Analysis 1

26.10.2017

Prof. Dr. H. Koch

F. GMEINEDER

Abgabe: 02.11.2017 in der Vorlesung

Übungsblatt 3

Aufgabe 1:

5+5 = 10 Punkte

Zeigen Sie

(a) direkt mit Hilfe des binomischen Satzes, dass für jede reelle Zahl $x \geq 0$ und jede natürliche Zahl $n \in \mathbb{N}_{\geq 1} := \{1, 2, 3, ...\}$ die Ihnen bereits aus der Vorlesung bekannte Bernoullische Ungleichung gilt, d.h.,

$$1 + nx \le (1+x)^n.$$

(b) mit Hilfe eines ähnlichen Arguments wie in Teilaufgabe (a), dass für jede reelle Zahl $x \ge 0$ und jede natürliche Zahl $n \in \mathbb{N}_{\ge 2} := \{2, 3, ...\}$ gilt

$$(1+x)^n > \frac{n^2}{4}x^2.$$

Aufgabe 2:

4 + (2+2+2) = 10 Punkte

Es seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ Folgen mit Werten in \mathbb{R} . Zeigen Sie:

- (a) Ist $(a_n)_{n\in\mathbb{N}}$ eine Nullfolge und $(b_n)_{n\in\mathbb{N}}$ beschränkt, so konvergiert die Produktfolge $(a_nb_n)_{n\in\mathbb{N}}$ gegen Null.
- (b) Sei $(a_n)_{n\in\mathbb{N}}$ eine Nullfolge mit $a_n>0$ für alle $n\in\mathbb{N}$. Geben Sie für jede der nachfolgenden Aussagen je eine bestimmt divergente Folge $(b_n)_{n\in\mathbb{N}}$ an, so dass der entsprechende Fall eintritt. Beweisen Sie Ihre Aussagen.
 - (i) $\lim_{n\to\infty} a_n b_n = 0$.
 - (ii) $\lim_{n\to\infty} a_n b_n = 1$.
 - (iii) $\lim_{n\to\infty} a_n b_n = +\infty$.

Aufgabe 3: 6+4=10 Punkte

Es sei $(a_n)_{n\in\mathbb{N}}$ eine konvergente Folge in \mathbb{R} mit Grenzwert $a\in\mathbb{R}$. Zeigen Sie, dass auch die Folge $(b_n)_{n\in\mathbb{N}}$ gegeben durch

$$b_n := \frac{1}{n+1} \sum_{k=0}^{n} a_k, \qquad n \in \mathbb{N},$$

gegen a konvergiert. Gilt auch die Rückrichtung? Beweisen Sie Ihre Behauptung.

bitte wenden ;) \longrightarrow

Aufgabe 4: 5 + 5 = 10 Punkte

Es sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in \mathbb{R} .

(a) Angenommen, die Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert *nicht* gegen $a\in\mathbb{R}$. Vervollständigen Sie den nachfolgenden Satz, der diese Aussage versprachlichen soll; arbeiten Sie dabei direkt an der in der Vorlesung gegebenen Definition von Folgenkonvergenz:

Es existiert ein $\varepsilon > 0$, so dass...

(b) Zeigen Sie direkt an der von Ihnen in (a) gegebenen Aussage, dass die Folge $((-1)^n)_{n\in\mathbb{N}}$ nicht gegen a=1 konvergiert.

Help Desk Mathematik zur Analysis I: Dienstag und Donnerstag, 15–18 Uhr