≤ 1. Then

Φ−1

(ˆ
Rn

h(x) dγn(x)

)
≥ λΦ−1

(ˆ
Rn

f(x) dγn(x)

)
+ µΦ−1

(ˆ
Rn

g(x) dγn(x)

)
.
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Notice that setting λ ∈ (0, 1) and µ = 1 − λ and replacing Φ(x) by ex,
one sees that Prékopa-Leindler inequality is of the same form as Ehrhard’s
inequality. Only the choice of parameters and range of functions must be
changed. Further, one sees that a minimal function to always satisfy the
assumptions imposed on h must be of the form

sup
λx+µy=t

H(f(x), g(y)),

and hence one natural generalization of the inequalities readsˆ
Rn

sup
y∈Rn

H(f((x− y)/a), g(y/b)) dγn(t)

≥ H

(ˆ
Rn

f(x) dγn(x),

ˆ
Rn

f(y) dγn(y)

)
(1)

for a, b > 0 and a suitable real valued function H. Certain choices of H
yielding the inequalites of Ehrhard and Prékopa-Leindler as special cases.
The main result is the following.

Theorem 1. Let I, J ⊂ R be closed intervals and let H ∈ C3(I × J ;R)
with Hx(x, y)Hy(x, y) 6= 0 for all (x, y) ∈ I × J . Let a, b > 0 be such that
|1− a2 − b2| ≤ 2ab and n ≥ 1. Then (1) holds if and only if

a2HxxH
2
y + (1− a2 − b2)HxHyHxy + b2HyyH

2
x ≥ 0. (2)

The necessity holds for probability measures much more general than γn.
Indeed, a probability measure µ � L1 with finite moments can satisfy (1)
only if (2) holds.

15.2 The proof
Necessity

The necessity of the differential inequality follows by testing the inequality
(1) with suitable f and g. Set

φϵ,δ(t) =


−δϵ−α, t ≤ −δϵ−α

t, −δϵ−α ≤ t ≤ ϵ−α

ϵ−α, t ≥ ϵ−α

and

f(x) = u+ ϵ
φϵ,δ(ax)

Hu(u, v)
+ ϵ2

pφϵ,δ(ax)

2Hu(u, v)

g(y) = u+ ϵ
φϵ,δ(by)

Hv(u, v)
+ ϵ2

qφϵ,δ(ay)

2Hu(u, v)
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with all parameters ϵ, δ, α, p and q to be specified later. Feeding in the test
functions f and g, one derives the necessary condition from (1) after a rather
lengthy computation.

Sufficiency, first step

Consider positive integers k, k1, k2, k3. Let each Aj with j = 1, 2, 3 be a
k × kj matrix of full rank. Let C be a positive definite k × k matrix. Fix
a real valued twice differentiable function B defined on a closed rectangle
I1 × I2 × I3 ⊂ R3 and define the block matrix

D(x) = {(ATi CAj)∂ijB(x)}3i,j=1

for all x ∈ R3. Denote

dγC(x) =
1√

(2π)k detC
e−|C−1/2x|2/2 dx.

Theorem 1 follows from Theorem 2 by essentially setting k = 2n, ki = n and
choosing the matrices and the function B carefully.

Theorem 2. The matrix D(x) is positive definite for all x ∈ I1 × I2 × I3 if
and only if
ˆ
Rk

B(u1(xA1), u2(xA2), u3(xA3)) dγC(x)

≥ B

[(ˆ
Rki

ui(y
√
ATi CAi) dγki

)3

i=1

]
(3)

holds for all Borel measurable ui : Rki → Ii, i = 1, 2, 3.

Sufficiency, second step

It remains to prove Theorem 2. Writing Ãi = C1/2Ai, one may assume
without loss of generality that C is the identity matrix. Denote ũi(x) =
ui(xAi) and u⃗ = (ũi)

3
i=1. Let Pt = e−t∆ be the heat extension and set Ptu⃗ =

(Ptũi)
3
i=1 where the heat extension is understood to detect the dimension of

the input function.
Note that P1/2 evaluated at x = 0 is then the expectation with respect

to dγ. By changing variables, we see that (3) is equivalent to

V (x, t) := B(Ptu⃗(x))− PtB(u⃗(x)) ≤ 0 (4)
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with this choice. By a computation, we verify

(∂t −∆)V (x, t) = −[Pt∇u⃗(x)]D(Ptu⃗(x))[Pt∇u⃗(x)]T .

The assumption on D(x) being positive definite translates to V (x, t) being a
subsolution of the heat equation

If D(x) is positive definite and V (x, t) is accordingly subsolution, the
parabolic maximum principle implies V (0, 1/2) ≤ V (0, 0) = 0 as claimed.
Conversely, if (3) holds for all test functions, then V (x, t) ≤ 0 for all (x, t).
It follows

0 ≥ lim
t→0+

V (x, t)− V (x, 0)

t
= −[P0∇u⃗(x)]D(P0u⃗(x))[P0∇u⃗(x)]T

and as u is arbitrary, the claim follows.

15.3 Extensions
Similar method is applied to a number of other inequalities in [2]. Several
versions of Theorem 2 are proved there. The number of input functions need
not be restricted to two. Choosing the function B and and the matrices dif-
ferently, one can prove the inequalities here, both Gaussian and Lebesgueian,
as well as many related inequalities. The method can be seen as a systematic
reformulation in terms of a “Bellman PDEs” of other heat flow methods.
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16 Capacity of Rank Decreasing Operators
After Gurvits [5]

A summary written by Jacob Denson

Abstract

We describe the theory of the capacity of rank-decreasing positive
operators, and Gurvit’s operator rescaling algorithm to compute the
capacity of such operators, with a brief discussion of the connection
between this theory and the computation of Brascamp-Lieb constants.

Recall a theorem of Lieb [7], which shows that any inequality of the form
ˆ
Rn

m∏
i=1

|fi(Bix)|pi dx ≤ BL(B, p) ·
m∏
i=1

‖fi‖piL1(Rni ),

has an optimal Brascamp-Lieb constant BL(B, p) satisfying

BL(B, p)2 = sup
X1,...,Xm≻0

det(
∑m

i=1 piB
∗
iXiBi)∏m

i=1 det(Xi)pi
. (1)

Here and in what follows, for a square matrix A, we write A � 0 and A � 0
to mean A is positive definite or semidefinite.

The focus of these notes is to introduce analysts to a setting, originally
studied by computing scientists to understand problems in combinatorial
optimization and quantum information theory, which can provide insight
into the computation of the Brascamp-Lieb constant. Utilizing this theory,
Garg, Gurvits, and Wigderson [4] formulated a polynomial time algorithm
for approximating the Brascamp-Lieb constant, a fact that has important
theoretical consequences to the general theory of Brascamp-Lieb inequalities
independent of practical application to computation of particular Brascamp-
Lieb constants. This connection is more fully explored in the following talk.
In this summary, we introduce the original setting studied, only noting some
similarities to Brascamp Lieb as we proceed.

16.1 Operator Scaling
Let M(N) denote the space of all N×N complex-valued matrices. The main
object of study in these notes are positive operators T :M(N)→M(N), i.e.
linear transformations between spaces of matrices such that if X � 0, then
T (X) � 0. There is a rich theory of these maps, connected to representation
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theory and free probability theory. For more background, the textbook [2]
provides a thorough introduction to this theory. A useful example to keep in
mind, given any matrices B1, . . . , Bm and p1, . . . , pm > 0, is the operator

T (X) =
m∑
i=1

pi(B
∗
iXBi). (2)

With any positive operator T , we associate a quantity Cap(T ) ≥ 0, known
as the capacity of T , defined by setting

Cap(T ) = inf
X≻0

det(TX)

det(X)
. (3)

The connection between capacity and Brascamp-Lieb may be hinted at by
comparing (3) to (1) when T is of the form given in (2). Being defined by a
non-convex optimization, it seems difficult to explicitly compute capacity. In
this talk, we discuss a result of Gurvits [5], who found an efficient algorithm
to compute, for each ε > 0, a value Capapprox(T ) such that

Cap(T ) ≤ Capapprox(T ) ≤ (1 + ε) · Cap(T ).

We obtain this approximation by applying the technique of operator scaling,
which we describe in this section.

Given any invertible matrices A,B ∈ M(N), and any positive operator
T : M(N) → M(N), we define a scaled operator TA,B(X) = BT (AXA∗)B∗.
For any X � 0, if we write Y = AXA∗, then

det(TA,BX)

det(X)
= det(A)2 det(B)2 · det(TY )

det(Y )
. (4)

Taking infima over both sides of (4) for all choices of input X shows that
Cap(TA,B) = det(A)2 det(B2)Cap(T ). Thus computing Cap(TA,B) imme-
diately gives Cap(T ). The idea of operator is to rescale an operator into
something whose capacity we can more easily compute. This motivates the
introduction of doubly stochastic operators.

A positive operator T is doubly stochastic if T (I) = T ∗(I) = I, where
T ∗ is the adjoint of T with respect to the inner product (X,Y ) 7→ Tr(XY ∗).
What interests us about this definition is that Cap(T ) = 1 for any doubly
stochastic operator T . The proof of this statement can be found as Theorem
4.32 of [8], with relevant background information about doubly stochastic
matrices found in Section 8.5 of [9].

Thus, given a positive operator T , if we can find A,B ∈M(N) such that
TA,B is doubly stochastic, then it follows that Cap(T ) = det(A)−2 det(B)−2.
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This is clearly only possible if Cap(T ) > 0, but not quite possible for all such
T . In fact, in [3], it is shown that this rescaling is only possible if the equation
defining capacity has extremizers, i.e. Cap(T ) = det(TX)/ det(X) for some
particular input X. Nonetheless, if Cap(T ) > 0 then we will find doubly
stochastic operators approximating T arbitrarily closely. Since capacity is a
continuous function of the input, this suffices to approximate Cap(T ) up to
an arbitrary error.

Gurvits’ approximation algorithm is quite simple, an application of a
similar method first utilized by Sinkhorn [10]. Given a positive operator T ,
it is easy to scale the operator to an operator S with S(I) = I; we simply
consider the operator TI,T (I)−1/2 . Similarily, we can scale T to an operator S
with S∗(I) = I by taking the scaling TT∗(I)−1/2,I . The challenge is to obtain
scalings for which both properties are approximately true. Sinkhorn’s trick
is to iteratively apply each of the rescalings to our operators, obtaining a
sequence of matrices T0, T1, T2, . . . with T0 = T , Ti(I) = I for odd i, and
T ∗
i (I) = I for even i. If this sequence converges, the limit will be doubly

stochastic, as desired.
Convergence to a single stochastic matrix does not occur for all T with

Cap(T ) > 0, but we will show that if Cap(T ) > 0, then the distance be-
tween the elements of the sequence to the family of all stochastic operators
converges to zero, which is sufficient for our purposes. To analyze the conver-
gence, we rely on the capacity as a potential for the analysis of the algorithm
(this was the main reason Gurvits first defined the capacity in [5]). To de-
termine how close we are to a doubly stochastic matrix, we use the measure

DS(T ) = ‖T (I)− I‖2 + ‖T ∗(I)− I‖2.

The following properties then hold:

1. If T (I) = I or T ∗(I) = I, then AN ≲N Cap(T ) ≤ 1 for some constant
AN > 0 depending on N . Moreover, for Cap(T ) ≥ 1/2,

DS(Tn) ≤ 6 log(1/Cap(Tn)).

2. Cap(Tn) is increasing in n > 0. More precisely,

Cap(Tn+1) ≥ emin(1,DS(Tn))/6 · Cap(Tn).

3. If T (I) = I or T ∗(I) = I and DS(T ) < 1/(N + 1), then Cap(T ) > 0.

We claim that from these properties, we can detect inM0 = 6(N+1) log(1/AN)
iterations of the algorithm whether Cap(T ) > 0. Indeed, if Cap(T ) > 0, then
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Property 1 implies that Cap(T1) ≥ AN . For any δ and M , repeated applica-
tions of Property 3 imply that there either exists i < M such that DS(Ti) ≤ δ,
or Cap(TM) ≥ eεM/6AN . In particular, if δ = 1/(N + 1), and M =M0, then
this calculation, combined with Property 1, implies that if Cap(T ) > 0, then
there must exist i ≤ M0 with DS(Ti) < 1/(N + 1). On the other hand,
Property 3 implies that if Cap(T ) = 0, then DS(Tn) ≥ 1/(N + 1) for all
n. Checking DS(Ti) for i ≤ M0 thus gives a simple way to check whether
Cap(T ) > 0. Using very similar techniques, we leave it as an exercise to
check these properties imply that if Cap(T ) > 0, then in (6/ε) log(1/AN) it-
erations of the algorithm, one can find i such that DS(Ti) ≤ ε. Thus we have
a reliable way to approximate the capacity of a matrix, which [4] extends to
find efficient ways to approximate Brascamp-Lieb constants. More advanced
techniques, given in [3], show that we only actually need to run the algorithm
for Poly(N, log(1/ε)) iterations to obtain a ε-approximation.

16.2 Capacity of Rank-Decreasing Operators
We conclude these notes by discussing an analogy between Brascamp-Lieb
and the study of capacity. Bennett, Carbery, Christ, and Tao [BCCT08]
showed that BL(B, p) is finite in (1) if and only if

∑m
j=1 pjnj = 0, and

dim(V ) ≤
m∑
j=1

pj dim(BjV ) for all subspaces V ⊂ Rn. (5)

Thus the finiteness of (1) acts as a guarantee for the mapping properties of
the matrices B1, . . . , Bm given in (5), and vice versa. A useful property of a
positive operator T is that it is rank non-decreasing, i.e. for any X � 0,

Rank(TX) ≥ Rank(X). (6)

Condition (6) seems somewhat similar to (5). And indeed, analogous to the
equivalence between (5) and the finiteness of (1), one has an equivalence
between (6) and the non-vanishing of (3).

Theorem 1. T is rank non-decreasing if and only if Cap(T ) > 0.

Proof. A simple family of positive operators are those of the form

TX = X11A1 + · · ·+XNNAN , (7)

where A1, . . . , AN � 0. For such an operator, we can write

Cap(T ) = inf
γ1,...,γN>0

det(
∑N

j=1 γjAj)

γ1 · · · γN
.

83



Results from a previous paper of Gurvits and Samorodnitsky [6] imply Theo-
rem 1 in the special case of an operator defined by (7). Assuming this result,
we indicate how this implies the general case.

For each orthonormal basis U = {u1, . . . , uN}, we define the decoherence
operator DU(X) =

∑
〈Xui, ui〉 · uiu∗i , and then consider the operator TU

defined such that TU(X) = (T ◦ DU)(X) =
∑N

i=1〈Xui, ui〉 · T (uiu∗i ). This
operator is, up to a change of basis in M(N), described in the form (7).
Thus TU is rank non-decreasing if and only if Cap(TU) > 0. The theorem
then follows from the following two properties of this construction:

1. T is rank non-decreasing if and only if TU is as well, for all bases U .

2. Cap(T ) = infU Cap(TU).

If Cap(T ) > 0, then Property 2 implies Cap(TU) > 0 for all U , so TU is
rank non-decreasing for all U , and thus Property 1 implies T is rank non-
decreasing. The converse is similar.

The proof of Properties 1 and 2 both rely on a simple trick. We will
prove Property 1 here. Given any X � 0, we can find an orthonormal
basis U diagonalizing X, and then for such U we have T (X) = TU(X). This
immediately implies T is rank non-decreasing if TU is rank non-decreasing for
all U . The converse follows because the composition of rank non-decreasing
operators is rank non-decreasing, and DU is rank non-decreasing (all doubly
stochastic operators are rank non-decreasing).
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17 Algorithmic and optimization aspects of
the Brascamp-Lieb constant

After A. Garg, L. Gurvits, R. Oliveira and A. Wigderson [GGOW18]

A summary written by Felipe Gonçalves

Abstract
The authors of [GGOW18] produce an efficient algorithm, embed-

ded in the computational framework of operator scaling, that decides
in polynomial time when the Brascamp-Lieb constant is finite, deliv-
ering an arbitrarily close approximation of its value or else exhibiting
a counter-example to the subspace inequality criteria.

17.1 Introduction
The Brascamp-Lieb inequality [BL76, L90, BCCT08] gives a condition for
the existence of a constant C > 0 such thatˆ

Rn

m∏
j=1

fj(Bjx)
pjdx ≤ C

m∏
j=1

(ˆ
Rnj

fj(x)dx

)pj
for all fj : Rnj → R+,

where Bj : Rn → Rnj are given linear surjective maps, 1 ≤ nj ≤ n and
pj ∈ R+. We refer to the collection (B,p) = ((B1, ..., Bm), (p1, ..., pm)) as the
BL-datum and C will depend on (B,p). Given a BL-datum we then define
the optimal constant by

BL(B,p) := sup

´
Rn

∏m
j=1 fj(Bjx)

pjdx∏m
j=1

(´
Rnj fj(x)dx

)pj .
A criteria for the finiteness of the Brascamp-Lieb constant is given in [BCCT08].
Namely, BL(B,p) <∞ iff the following hold:

• n =
∑

j pjnj;

• dimV ≤
∑

j pj dimBjV for any subspace V ⊂ Rn.

For now on we assume all (B,p) satisfy n =
∑

j pjnj. We say that (B,p)

is isotropy-normalized if
∑

j pjB
T
j Bj = In. Otherwise, we can isotropy-

normalize it by the transformation

Bj ← Bj

(
m∑
j=1

pjB
T
j Bj

)−1/2

.
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We say that (B,p) is projection-normalized if each Bj is a projection, namely
BjB

T
j = Inj

. We can projection-normalize it by the transformation

Bj ← (BjB
T
j )

−1/2Bj.

Observe however that one normalization destroys the other. We say (B,p) is
geometric if it is isotropy-normalized and projection-normalized. Projection-
normalization is always possible since Bj is surjective, and so BjB

T
j is positive

definite. Lieb [L90] showed that if BL(B,p) <∞ then

BL(B,p)2 = sup
Xj≻0

∏m
j=1(detXj)

pj

det
(∑m

j=1 pjB
T
j XjBj

) ,
where the supremum is taken over all positive definite matricesXj ∈ GLnj

(R).
In particular, if BL(B,p) <∞ then

∑
j pjB

T
j Bj is invertible (hence positive

definite) because we can take Xj = Inj
. Hence we can always apply isotropy-

normalization.

Lemma 1 ([GGOW18]). Let BL(B,p) < ∞ and (B,p) be either isotropy-
normalized or projection-normalized. Then BL(B,p) ≥ 1 and equality holds
if and only if (B,p) is geometric.

17.2 Main Results
In [GGOW18] the authors study the computational aspects of the BL(B,p)
constant. More specifically they ask, given a rational datum (B,p), is there
an efficient algorithm that answers the following questions:

(a) Decide if BL(B,p) <∞?

(b) If BL(B,p) =∞, find V ⊂ Rn such that dimV >
∑

j pj dimBjV.

(c) If BL(B,p) <∞, can we numerically approximate the value BL(B,p)
with arbitrary precision?

Note that if BL(B,p) <∞ and B′
j = C

−1/2
j BjC

−1/2 then

BL(B′,p)2 = detC
m∏
j=1

(detCj)
pjBL(B, p)2.

They propose the following alternate minimization algorithm.
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Algorithm: Input a BL-datum (B,p) and ϵ > 0.
Step 1: We first isotropy-normalize (B,p).
Step 2: If (B,p) was just isotropy-normalized, then projection-normalize
it. Otherwise, then isotropy-normalize it.
Step 3: If BL(B,p) ≤ 1 + ϵ then halt, otherwise go back to Step 2.

Such greedy iterative scaling is common in the computational context of
operator scaling and have been used widely. The general idea is the following:
If we are given a metric space (M,d), two sets X,Y ⊂ M and we want
to find (x∗, y∗) = argminx∈X,y∈Y d(x, y), then one can iteratively use the
alternate minimization y1 = argminy∈Y d(x0, y), x1 = argminx∈X d(x, y1),
y2 = argminy∈Y d(x1, y), x2 = argminx∈X d(x, y2) and so on. The hope is
that (xn, yn) → (x∗, y∗) as n → ∞. Such algorithm has been employed for
instance in the search for doubly stochastic scaling for completely positive
operators [G04, GGOW16, IGS18] (more details see [GGOW18, Section 3]).

We say that a BL-datum (B,p) has total binary length b ∈ N if all Bj’s
have rational coordinates and we have b =

∑
j,k,l bin.length(〈Bjek, el〉). We

say that (B,p) has common denominator d if pj ∈ 1
d
Z+ for all j.

Theorem 2. Assume that the datum (B,p) has binary length b and common
denominator d. Assume that BL(B,p) < ∞. Then the proposed algorithm
above computes a (1 + ϵ)-approximation of BL(B,p) in time poly(d, b, 1/ϵ).
Moreover, the algorithm outputs B′ which is almost geometric in the sense B′

is either isotropy-normalized or projection-normalized, and BL(B,p) ≤ 1+ϵ.

Building up on previous work [G04, GGOW16] and using the results of
[IGS18] as a black box, the authors were able construct a bridge connect-
ing the world of operator scaling and Brascamp-Lieb inequalities, where the
following result then follows immediately from [IGS18].

Theorem 3. There is an algorithm that on input (B,p) of binary length b
and common denominator d runs in time poly(b, d) and tests if BL(B,p) <
∞. Moreover, if BL(B,p) = ∞ it then provides a subspace V ⊂ Rn such
that dimV >

∑
j pj dimBjV .
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18 The Kempf–Ness theorem
After Böhm and Lafuente [BL]

A summary written by Gianmarco Brocchi

Abstract

The Brascamp–Lieb constant is related to the length of minimal
vectors in the sense of the Kempf–Ness theorem. We present the real
version of the theorem and main ideas of the proof.

18.1 Introduction
Given a collection of surjective maps πj : Rd → Rdj and numbers sj > 0
for j ∈ {1, . . . ,m}, with m, d and dj ∈ N, with dj < d, we consider the
Brascamp–Lieb inequality:

ˆ
Rd

∏
j

|fj(πjx)|sjdx ≤ BL({πj, sj})
m∏
j=1

(ˆ
Rdj

fj(y)dy

)sj
. (1)

The inequality (1) is maximised by Gaussian. Let gj be a Gaussian on Rdj .
By plugging gj into (1) we obtain

BL({πj, sj}) ≥
´
Rd

∏
j|gj(πjx)|sjdx∏m

j=1

(´
Rdj gj(y)dy

)sj =

(
det(

∑
j sjπ

∗
jA

∗
jAjπj)∏m

j=1 det(A
∗
jAj)

sj

)−1/2

.

So the optimal constant BL({πj, sj}) is achieved by taking the supremum
over all matrices Aj ∈ GL(dj). In [Gr], the right hand side of the expression
above is written by using the Hilbert–Schmidt norm, so that

BL({πj, sj})−1 = inf
Aj∈SL(dj)
A∈SL(d)

m∏
j=1

(
d
−1/2
j ‖AjπjA∗‖HS

)sjdj
. (2)

Equation (2) gives a way to approximate Brascamp–Lieb constant by
minimising a “distance function” under the action of the group G ⊂ GL(d1)⊗
· · · ⊗ GL(dm)⊗ GL(d) on the vector space (V, 〈·, ·〉) where the projections πj
live. The quantity BL({πj, sj})−1 is the length of the minimal vector in a
given orbit.

A classical theorem by George Kempf and Linda Ness relates closed orbits
and minimal vectors.
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18.2 Kempf–Ness theorem
Definition 1. Let G be a group acting on a vector space V endowed with
inner product 〈·, ·〉, and let d : V → R+ be a given function. For v ∈ V , a
minimal vector v̄ in the orbit G · v is a vector that minimises d(·).

Let M be the set of minimal vectors in V .

Remark 2 (Closed orbits intersect M ). If the orbit G · v is closed (as a
set), the intersection with closed balls BR(0) := {w : d(w) ≤ R} for R large
enough is not empty and is compact. In particular, d(·) has a minimum on
G · v ∩BR(0), so G · v contains a minimal vector.

The converse, for real reductive Lie groups, is the (real version of the)
Kempf–Ness theorem. We briefly introduce reductive Lie groups.

Let G be a Lie group and let g be the Lie algebra of G. We will consider
the symmetric part of the algebra given by the Cartan decomposition.

Remark 3 (Cartan decomposition). Let G ⊂ GL(d) be a Lie group and
let g be its Lie algebra. Then g can be decomposed in symmetric and anti-
symmetric part: g = s ⊕ a, where s = g ∩ Sym(V ). If [·, ·] is the Poisson
bracket: [a, b] = ab− ba, then [s, s] ⊂ a and [s, a] ⊂ s.

Definition 4. A Lie group G is called reductive if can be written as G =
K · exp(s), where K is a maximal compact subgroup of G.

We will be interested in subgroups of GL(d,R).

Theorem 5 (Real Kempf–Ness Theorem). Let G ⊂ GL(d,R) be a reductive
Lie group with a maximal subgroup K = G∩O(Rd). For v ∈ V the orbit G ·v
contains a minimal vector if and only if is closed. Moreover G·v∩M = K ·v.

18.3 Proof of the theorem
The proof is based on two main facts:

1. If the orbit G·v is not closed, the elements in the closure can be reached
with a one-parameter subgroup. This is proved by contradiction: as-
suming that all such orbits are separated leads to an absurd.

2. If the distance function d(·) is strictly convex, its critical points are
minima and there are not such points on non-closed orbits.

We start by considering the simpler case of abelian groups.
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18.4 Abelian case
Let T be a abelian, non compact, connected Lie group2 and let t be its Lie
algebra. Let K ⊂ T be a maximal, compact subgroup. In the complex case,
one can think of K as the elements of T with modulus 1.

Representation

The elements in T can be written as exp(tα) ∈ T for α ∈ t and t ∈ R. In
particular, there is (v1, . . . , vN) basis of V which diagonalises the action of
T . Then for λ ∈ t we have

eλ · v = (e⟨λ,α1⟩v1, . . . , e
⟨λ,αN ⟩vN), for α1, . . . , αN ∈ t.

For an abelian group T , the representation of its action is enough to show
that, given any v̄ ∈ T · v \ T · v, there is a one-parameter semigroup inter-
secting the orbit T · v̄.

Lemma 6 (Hilbert–Mumford for abelian groups). For any v̄ ∈ T · v \ T · v
there exists g ∈ T and α ∈ t such that lims→∞ exp(sα) · v = g · v̄.

Convexity of the distance function

For α ∈ s and t ∈ R, consider the distance function

d(t) := dα,v(t) := ‖exp(tα) · v‖2.

This is the square of the distance to the origin along the curve exp(tα) · v in
G. The function d(t) is convex, so its critical points are minima.

Lemma 7 (Convexity). For A ∈ s and v ∈ V the function dα,v(t) is convex,
in particular d′′(t) = 4‖A · exp(tA) · v‖2.

Let α ∈ s and assume that limt→∞ exp(tα) · v = v̄ exists. Then, by
convexity of d(t), we have that

‖etα · v‖ > ‖v̄‖ , ∀t ∈ R.

Thus the function d(t) cannot achieve its minimum on a non-closed orbit.
2the notation comes from T being an algebraic torus in the complex case.
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18.5 Real reductive groups
For general real reductive groups, one can write G = KTK, where K is
compact and T is abelian. It is enough to show that the limit of the one-
parameter subgroup exists.

Lemma 8 (Hilbert–Mumford for real reductive groups). Let G be a real
reductive group and let v ∈ V . If the orbit G ·v is not closed then there exists
α ∈ s such that lims→∞ exp(sα) · v exists.

Idea of the proof. Let t ⊂ s be the maximal abelian subalgebra. Since G =
KTK, with T = exp(t), it is enough to show that given v̄ ∈ G · v \G ·v there
exists g ∈ G, k ∈ K and α ∈ t such that lims→∞ exp(sα) · (k · v) = g · v̄.

Suppose by contradiction that the two orbitsG · v̄ and T · k · v are disjoint
for all k ∈ K. Assume we can separate any of these closed orbits with a
function fk. Exploiting the compactness of K, we can extract finitely many
functions for the job and construct a single function f which separates TK · v
and G · v̄ . Since K · v̄ ⊂ G · v̄, we can then separate the orbits TK · v and
K · v̄. But this implies that v̄ 6∈ K(TK · v) and so v̄ 6∈ G · v, which is
absurd.

We discuss separation of orbits in the next subsection.

18.5.1 Separation of closed orbits

Consider a subset of coordinate indices I ⊂ {1, . . . , N} and let UI be the sub-
set of vectors whose non-zero coordinates belongs to I: UI = {v ∈ V : vi 6= 0
if and only if i ∈ I}.

Lemma 9. The orbit T ·v is closed if and only if there is a convex combination
{θi} of {αi} such that

∑
i θiαi = 0.

Given a closed orbit O1, consider the corresponding θ := {θi} given by
the above lemma. Define the function fθ : V → R as

fθ(v) :=

{∏N
i=1 v

θi
i if i ∈ I

0 otherwise .

The function fθ is continuous. Moreover, by using the representation of the
action of T , we see that fθ is also T -invariant, indeed

fθ(exp(λ) · v) =
N∏
i=1

(e⟨λ,αi⟩vi)
θi = e⟨λ,

∑
i αiθi⟩fθ(v) = fθ(v).
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Intuitively, if two closed orbits are distinct, there must exist a zero com-
bination of αi for one orbit that is not zero for the other one. In other words,
there exists θ such that the map fθ separates the two orbits.

Lemma 10. Let O1,O2 be two distinct, closed T -orbits. Then there exists
θ = {θi} such that fθ(O1) 6= fθ(O2).
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19 The Brascamp-Lieb constant via invariant
polynomials

After P. T. Gressman [Gre21]
A summary written by Rajula Srivastava

Abstract
The goal of the section is to establish the existence of certain

invariant polynomials, which yield quantitative information about the
Brascamp-Lieb constant. Further, a concrete characterization of such
polynomials is also given.

19.1 Introduction
For each j = 1, . . . ,m, let πj : Rn → Rnj denote an arbitrary linear map and
let pj ∈ [0, 1] be a real number. The Brascamp-Lieb constant BL({πj, pj}mj=1)
is defined to be the smallest non-negative real number such that

ˆ
Rn

m∏
j=1

(fj(πj(x)))
pjdx ≲ BL({πj, pj}mj=1)

m∏
j=1

(ˆ
Rnj

fj

)pj
(1)

for all non-negative measurable functions fj ∈ L1(Rnj). Throughout this
discussion, we shall assume that the dimensions nj, n and the exponents pj
satisfy the relation

m∑
j=1

pjnj
n

= 1, (2)

which, via a scaling argument, can be seen to be a necessary condition for
the Brascamp-Lieb constant in (1) to be finite. It was shown by Lieb [Lie90]
that any Brascamp-Lieb inequality has an extremizing sequence of Gaussians,
which implies that

[BL({πj, pj}mj=1)]
−1 = inf

A1∈GLn1 ,...,Am∈GLnm

[
det
(∑m

j=1 pjπ
∗
jAjA

∗
jπj
)∏m

j=1(detA
∗
jAj)

pj

]1
2

, (3)

where GLnj
denotes the Lie group of invertible nj × nj matrices.

The following lemma establishes an analogous relationship between the
Brascamp-Lieb constant and an infimum over the product of the Hilbert-
Schmidt norm of operators of the form AjπjA

∗, where the matrices Aj, A
now vary over the Special Linear Lie groups SLnj

and SLn respectively (the
Lie group formed by matrices of determinant equal to 1).
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Lemma 1. We have

[BL({πj, pj}mj=1)]
−1 = inf

A1∈SLn1 ,...,Am∈SLnm ,
A∈SLn

m∏
j=1

n
−
pjnj

2
j |||AjπjA∗|||pjnj ,

where |||·||| denotes the Hilbert-Schmidt norm computed with respect to the
standard basis.

Proof Sketch. For any A ∈ SLn and Aj ∈ GLnj
we can relate the Hilbert-

Schmidt norm
m∑
j=1

pj|||AjπjA∗|||2 =
m∑
j=1

pjtr
(
Aπ∗

jA
∗
jAjπjA

∗) = tr

(
m∑
j=1

pjAπ
∗
jA

∗
jAjπjA

∗

)

to the determinant of the matrix
∑m

j=1 pjAπ
∗
jA

∗
jAjπjA

∗ via the AM-GM in-
equality, applied to its eigen values (all non-negative), as follows∣∣∣∣∣

m∑
j=1

pj
n
|||AjπjA∗|||2

∣∣∣∣∣
n

≥ det
m∑
j=1

pjAπ
∗
jA

∗
jAjπjA

∗ = det
m∑
j=1

pjπ
∗
jA

∗
jAjπj.

Taking an infimum of the left hand side over A ∈ SLn converts the inequality
to an equality (we can see this by choosing certain specific values for A in
terms of πj, Aj). Using (3), we conclude that

[BL({πj, pj}mj=1)]
−1 = inf

A1∈GLn1 ,...,Am∈GLnm ,
A∈SLn

∑m
j=1 pj|||AjπjA∗|||2

n
∏m

j=1|detAj|
2pj
n


n
2

.

To convert an infimum over Aj ∈ GLnj
to one over SLnj

, we express each
matrix Aj as a non-zero constant tj times a matrix of determinant 1. Another
application of the AM-GM inequality, along with the fact that

∑m
j=1

pjnj

n
= 1,

then yields

inf
t1>0,...,tm>0

t
−2p1n1

n
1 . . . t

−2pmnm

n
m

m∑
j=1

pjnj
n

t2j
|||AjπjA∗|||2

nj
=

m∏
j=1

(
|||AjπjA∗|||2

nj

)pjnj

2

.

This proves the lemma.
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19.2 How do invariant polynomials enter the picture?
Consider a group representation ρ of SLn1 × . . .× SLnm × SLn defined by

ρ(A1,...,Am,A)({πj}mj=1) := {AjπjA∗}mj=1.

We now turn our attention to a polynomial function Φ of the matrices
{πj}mj=1, which is homogeneous of degree dj > 0 in each πj, that is,

Φ({λjπj}mj=1) = λd11 . . . λdmm Φ({πj}mj=1) for all λ1, . . . , λm ∈ R, (4)

and is ρ−invariant, i.e.,

Φ({AjπjA∗}mj=1) = Φ({πj}mj=1) (5)

for all Aj ∈ SLnj
and A ∈ SLn. We also assume that the degrees dj satisfy

the relation
p1n1

d1
= . . . =

pmnm
dm

=
1

sΦ
(6)

for some sΦ ∈ R. Define |||Φ||| to be the maximum of |Φ| over all m−tuples
{π̃j}mj=1 such that |||π̃j||| ≤ 1 for all j = 1, . . . ,m. Then for all inputs {πj}mj=1,
using (4) and (5), we have

|Φ({πj}mj=1)| = |Φ({AjπjA∗}mj=1)| ≤ |||Φ|||
m∏
j=1

|||AjπjA∗|||dj .

Lemma 1 then implies that

[BL({πj, pj}mj=1)]
−1 ≥

m∏
j=1

n
−
pjnj

2
j |||Φ|||−

1
sΦ |Φ({πj}mj=1)|

1
sΦ , (7)

thus relating the Brascamp-Lieb constant to invariant polynomials satisfy-
ing properties (4), (5) and (6). The following lemma establishes that the
collection of all such invariant polynomials can in fact be used to compute
the order of magnitude of the Brascamp-Lieb constant, thus strengthening
inequality (7) above.

Lemma 2. Let {pj}mj=1 ∈ (0, 1]m be rational exponents satisfying (2). Let IP
denote the collection of all non-zero invariant polynomials satisfying (4), (5)
and (6). Then

[BL({πj, pj}mj=1)]
−1 ≈ sup

Φ∈IP
|||Φ|||−

1
sΦ |Φ({πj}mj=1)|

1
sΦ , (8)
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with implicit constants independent of {πj}mj=1. Further, there exists a finite
subset IP0 ⊂ IP such that

sup
Φ∈IP
|||Φ|||−

1
sΦ |Φ({πj}mj=1)|

1
sΦ ≈ sup

Φ∈IP0

|||Φ|||−
1
sΦ |Φ({πj}mj=1)|

1
sΦ .

Proof Sketch. Due to (7), it suffices to show the required upper bound and
to assume without loss of generality that the left hand side of (8) is positive.
The proof proceeds by contradiction. Suppose that the required upper bound
does not hold. Then, using the homogeneity of both sides of (8) in {πNj }mj=1

and the ρ-invariance of Φ, one can show that for each positive integer N ,
there exist data {πNj }mj=1 such that

1 = [BL({πNj , pj}mj=1)]
−1 > N sup

Φ∈IP
|||Φ|||−

1
sΦ |Φ({πNj }mj=1)|

1
sΦ , (9)

and limN→∞|||πNj ||| = n
1
2
j for each j = 1, . . . ,m. Passing to a subsequence in

N , πNj converges to some limiting data π∞
j for each j. It is not hard to see

that BL({π∞
j , pj}mj=1) = 1 as well. On the other hand, by the continuity of

each Φ ∈ IP and (9), we conclude that supΦ∈IP|||Φ|||
− 1
sΦ |Φ({π∞

j }mj=1)|
1
sΦ = 0.

The desired contradiction is then derived by coming up with a polyno-
mial Φ ∈ IP such that Φ({π∞

j }mj=1) 6= 0. Instead of constructing such a Φ
directly, we use the theory of invariant polynomials on the vector space V
of multilinear maps of a specific form, as discussed in the next subsection.
Further, the finite set IP0 would be taken to be the polynomials associated
to any finite generating set of the invariant polynomial algebra on V .

19.3 Invariant polynomials acting on multilinear maps
We first describe the basic setup. Since each exponent pj in Lemma 2 is
rational, there exist positive integers q1, . . . , qm, q such that pjnj =

qj
q

for
j = 1, . . . ,m. We shall be interested in maps of the form

Π({x1i , y1i }
q1
i=1, . . . , {xmi , ymi }

qm
i=1),

linear in each xij ∈ Rnj and each yij ∈ Rn for i = 1, . . . , qj and j = 1, . . . ,m.
The group SLn1 × . . .× SLnm × SLn acts on the vector space of all such Π as
under

ρ(A1,...,Am,A)Π({x1i , y1i }
q1
i=1, . . . , {xmi , ymi }

qm
i=1)

= Π({A∗
1x

1
i , A

∗y1i }
q1
i=1, . . . , {A∗

mx
m
i , A

∗ymi }
qm
i=1).
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The advantage of working with a multilinear map Π of the above form is
that we can make use of the following fundamental result from Geometric
Invariant Theory, which gives a sufficient condition for the existence of a
homogeneous, ρ-invariant polynomial P such that P (Π) = 1.

Proposition 3. Let V be the vector space of all multilinear maps

Π({x1i , y1i }
q1
i=1, . . . , {xmi , ymi }

qm
i=1)

as defined above. If Π ∈ V has the property that

inf
g∈G
|||ρgΠ||| = |||Π||| > 0,

where G := SLn1 × . . . × SLnm × SLn, ρ is as defined above and |||·||| is the
Hilbert-Schmidt norm on V with respect to the standard basis, then there
exists a homogeneous, nonconstant ρ-invariant polynomial P on V such that
P (Π) = 1.

Recall that the last step in the proof of Lemma 2 is to show the existence
of a polynomial Φ ∈ IP such that Φ({π∞

j }mj=1) = 0. To exploit the proposition
above, we define a multilinear map Π∞ ∈ V associated to the data {π∞

j }mj=1

by

Π∞({x1i , y1i }
q1
i=1, . . . , {xmi , ymi }

qm
i=1) :=

m∏
j=1

qj∏
i=1

〈xji , π∞
j y

j
i 〉. (10)

Then |||ρ(A1,...,Am,A)Π
∞||| =

∏m
j=1

∏qj
i=1|||Ajπ∞

j A
∗|||qj and, using the proper-

ties of {π∞
j }mj=1 and the fact that [BL({π∞

j , pj}mj=1)]
−1 = 1, we obtain that

|||Π∞||| = inf
A1∈SLn1 ,...,Am∈SLnm ,

A∈SLn

|||ρ(A1,...,Am,A)Π
∞||| =

m∏
j=1

n
njpjq

2
j > 0.

Thus, Proposition 3 is applicable and we conclude that there exists a non-
constant, homogeneous ρ-invariant polynomial P , say of degree d, such that
P (Π∞) = 1. Since each entry of Π∞ is itself a product of the entries of π∞

j ,
we may view P (Π∞) as a polynomial in the entries of the π∞

j . More precisely,
regarding π1, . . . , πj as matrices of indeterminates, we define Π as in (10),
replacing {π∞

j }mj=1 by {πj}mj=1. Finally, we define Φ({πj}mj=1) := P (Π). It is
then straightforward to check that Φ ∈ IP (with dj = dqj) and Φ({π∞

j }mj=1) =
1, thus yielding the desired contradiction in the proof of Lemma 2. Further,
the finite subset IP0 can be taken to be consisting of only polynomials of the
form P (Π), for P belonging to any finite generating set of the ρ-invariant
algebra on V .
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19.4 Concrete characterization of the invariant poly-
nomials

The final result is a concrete characterization of the class IP in terms of
polynomials expressible as determinants of block-form matrices, with each
block entry being a constant multiple of πj for some j = 1, . . . ,m.

Lemma 4. Let {pj}mj=1 ∈ (0, 1]m be rational exponents satisfying (2), s be
a positive integer such that pjs is an integer for all j = 1, . . . ,m, and let
Vs be the vector space of all polynomials Φ satisfying (4), (5) and (6) for
sΦ = s. Then Vs is spanned by polynomials of the form detM({πj}mj=1),
where M({πj}mj=1) is an ns × ns matrix consisting of block elements of size
nj × n for j = 1, . . . ,m, arranged in the following way:

• Each block entry is a constant multiple of πj for some j.

• For each j, there are pjs block rows of height nj. In each such block
row, all block entries are multiples of πj. At most nj of these block
entries are non-zero.

• There are s block columns of width n. In each block column, there are
at most n non-zero block entries.

For an illustration of the structure of the matrices M , we refer the reader
to Fig 1 in [Gre21]. The proof of the above lemma makes use of polynomials
acting on multilinear maps, as defined in the previous section, along with
an application of the "Cayley Ω process" used to generate the invariants
associated to the group SLn.
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20 Quantum Brascamp-Lieb dualities
After M. Berta, D. Sutter, and M. Walter [BSW]

A summary written by Sean Sovine

Abstract
Brascamp-Lieb inequalities have a dual formulation as entropy in-

equalities. In this work, the authors introduce a fully quantum version
of this duality, relating quantum relative entropy inequalities to ma-
trix exponential inequalities of Young type, and demonstrate applica-
tions of this duality by means of examples from quantum information
theory.

20.1 Introduction
The Brascamp-Lieb (BL) problem asks for the optimal constant C ∈ R such
that

ˆ
Rm

n∏
k=1

fk(LKx)dx ≤ exp(C)
n∏
k=1

‖fk‖1/qk , (1)

holds for all non-negative functions fk : Rmk → R+, where Lk : Rm → Rmk

are given surjective linear maps and qk ∈ R+ for k = 1, . . . , n. The (BL)
problem has a dual entropic formulation in terms of the differential entropy,
which is defined for a probability distribution g as

H(g) := −
ˆ
g(x) log g(x)dx.

Regarding the duality for Brascamp-Lieb, the inequality (1) holds for all such
functions fk, for a given C ∈ R, if and only if

H(g) ≤
n∑
k=1

qkH(gk) + C

holds for all probability distributions g on Rm with finite differential entropy.
Here gk denotes the marginal probability density on Rmk corresponding to
Lk, defined by ˆ

Rm

ϕ(Lkx)g(x)dx =

ˆ
Rmk

ϕ(y)gk(y)dy

for all bounded continuous functions ϕ on Rmk .
Berta, Sutter, and Walter prove the following quantum version of the

Brascamp-Lieb duality, which is the main theorem of their paper.
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Theorem 1. Let n ∈ N, q⃗ = (q1, . . . , qn) ∈ Rn
+, E⃗ = (E1, . . . , En) with

Ek ∈ TPP (A,Bk) for k ∈ 1, . . . , n, σ ∈ P≻(A), σ⃗ = (σ1, . . . , σn) with σk ∈
P≻(Bk) for k ∈ 1, . . . , n, and C ∈ R. Then the following two statements are
equivalent:

n∑
k=1

qkD(Ek(ρ)||σk) ≤ D(ρ||σ) + C ∀ρ ∈ S(A), (2)

tr exp

(
log σ +

n∑
k=1

E†k(logωk)

)
≤ exp(C)

n∏
k=1

‖exp(logωk + qk log σk)‖1/qk ∀ωk ∈ P≻(Bk).

(3)

Here A,Bk are Hilbert spaces; P≻(A) (P⪰(A)) is the set of positive-
definite (resp. positive-semidefinite) operators onA; S(A) is the set of bounded,
positive-definite Hermitian operators on A with trace 1, which are also called
density operators and represent quantum states; and TPP (A,Bk) is the class
of trace-preserving, positive maps from L(A) to L(Bk), which represent op-
erations between two quantum systems. For each E ∈ TPP (A,Bk) we define
the adjoint map E† by duality for the Hilbert-Schmidt inner product:

tr E(X)†Y = trX†E†(Y ) for all X ∈ T (A),

where T (A) is the set of trace-class operators on A. For a density operator
ω ∈ S(A) and τ ∈ P⪰(A), the quantum relative entropy of ω with respect to
τ is defined by functional calculus as

D(ω||τ) = trω(logω − log τ) if ω � τ and +∞ otherwise,

where ω � τ means that the support of ω is contained in the support of τ .
For comparison the von Neumann entropy of a density operator ρ ∈ S(A) is
defined as

H(ρ) := −tr ρ log ρ.
The main tool that is used in the proof of Theorem 1 is the following

variational formula for the quantum relative entropy proved by Dénes Petz:

Theorem 2 ([Petz]). Let σ ∈ P≻(A). Then:

• For all ρ ∈ S(A) we have

D(ρ||σ) = sup
ω∈P⪰(A)

{tr ρ logω − log tr exp(logω + log σ)}.

Furthermore the supremum is attained for

ω = exp(log ρ− log σ)/tr exp(log ρ− log σ).
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• For all H ∈ Herm(A), we have

log tr exp(H + log σ) = sup
ω∈S(A)

{trHω −D(ω||σ)}.

Furthermore the supremum is attained for

ω = exp(H + log σ)/tr exp(H + log σ).

The authors mainly consider the case where A,Bk are finite-dimensional
Hilbert spaces, which is the case of most relevance to quantum information
theory. However, the authors point out that Petz’s variational formula for the
relative entropy holds in the more general setting of a von Neumann algebra.
Thus their main theorem can also be proved analogously in the setting of a
general Hilbert space, with appropriate definitions and hypotheses.

20.2 Applications
The authors present a variety of applications of their main result. One exam-
ple of these applications is a dual form of the data processing inequality for
the quantum relative entropy. The data-processing inequality states that the
quantum relative entropy is not increased by the application of a quantum
channel E ∈ TPP (A,B):

D(E(ρ)||E(σ)) ≤ D(ρ||σ),

for ρ ∈ S(A) and σ ∈ P≻(A). Application of the authors’ quantum Brascamp-
Lieb duality gives the following duality relation for the data-processing in-
equality:

Corollary 3. For σ ∈ P≻(A) and E ∈ TPP(A,B) the following inequalities
hold and are equivalent:

D(E(ρ)||E(σ)) ≤ D(ρ||σ), (4)

tr exp(log σ + E†(logω)) ≤ tr exp(logω + log E(σ)) ∀ω ∈ P≻(B). (5)
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21 Nonlinear Brascamp-Lieb Inequality
After J. Bennet, N. Bez, S. Buschenhenke, M. G. Cowling, and T.
C. Flock. [1] and after J. Duncan. [2]

A summary written by Yu-Hsiang Lin

Abstract
We show a local nonlinear Brascamp-Lieb inequality through the

existence of gaussian near-extremisers with input in controlled(effective
version of Lieb’s theorem) and nonlinear versions of Ball’s inequal-
ity.(The main difference between [1] and [2] is that they expand the
two different implications of Ball’s inequality to the nonlinear case.)

21.1 Introduction
Although there are some other applications in [1] and [2], we will focus on
two kinds of proof of the following theorem of local nonlinear Brascamp-Lieb
inequality in this talk.

Theorem 1 (Main Theorem). Let (L,p) be a Brascamp-Lieb datum. Sup-
pose that Bj : Rn −→ Rnj are C2 submersions in a neighborhood of x0,
and dBj(x0) = Lj for 1 ≤ j ≤ m. Then for each ε > 0, there exists a
neighborhood U of x0 such that

ˆ
U

m∏
j=1

f
pj
j (Bj(x))dx ≤ (1 + ε)BL(L,p)

m∏
j=1

(

ˆ
Rnj

fj(xj)dxj)
pj

To show the above theorem, we need the concept of near-extremisers and
the associate effective Lieb theorem which a quantitative description telling
us in what range can we find an input closed enough to be an extremiser.
We say an input f = (fj)1≤j≤m is a δ-near-extremiser if

BL(L,p, f) :=
´
Rn

∏m
j=1 f

pj
j (Ljx)dx∏m

j=1(
´
Rnj fj(xj)dxj)pj

≥ (1− δ)BL(L,p)

We have the following theorem for δ-near-extremiser.

Theorem 2 (Effective Lieb’s Theorem). Suppose that (L0,p) is a Brascamp-
Lieb datum with finite Brascamp-Lieb constant. Then there exist N ∈ N and
δ0 > 0 such that for δ ∈ (0, δ0), we have

sup
∥Aj∥,∥A−1

j ∥≤δ−N

BLg(L,p,A) ≥ (1− δ)BL(L,p)

for all L sufficiently close to L0.
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By Ball’s inequality, we have

BL(L,p, f)BL(L,p, f) ≤ sup
x
BL(L,p,hx)BL(L,p, f ∗ g)

where hxj (z) := fj(z)gj(Ljx − z), and hx := (hxj )
m
j=1, f ∗ g := (fj ∗ gj)mj=1. If

g is a δ-near-extremiser, then we have

BL(L,p, f) ≤ (1 +O(δ)) sup
x
BL(L,p,hx)

BL(L,p, f) ≤ (1 +O(δ))BL(L,p, f ∗ g)

where the nonlinear variant of the above two inequality will play a crucial
role in the proof of Theorem 1 in [1] and [2] respectively. Now we first
follow the method in [1].

21.2 Proof of Main Theorem in [1]
Here we first introduce the concept of local constant function. For κ >
1, µ > 0,Ω ⊆ Rd, a measurable subset, we say a nonnegative function f is
κ-constant at scale µ on Ω if f(x) ≤ κf(y) for x ∈ Ω and y ∈ Rd with
|x − y| ≤ µ. We denote by L1(Ω, µ, κ) the subset of L1(Rd) with this prop-
erty. Note that the d-dimension Poisson kernel Pt(x) := cn

t

(t2+∥x∥2)
n+1
2

is

κ-constant on scale µ on all Rd for µ small enough. Then f ∗ Pt(x) inherits
this regularity property, and we can see that we can approximate f ∈ L1(Ω)
almost everywhere by functions in L1(Ω, µ, κ). Also note that we have the
property, if f ∈ L1(Ω, µ, κ), g ∈ L1(Ω, µ, λ), then fg ∈ L1(Ω, µ, κλ). In the
following, for δ ∈ (0, 1), we define Uδ(y) := {x ∈ Rn | |x− y| ≤ δ}.

Definition 3 (localized and regularized nonlinear BL constant). Let C(u, δ, µ, κ)
denote the best constant in the inequality

ˆ
Uδ(u)

m∏
j=1

f
pj
j (Bj(y))dy ≤ C(u, δ, µ, κ)

m∏
j=1

(

ˆ
Rnj

fj(xj)dxj)
pj

over all inputs fj ∈ L1(Bj(U2δ(u)), µ, κ).

Proposition 4 (Base case). There exists a constant ν > 0 such that for
u ∈ Uν(0), δ ∈ (0, ν), δα+β ≤ µ(Here 1 < α < 2 and 0 < β < 2−α), we have

C(u, δ, µ, κ) ≤ κρBL(dB(u),p)

where ρ =
∑m

j=1 pj.
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Proposition 5 (Recursive Inequality). There exists a constant ν > 0 such
that for u ∈ Uν(0), δ ∈ (0, ν), δα+β > µ, we have

C(u, δ, µ, κ) ≤ (1 + δσ) max
x∈U2δ(u)

C(x, δα, µ, κ exp (δσ))

where the constant σ will be clear later.

The proof of Proposition 5 is one of the technical parts in this paper, where
we will use Theorem 2, and one of the nonlinear variant of Ball’s inequality.

With the propositions above, now we can prove Theorem 1. Only to show
there exists a constant δ0 depending on ε such that

C(0, δ0, µ, 1 + ε) ≤ (1 + Cε)BL(dB(0),p)

uniformly in µ > 0. If δα+β0 ≤ µ, then by Proposition 4

C(0, δ0, µ, 1 + ε) ≤ (1 + ε)ρBL(dB(0),p) ≤ (1 + Cρε)BL(dB(0),p)

Now if δα+β0 ≥ µ, let δk := δ
(αk)
0 , then using Proposition 5 iteratively.(Induction

on scale.)

C(0, δ0, µ, 1 + ε) ≤
k∗−1∏
k=0

(1 + δσk ) max
u∈Ũk∗

C(u, δk∗ , µ, (1 + ε)
k∗−1∏
k=0

exp(δσk ))

≤
k∗−1∏
k=0

(1 + δσk ) max
u∈Ũk∗

[(1 + ε)
k∗−1∏
k=0

exp(δσk )]
ρBL(dB(u),p)

where Ũk∗ = U2δ0+...2δk∗−1
(0), K∗ is the smallest integer such that δα+βk∗

≤ µ.
Hence we have

C(0, δ0, µ, 1 + ε) ≤ (1 + ε)ρ+2BL(dB(0),p) ≤ (1 + Cρε)BL(dB(0),p)

107



21.3 Proof of Main Theorem in [2]
Now we letM,M1, ...,Mm be complete Riemannian manifolds and ex : TxN →
N be the exponential map on manifoldN based at point x. By a regularized
version of effective Lieb’s theorem, for Bj :M

C2

→Mj, for δ sufficient small,
we may find positive definite matrixAδ,j with ‖Aδ,j‖W 1,∞(M), ‖detAδ,j‖W 1,∞(M) ≤
δ−ε such that the associate L1 normalized gaussians

Gx,δ,j(z) := δ−njdet(Aδ,j(x))
1
2 exp(−πδ−2〈Aδ,j(x)z, z〉)

is δε near extremiser for (dB(x),p). Now we define the associate flow oper-
ator. Hx,δ,j : L

1(Mj)→ L1(Uρ−δγ (Bj(x)))

Hx,δ,jfj(z) :=

ˆ
Uδγ,j(z)

fj(w)Gx,δ,j(e
−1
Bj(x)

(z)e−1
Bj(x)

(w))dw

Theorem 6 (Nonlinear Ball’s Inequality). For Bj :M
C2

→Mj, with ‖dB‖W 1,∞,
‖BL(dB,p)‖L∞ ≤ C and δ sufficiently small, we have

ˆ
M

m∏
j=1

f
pj
j ◦Bj(x)dx ≤ (1 + δβ)

ˆ
M

m∏
j=1

(Hx,δ,jfj)
pj ◦Bj(x)dx

With the above theorem, now we can prove Theorem 1 again.
ˆ
Uδγ (x0)

m∏
j=1

f
pj
j ◦Bj(x)dx ≤ (1 + δβ)

ˆ
M

m∏
j=1

(Hx,δ,j(fjχUδγ,j(x0)))
pj ◦Bj(x)dx

≤ (1 + δβ)

ˆ
2Uδγ (x0)

m∏
j=1

(Hx,δ,jfj)
pj ◦Bj(x)dx

≤ (1 + δβ)(1 + δη)2P
ˆ
2Uδγ (x0)

m∏
j=1

(H̃x0,δ,jfj)
pj ◦ Lx0j (x)dx

≤ (1 + δβ)(1 + δη)2PBL(L,p)
m∏
j=1

(

ˆ
2Uδγ (x0)

H̃x0,δ,jfj ◦ eBj(x0))
pj

≤ (1 + δβ)(1 + δη)2PBL(L,p)
m∏
j=1

(

ˆ
Mj

fj)
pj

where Lx0j := eBj(x0) ◦ dBj(x0), L := dB(x0) and H̃ is an operator enlarging
the integrand of H. In the third inequality, with the pertubations, we have
some δ power loss. The fourth inequality is just the linear BL inequality.
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Now reduce to show Theorem 6. Let C(s, t) be the best constant such that
ˆ
M

m∏
j=1

(Hx,s,jfj)
pj ◦Bj(x)dx ≤ C(s, t)

ˆ
M

m∏
j=1

(Hx,t,jfj)
pj ◦Bj(x)dx

C(s, t) has the submultiplicity property C(s, t) ≤ C(s, r)C(r, t). The techni-
cal part in this paper is to show there exist β and ν such that for δ ∈ (0, ν),
we have C(δ, 2 1

2 δ) ≤ (1+δβ). Once we have this controll, now let δk := 2−
k
2 δ0,

then

C(δK , δ0) ≤
K∏
k=1

C(δk, δk−1) ≤
K∏
k=1

(1 + δβk )

Then we have the estimation C(δK , δ0) ≤ 1 + ( δ
2
)β. Hence

ˆ
M

m∏
j=1

f
pj
j ◦Bj(x)dx ≤ lim inf

K→∞

ˆ
M

m∏
j=1

(Hx,δK ,jfj)
pj ◦Bj(x)dx

≤ lim inf
K→∞

C(δK , δ)

ˆ
M

m∏
j=1

(Hx,δ,jfj)
pj ◦Bj(x)dx

≤ (1 + (
δ

2
)β)

ˆ
M

m∏
j=1

(Hx,δ,jfj)
pj ◦Bj(x)dx

which comletes the proof of Theorem 6.

References
[1] Bennett, Jonathan and Bez, Neal and Buschenhenke, Stefan and Cowl-

ing, Michael G and Flock, Taryn C, On the nonlinear Brascamp–Lieb
inequality. Duke Mathematical Journal 169 (2020), no. 17, 3291-3338;

[2] Duncan, Jennifer, A Nonlinear Variant of Ball’s Inequality. arXiv
preprint arXiv:2101.07672.

Yu-Hsiang Lin, University of Bonn
email: fred841211@gmail.com

109



22 Subset entropy power inequality and its
relation to a conjectural fractional Young
inequality

After S. Bobkov, M. Madiman, and L. Wang [BMW11], M. Madi-
man and A. Barron [MB07], M. Madiman and F. Ghassemi [MG19]

A summary written by Julian Weigt

Abstract

The classical entropy power inequality by Shannon and Stam can
be seen as a limiting case of the sharp Young’s inequality. We dis-
cuss a recently proven fractional generalization of the classical entropy
power inequality and its connection to a conjectured fractional Young
inequality.

22.1 The entropy
Let X be a discrete random variable. Its entropy is

H(X) = −
n∑
i=1

P (X = xi) logP (X = xi),

where {x1, . . . , xn} is the range of X. The entropy represents the expected
number of bits one needs in order to encode one sample of X. Differently
phrased, the entropy of X is the expected amount of information one sample
of X provides.

Let X be a real valued random variable and denote by f its probability
density. We define the differential entropy of X by

h1(X) = −
ˆ
R
f(x) log f(x) dx.

The differential entropy can also be defined for Rn-valued random variables,
but for simplicity we only consider the one-dimensional case n = 1 here.
Even though the differential entropy might look similar to the entropy H,
it is not the same and does not allow for such an information theoretical
interpretation. A Z-valued random variable has differential entropy −∞,
in particular random variables can have negative differential entropy. Any
continuous random variable X should have positive infinite entropy, because
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when one approximates X by a sequence of discrete random variables their
entropy tends to infinity. And lastly, the integral h1(X) does not make
sense from a physical point of view, because the probability distribution f
of random variable should have the inverse unit of the random variable, and
we usually cannot take the logarithm of quantity with a unit. For brevity we
refer to the differential entropy as entropy for the rest of the presentation.

The Shannon entropy power is defined by

V1(X) = e2h1(X).

The classical entropy power inequality of Shannon and Stam states

V1(X1 + . . .+XM) ≥ V1(X1) + . . .+ V1(XM) (1)

for independent random variables X1, . . . , XM .

22.2 Connection to Young’s inequality
One can deduce (1) from the sharp Young’s inequality. If the random vari-
ables X1, . . . , XM have probability densities f1, . . . , fM then X1 + . . . +XM

has probability density f1 ⋆ . . . ⋆ fM . For p > 1 define

hp(X) =
p

p− 1
log ‖f‖p.

Then hp(X) → h1(X) and hence for Vp(X) = e2hp(X) we have Vp(X) →
V1(X). For p > 1 we have

Vp(X) = ‖f‖−2p′

p .

For p′

q′1
+ . . .+ p′

q′M
= 1 the sharp Young’s inequality states

Cp‖f1 ⋆ . . . ⋆ fM‖p ≤ Cq1 . . . CqM‖f1‖q1 · . . . · ‖fM‖qM , (2)

where C2
p = p

1
p

p′
1
p′

. Note that p → 1 implies q1, . . . , qM → 1. Applying the

sharp Youngs inequality and taking the limit p→ 1 we obtain

Vp(X1 + . . .+XM)−1 = ‖f1 ⋆ . . . ⋆ fM‖2p
′

p

≤
M∏
i=1

(p′
q′i
‖fi‖

2q′i/n
qi

) p′
q′
i for p→ 1

=
M∏
i=1

(p′
q′i
/Vqi(Xi)

) p′
q′
i

→
( M∑
i=1

V1(Xi)
)−1

for p→ 1,
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where the last limit holds for taking qi such that p′

q′i
= V1(Xi)∑M

i=1 V1(Xi)
. We can con-

clude (1). The sharp constants of Young’s inequality contribute the factors(
p′

q′i

) p′
q′
i which are necessary for the proof.

22.3 The subset entropy power inequality
In [MB07] they prove the subset entropy power inequality, which is the
entropy power inequality (1) with a more general expression on the right
hand side. A hypergraph G on {1, . . . ,M} is an arbitrary set of subsets of
{1, . . . ,M}. The subset entropy power inequality states that for independent
random variables X1, . . . , XM and any hypergraph G on {1, . . . ,M} we have

V1(X1 + . . .+XM) ≥ 1

d

∑
S∈G

V1

(∑
i∈S

Xi

)
, (3)

where d is the degree of G, i.e. the smallest number such that every index
i = 1, . . . ,M occurs in at most d sets in G. The subset entropy power
inequality further generalizes. For a hypergraph G on {1, . . . ,M} we say
that (βS)S∈G is a fractional partition of G if for any i = 1, . . . ,M we have∑

S∈G:i∈S βS = 1. In [MG19] they prove

V1(X1 + . . .+XM) ≥
∑
S∈G

βSV1

(∑
i∈S

Xi

)
(4)

as a consequence of (3). Clearly, (4) continues to hold if
∑

S∈G:i∈S βS ≤ 1.
Thus (3) is a special case of (4) with βS = 1/d.

22.4 The conjecture
Let G be a d-regular hypergraph, i.e. every index i = 1, . . . ,M is in d sets in
G. In [BMW11] they conjecture the fractional Young inequality

‖f1 ⋆ . . . ⋆ fM‖r ≤
1

Cr

∏
S∈G

[
CpS‖ ⋆j∈S fj‖pS

] 1
d , (5)

with
∑

S∈G
r′

p′S
= 1.

In [BMW11] they show that (5) implies (4) the same way as one can
deduce the original entropy power inequality (1) from the sharp Young’s
inequality. It is not evident how one could show the reverse implication,
because the deduction of (5) from (4) works the same way as the deduction
of the entropy power inequality (1) from the sharp Young’s inequality (2),
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which means it involves taking the limit p→ 1 and choosing the coefficients
p′/q′i suitably.

For r ≥ 2 and 1 ≤ pS ≤ 2 the conjecture (5) follows from the Hausdorff-
Young inequality ‖f̂‖r ≤ ‖f‖r′ , and Hölders inequality on the Fourier side.

22.5 Proof of the subset entropy power inequality (3)
This is a rough summary of the proof in [MB07]. It suffices to consider the
case that each i = 1, . . . ,M occurs in precisely d sets in G because by (1) the
entropy is monotone in the sense that h1(X+Y ) ≥ h1(X) for any independent
random variables X,Y . Let X be a random variable with probability density
f . Its score function ρ : R→ [0,∞) is defined by

ρ(x) =
d

dx
log f(x) =

f ′(x)

f(x)
.

The Fisher information of X is I(X) = E(ρ(X)2). It is related to the entropy
via

h1(X) =
1

2
log(2πe)− 1

2

ˆ ∞

0

I(X +
√
tZ)− 1

1 + t
dt, (6)

where Z is a Gaussian random variable independent of X. In order to prove
(3) they show the following bound for the Fisher information. For any weights
(wS)S∈G with

∑
S∈GwS = 1 we have

I(X1 + . . .+XM) = E(ρ(X1 + . . .+XM)2) ≤ E
[(∑

S∈G

wSρ
(∑
i∈S

Xi

))2]
. (7)

A variance drop lemma implies

E
[(∑

S∈G

w2
Sρ
(∑
i∈S

Xi

))2]
≤ d

∑
S∈G

wSE
[
ρ
(∑
i∈S

Xi

)2]
. (8)

Note that (8) already follows from the Cauchy-Schwarz inequality with M
instead of r, and that in the case r = 1 it follows from the independence
of the random variables and from Eρ(Xi) = 0. Combining (7) and (8) we
obtain

I(X1 + . . .+XM) ≤ d
∑
S∈G

w2
SI
(∑
i∈S

Xi

)
,

which due to the homogeneity of I is equivalent to

I(X1 + . . .+XM) ≤
∑
S∈G

wSI
(∑
i∈S

Xi√
dwS

)
. (9)
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However, in view of (6) this is not exactly what we need. Instead, we would
like a bound of the form

I(X1 + . . .+XM +
√
tZ) ≤

∑
S∈G

wSI
(∑
i∈S

Xi√
dwS

+
√
tZS

)
, (10)

where Z,ZS are Gaussian variables independent from X1 + . . . + XM and
from

∑
i∈S Xi. Turns out one can deduce (10) by applying (9) to the ran-

dom variables X1, . . . , XM , Z1, . . . , ZM ′ , where Z1, . . . , ZM ′ are independent
Gaussians, and constructing a hypergraph G′ appropriately. Then plugging
(10) into (6) it follows that

h1(X1 + . . .+XM) ≤
∑
S∈G

wSh1
(∑
i∈S

Xi

)
+
H(w)

2
− log d

2
,

whereH(w) is the discrete entropy of the tuple w = (wS)S∈G. Exponentiating
and taking wS =

V1(
∑

i∈S Xi)∑
T∈G V1(

∑
i∈T Xi)

, the generalized entropy power inequality
(3) follows.
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23 Bounds on the Poincaré constant for con-
volution measures

After Thomas A. Courtade
A summary written by Jennifer Duncan

Abstract
In this paper, several results are established concerning the best

constant for Poincaré inequalities satisfied by functions in W 1,2(Rd, µ),
where µ is a convolution of Borel probability measures.

We let P(Rd) denote the set of Borel probability measures on Rd. For a
given µ ∈ P(Rd) and Borel measurable f : Rn → R, let Var(f) denote the
variation of f with respect to µ.

Varµ(f) :=
ˆ
Rd

|f − Eµ(f)|2dµ (1)

A measure µ ∈ P(Rd) is said to satisfy a Poincaré inequality with constant
C > 0 if

Varµ(f) ≤ C

ˆ
|∇f |2dµ (2)

for all locally Lipschitz functions f ∈ Rd → R. We define Cp to be the
smallest constant C > 0 such that (2) holds. Given µ, ν ∈ P(Rd), we define
their convolution µ ∗ ν ∈ P(Rd) as the following measure: given a Borel set
A ⊂ Rd,

µ ∗ ν(A) :=
ˆ
Rd

ˆ
Rd

χA(x+ y)dµ(x)dν(y)

where χA is the indicator function associated to A. One may derive from a
classical variance decomposition and convexity of t 7→ t2 that

Cp(µ ∗ ν) ≤ Cp(µ) + Cp(ν). (3)

The results of this paper may be viewed as refined versions of this inequality

Theorem 1. Let (µi)1≤i≤n ⊂ P(Rd). For a set S ∈ [n] := {1, 2, ..., n}, let
µS denote the convolution of (µi)i∈S. If C is a collection of distinct subsets
of [n], then

Cp(µ[n]) ≤
1

t

∑
S∈C

Cp(µS), (4)

where t := mini∈[n] |{S ∈ C : i ∈ S}|.
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Although it is not stated here, the authors in fact prove a more general
result in the context of abelian groups. One may interpret this result in the
context of a central limit theorem. Let (Ω,P, µ) be a probability space, and
let X : Ω→ Rd be a random variable (i.e. a measurable function on Ω). We
define the law of X, LX ∈ P(Rd), to be the pushforward measure of µ under
X. Explicitly, for a given Borel set A ⊂ Rd,

LX(A) := µ(X−1(A)).

We then write X ∼ µ to denote that µ = LX(A).

Corollary 2. Let (Xi) be identical independently distributed (i.i.d.) random
variables with law ν1. For n ≥ 1, let νn denote the law of the standardised
sum 1√

n

∑n
i=1Xi. Then,

Cp(νn) ≤ Cp(νn−1) (5)

Hence, the Poincaré constant is non-increasing along the central limit theo-
rem.

Corollary 3. Let νn be as in the previous corollary, and let γδ2 denote the
law of the normal distribution N(0, δI). Then,

Cp(νn ∗ γδ2/n) ≤ Cp(ν1 ∗ γδ2). (6)

This result is surprising in the sense that the degree of the gaussian
regularisation on the left is much less than on the right, but the Poincare
constant is no worse. It also implies a certain quantitative central limit
theorem, where the rate of convergence to a gaussian distribution is explicitly
bounded. In order to make sense of this, we first need to define a suitable
metric on P(Rd). First of all, given a joint probability measure µ over a
product of measure spaces Ω1 × ...× Ωn and a subset S ∈ [n], we define the
marginal µS over ΩS :=

∏
i∈S Ωi to be the pushforward measure of µ with

respect to the natural projection πS : Ω1 × ...× Ωn → ΩS, i.e.

µS(A) := µ(π−1
S (A)).

Given µ, ν ∈ P(Rd), define Γ(µ, ν) to be the set of probability measures on
Rd × Rd such that µ and ν are their marginals with respect to the natural
projections onto the first and second factors respectively. We then define the
L2 Wasserstein metric on P(Rd) as

W2(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

ˆ
Rd×Rd

|x− y|2dγ(x, y)
)1/2

.
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There is of course a natural generalisation to the setting of Borel metric
spaces with general exponents. We say that a random variable X : Ω→ Rd

is isotropic if its covariance matrix is the identity, i.e. that

Eµ((Xi − Eµ(Xi))(Xj − Eµ(Xj))) = δij.

Corollary 4 (Quantitative Central Limit Theorem). Let (Xi) be i.i.d. cen-
tred isotropic random vectors in Rd with law ν1. If Cp(ν1 ∗ γδ2) ≤ Cδ2 for
some δ > 0 then

W2(νn, γ)
2 ≤ d

2(δ2 + Cδ2)

δ2 +
√
n− 1

, (7)

where νn ∼ 1√
n

∑n
i=1Xi.

For µ ∈ P(Rd), define

σ := max
α∈Rd:|α|=1

Varµ(x 7→ α · x)

to be the largest variance of µ in any direction (equivalently, the largest
eigenvalue of the covariance matrix for µ). It is known that, if α∗ ∈ Rd

extremises Varµ(x 7→ α · x) with respect to the constraint |α∗| = 1, then

Cp(µ)− σ2(µ) ≥ W2(µα∗ , γσ2(µ), (8)

where µα∗ denotes the pushforward of µ under the projection x 7→ α∗ · x.
The following inequality refines (3) by bounding the difference between the
right and left hand sides above in terms of Cp(µ ∗ ν)− σ2(µ).

Theorem 5. Let µ, ν ∈ P(Rd), and define σ2 = σ2(µ ∗ ν) for convenience.
Then,

Cp(µ ∗ ν) ≤ Cp(µ) + Cp(ν)−
Cp(µ)Cp(ν)

Cp(µ) + Cp(ν)

(Cp(µ ∗ ν)− σ2)2

(Cp(µ ∗ ν)− σ2)2 + Cp(µ ∗ ν)σ2

(9)

Iterating this theorem with a fixed µ, we obtain an O(1/n) bound on the
rate of convergence of C(νn)→ 1, where νn is as in Corollary 2.

Corollary 6. Let X1, X2, ... be i.i.d. isotropic vectors in Rd, and define νn
to be the law of the standardised sum 1√

n

∑n
i=1Xi. Then,

Cp(ν2n)−
3

2
≤
(
3

4

)n(
Cp(ν1)−

3

2

)
(10)

and, if Cp(ν1) ≤ 2, it further holds that

Cp(ν2n)− 1 ≤ 7

n+ 7
. (11)
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24 Unifying the Brascamp-Lieb Inequality and
the Entropy Power Inequality

After Venkat Anantharam, Varun Jog and Chandra Nair [AJN]
A summary written by Joao P. G. Ramos

Abstract

In this talk we will prove an inequality generalizing information
theoretical versions of the Brascamp–Lieb Inequality (BLI) and the
Entropy Power Inequality. The proof of the main result uses a version
of the doubling trick. In addition, we will discuss when the quantities
considered in the statement of the main result are finite, and possible
open questions in this direction.

24.1 Introduction
Let f : Rn 7→ R≥0 be a function so that

ˆ
Rn

f(x) log(1 + f(x)) dx < +∞.

Let X be a Rn−valued absolutely continuous random variable, so that its
density fX satisfies the condition above. We define the differential entropy
of X as

h(X) = −
ˆ
Rn

fX(x) log fX(x) dx.

As discovered by Lieb [L], a way to formulate the Entropy Power Inequal-
ity (EPI) is that, whenever X,Y are two independent Rn−valued random
variables and λ ∈ (0, 1), then

h(
√
λX +

√
1− λY ) ≥ λh(X) + (1− λ)h(Y ),

and equality holds if and only if X,Y are Gaussian random variables with
identical covariance matrices. Analogously, one may write a version of the
Brascamp–Lieb Inequality (BLI) in terms of random variables: let X be a
Rn−valued random variable with well-defined differential entropy, and so
that E‖X‖2 < +∞. Define

f(X) := h(X)−
m∑
j=1

cjh(aj ·X),
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where c1, ..., cm are positive numbers and a1, ..., am are vectors which span
Rn. Then the supremum of f over the class of all such absolutely continuous
random variables is the same as its supremum over all centered Gaussian
random variables.

As previously stated, we will prove, in this talk, an inequality unifying
both the EPI and the BLI. In order to state our main result, we define the
class P(r), r = (r1, ..., rk) a set of integer indices summing to n, as the set of
all Rn−valued random variables X := (X1, X2, ..., Xk) so that

1. Xi takes values in Rri and each has finite entropy;

2. X1, ..., Xk are independent;

3. EX = 0, E‖X‖22 < +∞.

We further define the class Pg(r) as the random variables satisfying the con-
ditions above, with Xi being Gaussian for each i ∈ {1, ..., k}.

Fix a set of surjective linear mappings Aj : Rn → Rnj , positive numbers
c1, ..., cm and d1, ..., dk, and {rj}j=1,...,k = r of indices as in the previous
definition. We denote such a set of parameters by (A, c, r,d), and call it a
BL-EP datum.

Theorem 1 (Unified EPI and BLI). Let (A, c, r,d) be a BL-EP datum. Let

M(A, c, r,d) := sup
X∈P(r)

(
k∑
i=1

dih(Xi)−
m∑
j=1

cjh(AjX)

)
,

and Mg(A, c, r,d) denote the supremum over the restricted class X ∈ Pg(r).
Then we have

M(A, c, r,d) =Mg(A, c, r,d),

in the sense that, if both quantities are finite, then they are equal, and if one
is infinite, so is the other.

In order to see that this result is in fact a generalization of both the
Entropy Power Inequality and the Brascamp–Lieb Inequality, notice the fol-
lowing:

1. If n = 2d, k = 2, r1 = r2 = d, d1 = λ, d2 = 1 − λ, c1 = 1, and A1 =
[
√
λId×d,

√
1− λId×d], then one recovers the expression λh(X) + (1 −

λ)h(Y ) − h(
√
λX +

√
1− λY ) in the supremum defining M and Mg.

Assume theorem 1 to hold. In order to prove that this expression is
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≤ 0, it suffices to prove that the associated Mg is non-positive. This
follows, however, from a direct computation using that log det is a
concave function.

2. If k = 1, r1 = n and d1 = 1 one recovers directly the Brascamp–Lieb
case for zero-mean random variables X with finite second moment.

24.2 Proof of the main result
For the proof of Theorem 1, we follow a sketch of the so-called doubling trick.
We have the following steps:

1. Finding a concave envelope. First, we define the function

s(X) =
k∑
i=1

dih(Xi)−
m∑
j=1

cjh(AjX).

In this step, we would like to find a suitable concave envelope of this
function. This is achieved by defining its version conditioned on a
random variable U which takes finitely many values:

s(X|U) =
k∑
i=1

dih(Xi|U)−
m∑
j=1

cjh(AjX|U),

and then letting S(X) = supU s(X|U). These choices must be cor-
rected/smoothened due to technical reasons, but this is the main idea
behind the construction.

2. Lifting s and S. The next part is defining both s and S on pairs of
random variables; that is, if (X1, X2) ∈ P(2r), we define the lifting of
s to P(2r) as simply

s(X1, X2) =
k∑
i=1

dih(X1i, X2i)−
m∑
j=1

cjh(AjX1, AjX2).

In analogy to the previous construction, we let

S(X1, X2) = sup
U
s(X1, X2|U).

3. Subadditivity of S. This is the crucial, and most technical, step of the
proof. We prove the following Lemma:
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Lemma 2. The function S is subadditive; that is, if (X1, X2) ∈ P(2r),
then

S(X1, X2) ≤ S(X1) + S(X2).

The proof of such a result is technical, but the main novelty of this
work is to use two different expansions for the differential entropy of a
pair of random variables: we have

(A) h(X1, X2) = h(X1) + h(X2)− I(X1, X2),

(B) h(X1, X2) = h(X1|X2) + h(X2|X1) + I(X1, X2),

where I(X1, X2) denotes the mutual information between X1, X2; i.e.,

I(X1, X2) =

ˆ
Rn×Rn

f(X1,X2)(x, y) log

(
f(X1,X2)(x, y)

fX(x)fY (y)

)
dx dy.

The main feature of such expansions is that the information appears
with opposite signs in each with respect to the other. By rearrang-
ing and using the independence conditions, and using both inequali-
ties combined together, we may employ the positivity of the mutual
information in order to conclude the inequality in Lemma 2 above.
As a by-product of this proof, we have that S actually tensorizes: if
X1, X2 ∈ P(r), and X1 and X2 are independent, then

S(X1, X2) = S(X1) + S(X2).

4. Optimizers of S and s and conclusion. Finally, in order to conclude, one
shows that, truncating the sets of random variables, then supX S(X)
is attained as s(X∗|U∗) for some suitably truncated X∗, and some
finite-valued random variable U∗. Following this, one considers two
i.i.d. copies of (X∗, U∗) as (X1, U2) and (X2, U2), and then the random
variables

X+ =
X1 +X2√

2
, X− =

X1 −X2√
2

.

Let U = (U1, U2). The new pairs (X+, U) and (X−, U) still optimize
suitably S(X), in the sense that S(X) = s(X±|U), and X+ and X−
are independent when conditioned on U. But so are X1, X2, and thus
an argument characterizing Gaussians shows that X1 and X2 have to
be Gaussians when conditioned on U. By independence of (X1, U1) and
(X2, U2), one may conclude that there is a Gaussian G∗ that attains a
truncated version of supX S(X), and thus, by the considerations above,
also a suitably truncated version of supX s(X). This finishes the proof,
by taking the truncation to infinity.
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24.3 Finiteness conditions and open problems
Theorem 1 gives us an equivalence between Mg and M as defined before,
but some questions remain. In particular, a first question is about when the
quantities M and Mg are finite. The following result is a complete charac-
terization of the affirmative answer to this question.

Theorem 3. Let (A, c, r,d) be a BL-EP datum. Then M(A, c, r,d) <∞ if
and only if both following conditions are fulfilled:

1.
k∑
i=1

diri =
m∑
j=1

cjnj;

2.
k∑
i=1

didim(Vi) ≤
m∑
j=1

cjdim(AjV ),

whenever V = V1 × · · · × Vk s a subspace with Vi ⊂ Rri , i = 1, ..., k.

In spite of this result, there are still many open questions which are
related to the classical Brascamp–Lieb and the Entropy Power inequalities.
We summarize them in the following open problem:

Conjecture 4. (1) Characterize when M(A, c, r,d) admits an extremizer,
and analogously, when Mg(A, c, r,d) admits an extremizer; (2) If extremiz-
ers exist for M(A, c, r,d), do they exist for Mg(A, c, r,d)? (3) Assuming
extremizers exist, characterize when they are unique, up to symmetries.
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