Functional Analysis & PDEs

Nov 22, 2019 PROF. DR. H. KOCH DR. F. GMEINEDER *Due: Nov 29, 2019*

Problem Set 6

Problem 1: Conditional expectation, revisited 5 + 5 = 10 marks Let $(\Omega, \mathcal{A}, \mu)$ be a probability space and $\mathcal{F} \subset \mathcal{A}$ be a sub- σ -algebra of \mathcal{A} . Let $X \in L^1(\Omega, \mathcal{A}, \mu)$.

(a) Show that there exists an \mathcal{F} -measurable function Y such that

$$\int_F X \,\mathrm{d}\mu = \int_F Y \,\mathrm{d}\mu \qquad \text{for all } F \in \mathcal{F}.$$

Moreover, establish that Y is uniquely determined (modulo μ -nullsets): If \widetilde{Y} is another \mathcal{F} -measurable function with $\int_F X \, d\mu = \int_F Y \, d\mu$ for all $F \in \mathcal{F}$, then $\mu(\{Y \neq \widetilde{Y}\}) = 0$. *Hint:* Radon-Nikodým.

(b) Show that if $X \in L^2(\Omega, \mathcal{A}, \mu)$, then $Y = \mathbb{E}[X|\mathcal{F}] \mu$ -a.e., where $\mathbb{E}[X|\mathcal{F}]$ is given as in Problem 1(c) of sheet 3.

Problem 2: Riemann-Stieltjes & BV, continued 1 5 + 5 = 10 marks Similarly to the last sheet, we call for $-\infty < a < b < \infty$ a function $u: [a, b] \to \mathbb{R}$ a function of bounded variation provided

$$V_a^b(u) := \sup_{a=t_0 < \dots < t_\ell = b} \sum_{i=1}^{\ell} |u(t_i) - u(t_{i-1})| < \infty.$$

Put $BV([a, b]) := \{u \colon [a, b] \to \mathbb{R} \colon V_a^b(u) < \infty\}$. Establish the following:

- (a) If $u \in BV([a, b])$, then u has at most countably many discontinuity points.
- (b) If $u \in BV([a, b])$, then for each $t_0 \in (a, b)$ the limits $\lim_{t \searrow t_0} u(t)$ and $\lim_{t \nearrow t_0} u(t)$ exist.

Problem 3: Riemann-Stieltjes & BV, continued 2 10 marks

Let $u \in BV([a, b])$ be left-continuous. Prove that $u \in BV([a, b])$ if and only if there exists a finite Borel measure λ on $\mathcal{B}([a, b])$ and a λ -measurable function $\sigma \colon [a, b] \to \{-1, 1\}$ such that

$$u(y) - u(x) = \int_{[x,y)} u\sigma \,\mathrm{d}\lambda$$
 for all $a \le x < y \le b$.

To do so, proceed as follows: Consider, for $u \in BV([a, b])$ and $h \in C([a, b])$

$$\Lambda_u(h) := \int_a^b h \, \mathrm{d}u := \sup_{a=t_0 < \dots < t_\ell = b} \sum_{i=1}^\ell \left(\inf_{[t_{i-1}, t_i]} h \right) \cdot (u(t_i) - u(t_{i-1})).$$

If existent, $\Lambda_u(h)$ is referred to as *Riemann-Stieltjes integral* of h with respect to the integrator u. Use ideas from the last sheet to represent u as the difference of two monotone functions and aim to apply the Riesz representation theorem.

Problem 4: Riemann-Stieltjes & BV, continued 3 5 + 5 = 10 marks In the situation of the previous two exercises, let $u \in BV([a, b])$ be left-continuous and λ as in Problem 3.

(a) Demonstrate that

$$V_a^b(u) = \int_{[a,b]} \mathrm{d}\lambda.$$

(b) Defining *H* as in Theorem 2.14, show that $H \subsetneq BV([0,1])$. Moreover, if $F \in H$ – so there exists $f \in L^2([0,1])$ such that $\int_0^1 f \, dx = 0$ and $F(x) = \int_0^x f(y) \, dy$ for all $0 \le x \le 1$ – show that

$$V_0^1(F) = \int_{[0,1]} |f(y)| \, \mathrm{d}y.$$

Historical Remark. On the last sheet, we discussed the KOLMOGOROV-RIESZ compactness theorem. The *Riesz* of this compactness theorem was MARCEL RIESZ, the younger brother of FRIGYES RIESZ – who in turn is the name behind the *Riesz representation theorem*. You have already encountered FRIGYES RIESZ during Analysis 3 – he is the name behind the *Riesz-Fischer theorem*. During your further studies in analysis you will frequently encounter theorems by the *Riesz brothers* – be sure to check out which brother the relevant theorems refer to!