Functional Analysis & PDEs

Dec 12, 2019 PROF. DR. H. KOCH DR. F. GMEINEDER Due: Dec 20, 2019

Problem Set 9

Problem 1: Sobolev spaces

(1 + 2 + 2 + 2) + 3 = 10 marks

Given $n \in \mathbb{N}$ and subsets $\Omega \subset \mathbb{R}^n$, exhibit the maximal interval $I \subset [1, \infty]$ such that the following functions belongs to $W^{1,p}(\Omega)$ for all $p \in I$:

- (a) $f(x) = |x|^{\alpha}, \quad \Omega = B_1(0),$
- (b) $g(x) = |x|^{\alpha}, \quad \Omega = \mathbb{R}^n \setminus B_1(0),$ (c) $h(x) = \log(\log\left(1 + \frac{1}{|x|}\right)), \quad \Omega = B_1(0),$
- (d) $i(x) = |1 |x|^2|, \quad \Omega = B_2(0).$

depending on $\alpha \in \mathbb{R}$.

Finally, exhibit the smallest $n \in \mathbb{N}$ for which it is possible to find $u \in W^{1,1}(\mathbb{R}^n)$ such that for any open $U \subset \mathbb{R}^n$ there holds $u|_U \notin L^{\infty}(U)$. For such n, construct an explicit element $u \in W^{1,1}(\mathbb{R}^n)$ with this property.

Problem 2: Weak derivatives

Let $\Omega \subset \mathbb{R}^n$ be an open and connected set. Let $u \in W^{1,1}(\Omega)$ be such that its weak gradient satisfies Du = 0 m^n -a.e. in Ω . Prove that u is constant.

Problem 3: Traces

Let $\Omega \subset \mathbb{R}^n$ be an open and bounded domain with smooth boundary $\partial \Omega$. Prove that there is no bounded linear operator $T: L^p(\Omega) \to L^p(\partial\Omega)$ which satisfies

 $Tu = u|_{\partial\Omega} \mathcal{H}^{n-1}$ -a.e. on $\partial\Omega$ for all $u \in \mathcal{C}(\overline{\Omega})$.

Discuss this negative result in view of the trace operator on Sobolev spaces.

Problem 4:

Let $u \in C^1(\overline{B_1(0)})$ and $v \in C^1(\overline{B_2(0) \setminus \overline{B_1(0)}})$. Let w be defined m^n -a.e. on $B_2(0)$ by

$$w := \begin{cases} u & \text{in } B_1(0), \\ v & \text{in } B_2(0) \setminus \overline{B_1(0)}. \end{cases}$$

Give necessary and sufficient conditions on u and v such that w belongs to $W^{1,1}(B_2(0))$.

10 marks

10 marks

8 + 2 = 10 marks