Functional Analysis & PDEs

Jan 09, 2020 PROF. DR. H. KOCH DR. F. GMEINEDER Due: Jan 17, 2019

Problem Set 11

Problem 1: Weyl

10 marks

5 marks

10 marks

Suppose that $A \colon \mathbb{R}^n \to \mathbb{R}^n$ is a symmetric linear map which satisfies $\langle Ay, y \rangle \geq |y|^2$ for all $y \in \mathbb{R}^n$. Furthermore, suppose that $u \in W^{1,2}_{loc}(\mathbb{R}^n)$ is such that

$$\int_{\mathbb{R}^n} \langle A \nabla u, \nabla \varphi \rangle \, \mathrm{d}x = 0 \qquad \text{for all } \varphi \in \mathrm{C}^\infty_c(\mathbb{R}^n).$$

By considering $\varphi := \Delta_{s,h}^{-}(\rho^2 \Delta_{s,h}^+ u)$ for $s \in \{1, ..., n\}$ and h > 0, where

$$\Delta_{s,h}^{\pm}u(x) := \frac{u(x \pm he_i) - u(x)}{h},$$

establish that $u \in C^{\infty}(\mathbb{R}^n)$.

Hint: Difference quotient characterisation of $W^{1,2}$.

Problem 2: Hahn-Banach reloaded

Let $(X, \|\cdot\|)$ be a normed space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , $M \subset X$ and $x \in X$. Establish that the following are equivalent:

(a)
$$x \in \overline{\operatorname{span}(M)}$$
,

(b) every bounded linear functional $f \in X^*$ with $f|_M = 0$ satisfies f(x) = 0.

Problem 3: Hahn-Banach reloaded

Let $(X, \|\cdot\|)$ be a normed space and $U \leq X$ be a closed subspace with $U \subset X$. Let $x \in X \setminus U$. Then there exists $x^* \in X^*$ with $x^*|_U = 0$, $\|x^*\| \leq 1$ and $x^*(x) = \operatorname{dist}(x, U)$.

Problem 4: Banach limits

Let $(x_j) \in X := \ell^{\infty}(\mathbb{N})$ (the bounded sequences with real entries) and define the *left* shift $T((x_j)) := (x_{j+1})$.

A linear functional $l: X \to \mathbb{R}$ is called *Banach limit* provided the following hold:

- (a) *l* is positive: If $x_1, x_2, \dots \ge 0$, then $l((x_j)) \ge 0$.
- (b) $l \circ T = l$.
- (c) l((1, 1, 1, 1, 1, 1, ...)) = 1.
- (I) Establish that a Banach limit satisfies each of the following:

10 + 5 = 15 marks

- (a) If $x_j \le y_j$ for all $j \in \mathbb{N}$, then $l((x_1, x_2, ...)) \le l((y_1, y_2, ...))$.
- (b) l is bounded with norm at most 1.
- (c) For all $x = (x_j) \in \ell^{\infty}(\mathbb{N})$ there holds $\liminf_{j \to \infty} x_j \le lx \le \limsup_{j \to \infty} x_j$.
- (d) l is not multiplicative: There exist $x = (x_j), y = (y_j) \in \ell^{\infty}(\mathbb{N})$ such that $l((x_1y_1, x_2y_2, \ldots)) \neq l(x)l(y).$
- (II) Establish the existence of a Banach limit. *Hint:* Hahn-Banach.