Functional Analysis & PDEs

Dec 23, 2019 Prof. Dr. H. Koch Dr. F. Gmeineder *Due: Jan 10, 2019*

Problem Set 10

You can achieve up to 40 bonus marks on this sheet.

Problem 1: Hardy's inequality

10 marks

10 marks

Prove that for any $n \ge 3$ there exists c = c(n) > 0 such that

$$\int_{\mathbb{R}^n} \frac{|u(x)|^2}{|x|^2} \,\mathrm{d}x \le c \int_{\mathbb{R}^n} |Du(x)|^2 \,\mathrm{d}x \qquad \text{for all } u \in \mathrm{W}^{1,2}(\mathbb{R}^n).$$

To do so, observe that $|Du + \lambda \frac{x}{|x|^s} u(x)|^2 \ge 0$ for all $\lambda \in \mathbb{R}$ and s > 0.

Problem 2: Fourier characterisation of $W^{k,2}(\mathbb{R}^n)$ **10 marks** Let $k \in \mathbb{N}_{\geq 1}$. Establish that the following are equivalent for $u \in L^2(\mathbb{R}^n)$:

(a)
$$u \in \mathbf{W}^{k,2}(\mathbb{R}^n)$$
.

(b) There holds

$$||u||_{H^k(\mathbb{R}^n)} := \left(\int_{\mathbb{R}^n} (1+|\xi|^2)^k |\widehat{u}(\xi)|^2 \,\mathrm{d}\xi\right)^{\frac{1}{2}} < \infty.$$

Problem 3: Embeddings into $L^{\infty}(\mathbb{R}^n)$, revisited 10 marks Let $k, n \in \mathbb{N}$ be such that $k > \frac{n}{2}$. Use the foregoing exercise to establish that $W^{k,2}(\mathbb{R}^n) \hookrightarrow L^{\infty}(\mathbb{R}^n)$. More precisely, establish that there exists a constant c = c(k, n) > 0 such that

$$||u||_{\mathcal{L}^{\infty}(\mathbb{R}^n)} \le c||u||_{\mathcal{W}^{k,2}(\mathbb{R}^n)} \quad \text{for all } u \in \mathcal{W}^{k,2}(\mathbb{R}^n).$$

Deduce from this estimate that every $u \in W^{k,2}(\mathbb{R}^n)$ has a continuous representative and conclude that

$$\bigcap_{k\in\mathbb{N}} \mathbf{W}^{k,p}(\mathbb{R}^n) \hookrightarrow \mathbf{C}^{\infty}(\mathbb{R}^n)$$

for any $1 \leq p \leq \infty$.

Problem 4: Removing points

Let $B_1(0) \subset \mathbb{R}^2$ be the unit ball in two dimensions. Establish that $W_0^{1,2}(B_1(0)) = W_0^{1,2}(B_1(0) \setminus \{0\}).$

Problem 5: Negative Sobolev spaces

Let $\Omega \subset \mathbb{R}^n$ be open and let $\ell \in \Omega$ be a non-trivial line segment. Determine (depending on n) all numbers $m \in \mathbb{N}$ such that the functional

$$F_{\ell}(\varphi) := \int_{\ell} \varphi \, \mathrm{d}\mathcal{H}^1, \qquad \varphi \in \mathrm{C}^{\infty}_c(\Omega)$$

extends to an element $W^{-m,2}(\Omega)$.

Problem 6: Embeddings on domains

Let $\Omega := \{(x_1, x_2) \in \mathbb{R}^2: 0 < x_1 < 1, 0 < x_2 < x_1^2\}$. Prove that there exists p > 2 such that there exists no constant c > 0 such that $\|\varphi\|_{L^{\infty}(\Omega)} \leq c \|\varphi\|_{W^{1,p}(\Omega)}$ for all $\varphi \in W^{1,p}(\Omega)$. Discuss this in view of Morrey's embedding known from the lectures.

Conclude that there exists p > 2 such that Ω is *not* an extension domain for $W^{1,p}$. By this we understand that there is no bounded linear operator $E: W^{1,p}(\Omega) \to W^{1,p}(\mathbb{R}^n)$ such that $Eu = u \mathcal{L}^n$ -a.e. on Ω for all $u \in W^{1,p}(\Omega)$.

Problem 7: *p*-energies

5 + 5 = 10 marks

Let $\Omega \subset \mathbb{R}^n$ be an open and bounded domain. Given 1 , consider the energy

$$\mathcal{J}_p[u] := \int_{\Omega} \frac{1}{p} |\nabla u|^p - f u \, \mathrm{d}x, \qquad u \in \mathrm{W}^{1,p}_0(\Omega),$$

where $f \in L^{p'}(\Omega)$ is given.

- (a) Establish that $m_p := \inf_{W_0^{1,p}(\Omega)} \mathcal{J}_p[u] \in (-\infty,\infty).$
- (b) Pick a sequence (u_j) in $W_0^{1,p}(\Omega)$ such that $\mathcal{J}_p[u_j] \to m_p$ as $j \to \infty$. Establish that (u_j) is a Cauchy sequence in $W^{1,p}(\Omega)$ and hereafter the existence of a minimiser of \mathcal{J}_p that is, an element $u \in W_0^{1,p}(\Omega)$ such that $\mathcal{J}_p[u] \leq \mathcal{J}_p[v]$ for all $v \in W_0^{1,p}(\Omega)$.

Hint: Uniform convexity of L^p -spaces – use ideas known from the proof of separability of Sobolev spaces to conclude the uniform convexity of the relevant Sobolev spaces.

Problem 8: p-Laplacean

10 marks

In the situation of problem 7, establish that the minimiser u from 7(b) is unique and satisfies $-\Delta_p u = f$ in $\mathcal{D}'(\Omega)$, i.e., for all $\varphi \in C_c^{\infty}(\Omega)$ there holds

$$\int_{\Omega} |Du|^{p-2} Du \cdot D\varphi = \int_{\Omega} f\varphi \, \mathrm{d}x \quad \text{for all } \varphi \in \mathrm{C}^{\infty}_{c}(\Omega).$$

Merry Christmas & a Happy New Year 2020 – see you in the next decade!

10 marks

10 marks