Functional Analysis & PDEs

Oct 25, 2019 PROF. DR. H. KOCH DR. F. GMEINEDER Due: Nov 07, 2019

Problem Set 3

Projections in Hilbert spaces

Problem 1: L²-theory of conditional expectation

quotient procedure to make $L^2(\Omega, \mathcal{A}, \mu)$ a Banach space).

3 + 1 + 3 + 3 = 10 marks Let $(\Omega, \mathcal{A}, \mu)$ be a probability space (consisting of a set Ω , a σ -algebra \mathcal{A} on Ω and a probability measure μ on \mathcal{A}). We denote $L^2(\Omega, \mathcal{A}, \mu)$ the space of \mathcal{A} -measurable maps $\Omega \to \mathbb{R}$ which are, in addition, square integrable for μ (and employ the usual

- (a) Let \mathcal{H} be a Hilbert space and $\{0\} \neq C \subset \mathcal{H}$ a closed subspace; call the corresponding operator $p: \mathcal{H} \ni x \mapsto p(x) \in C$ from Lemma 2.10 the orthogonal projection onto C. Prove that the orthogonal projection onto C is a bounded linear operator with ||p|| = 1.
- (b) Let $\mathcal{F} \subset \mathcal{A}$ be a sub- σ -algebra. Demonstrate that $L^2(\Omega, \mathcal{F}, \mu)$ is closed in $L^2(\Omega, \mathcal{A}, \mu)$.
- (c) Define $\mathbb{E}[\cdot|\mathcal{F}]$ as the $L^2(\Omega, \mathcal{A}, \mu)$ -orthogonal projection onto $L^2(\Omega, \mathcal{F}, \mu)$. Explain why this is a well-posed definition and prove that
 - for all $X \in L^2(\Omega, \mathcal{A}, \mu)$ and $Y \in L^2(\Omega, \mathcal{F}, \mu)$ there holds

$$\mathbb{E}[XY] = \mathbb{E}[Y\mathbb{E}[X|\mathcal{F}]].$$

Here, $\mathbb{E}[X] := \int_{\Omega} X \, \mathrm{d}\mu$ as usual.

The linear operator $\mathbb{E}[\cdot|\mathcal{F}]$ is called the *conditional expectation given* \mathcal{F} .

(d) Let $X \in L^2([0,1], \mathcal{B}(([0,1])), \mathcal{L}^1)$ and let $\mathcal{A} := \sigma(\{[0,\frac{1}{2}]\})$ be the σ -algebra generated by $[0,\frac{1}{2}]$. Give a general formula for $\mathbb{E}[X|\mathcal{A}]$.

Problem 2: Direct sums and closedness

Let $(\mathcal{H}, \langle, \cdot, \cdot\rangle)$ be a Hilbert space.

- (a) Let U, V be closed orthogonal subspaces of \mathcal{H} , orthogonality meaning that $\langle u, v \rangle = 0$ for all $u \in U, v \in V$. Establish that the sum vector space U + V is a closed subspace of \mathcal{H} , too.
- (b) In general, we cannot omit orthogonality in the foregoing statement. Specifically, let $\mathcal{H} = \ell^2(\mathbb{N})$ and consider

$$U := \{ x = (x_1, x_2, ...) \in \ell^2(\mathbb{N}) : x_{2j} = 0 \text{ for all } j \in \mathbb{N} \},\$$

$$V := \{ x = (x_1, x_2, ...) \in \ell^2(\mathbb{N}) : x_{2j+1} = jx_{2j} \text{ for all } j \in \mathbb{N} \}.$$

Prove that

- (i) U, V are closed subspaces of \mathcal{H} with $U \cap V = \{0\}$.
- (ii) The sum vector space $U + V \subset \mathcal{H}$ is dense but not closed in \mathcal{H} .

Separability

Problem 3: Separability and bases

6 + 4 = 10 marks

4 + (3 + 3) = 10 marks

- (a) Let μ be a measure on the Borel σ -algebra on \mathbb{R} . Give a necessary and sufficient condition on μ such that $(L^{\infty}(\mathbb{R};\mu); \| \cdot \|_{L^{\infty}(\mathbb{R};\mu)})$ is separable.
- (b) Let $(X, \|\cdot\|)$ be a Banach space and let $(b_j)_{j\in\mathbb{N}}$ be a sequence in X. We say that $(b_j)_{j\in\mathbb{N}}$ is a Schauder basis of X provided for each $x \in X$ there exists a unique sequence $(x_j) \subset \mathbb{R}$ such that $x = \sum_j x_j b_j$, convergence of the series being understood with respect to $\|\cdot\|$. Show that if $(X, \|\cdot\|)$ has a Schauder basis, then $(X, \|\cdot\|)$ separable. Conclude that $(L^{\infty}(\mathbb{R}^n); \|\cdot\|_{L^{\infty}(\mathbb{R}^n)})$ does not possess a Schauder basis.

Remark. The converse implication, namely that separable Banach spaces must have a Schauder basis, is *wrong.* This had been a longstanding open problem, eventually solved by ENFLO in 1972, see here:

• P. Enflo: A counterexample to the approximation problem in Banach spaces. Acta Mathematica (130), No. 1, July 1973, 309–317.

Problem 4: Separability in metric spaces I

Let (X, d) be a metric space. Prove the following: If (X, d) is separable and $A \subset X$, then (A, d) is separable.

Problem 5: Separability in metric spaces II

Let (X, d) be a separable metric space.

- (a) Prove that there exists an isometric map $\ell \colon (X, d) \to (\ell^{\infty}(\mathbb{N}), \|\cdot\|_{\ell^{\infty}(\mathbb{N})})$. In this sense, every separable metric space is 'contained' in $(\ell^{\infty}(\mathbb{N}), \|\cdot\|_{\ell^{\infty}(\mathbb{N})})$.
- (b) Consider $\tilde{\ell}^2(\mathbb{N})$, the space of real sequences $x = (x_i)$ such that

$$||x||_{\tilde{\ell}^2(\mathbb{N})} := \left(\sum_j \frac{|x_j|^2}{j^2}\right)^{\frac{1}{2}} < \infty.$$

Show that $(\tilde{\ell}^2(\mathbb{N}), \|\cdot\|_{\tilde{\ell}^2(\mathbb{N})})$ is a separable Banach space which contains $\ell^{\infty}(\mathbb{N})$ as a *proper subspace*. This seems to be an apparent contradiction to (a) – clarify.

Operators on Hilbert spaces

Problem 6: Hilbert space adjoints

Let $k \in L^2([0,1] \times [0,1]; \mathbb{C})$ and $T_k: L^2([0,1]) \to L^2([0,1]; \mathbb{C})$ be given by

$$T_k f(x) := \int_0^1 k(x, y) f(y) \, \mathrm{d}y, \qquad \text{for } \mathcal{L}^1 \text{-a.e. } x \in [0, 1].$$

- (a) Prove that $T_k: L^2([0,1]; \mathbb{C}) \to L^2([0,1]; \mathbb{C})$ is a bounded linear operator with operator norm not exceeding $||k||_{L^2([0,1]^2)}$.
- (b) Show that T_k^* is of the form $T_{\tilde{k}}$ for some $\tilde{k} \in L^2([0,1] \times [0,1]; \mathbb{C})$ and determine \tilde{k} . Give a sharp condition on k for T_k to be selfadjoint.

Sobolev spaces and Sturm-Liouville problems

Problem 7: Sobolev spaces in one space dimension

Define the space *H* as in Theorem 2.14 from the lectures. Define $W_0^{1,2}((0,1))$ as the closure of $C_c^1((0,1))$ in $C_b([0,1])$ with respect to the norm $||u|| := ||u||_{L^2([0,1])} + ||u'||_{L^2([0,1])}$. Establish that $H = W_0^{1,2}((0,1))$.

Problem 8: Sturm-Liouville problems and eigenvalues

Let $q \in C([0,1])$ be given and suppose that $u \in C^2([0,1])$ is such that $-u'' + qu = \lambda u$. Show that λ necessarily is real. Moreover, show that if $\lambda \neq \lambda'$, then the solutions u and v of $-u'' + qu = \lambda u$ or $-v'' + qv = \lambda' v$, respectively, are L²-orthogonal.

10 marks

10 marks

6 + 4 = 10 marks

10 marks

5 + 5 = 10 marks