

Due: 23.12.2016

Functional Analysis and Partial Differential Equations

Sheet Nr.9		

Exercise 1

Let $\phi \in \mathcal{D}(\mathbb{R}^d)$ and $T \in \mathcal{D}'(\mathbb{R}^d)$. We can define $\phi * T(x) = T(\phi(x - \cdot)) \in C^{\infty}(\mathbb{R}^d)$. Prove that

• If $\psi \in L^1(\mathbb{R}^d)$ then

Prof. Dr. Herbert Koch

Winter Term 2016/2017

Dr. Xian Liao

$$\phi * T_{\psi}(x) = \phi * \psi(x);$$

- If $\operatorname{supp}\phi = K_1$ and $\operatorname{supp}T = K_2$, then $\operatorname{supp}(\phi * T) \subset K_1 + K_2$;
- If we identify $\phi * T$ with its associated distribution, then it can be equivalently defined as

$$(\phi * T)(f) = T(\tilde{\phi} * f), \forall f \in \mathcal{D}(\mathbb{R}^d), \quad \tilde{\phi}(x) = \phi(-x).$$

Exercise 2

Let $S \in \mathcal{D}'(\mathbb{R}^d)$ with compact support and $T \in \mathcal{D}'(\mathbb{R}^d)$ and we define the convolution $S * T \in \mathcal{D}'(\mathbb{R}^d)$ as

$$(S * T)(f) = T(\tilde{S} * f), \quad \forall f \in \mathcal{D}(\mathbb{R}^d),$$

where $\tilde{S}(g) = S(\tilde{g}), g \in \mathcal{D}(\mathbb{R}^d)$. Formulate and prove the reasonable properties of the convolution of distributions.

Exercise 3

Prove the following statement: Let $U \subset \mathbb{R}^d$ be open and connected. If $T \in \mathcal{D}'(U)$ satisfies $\partial_{x_i} T = 0$ for $j = 1, \ldots, d$ then there exists $c \in \mathbb{K}$ so that

$$T(\phi) = c \int_U \phi \, dm^d = T_c(\phi), \quad \forall \phi \in \mathcal{D}(U).$$

Prove the following steps one by one:

a) If $\phi \in \mathcal{D}(U)$ satisfies $\int_U \phi dm^d = 0$ and $\operatorname{supp}\phi$ is convex, then there exists $F_i \in \mathcal{D}(U)$ with $\phi = 0$ $\sum_{j=1}^{d} \partial_{x_j} F_j$. Hint: Begin with d = 1 and use by induction with respect to d.

- b) Remove the restriction that $\operatorname{supp}\phi$ is convex above.
- c) $T(\phi) = 0$ if $\phi \in \mathcal{D}(U)$ such that $\int_U \phi dm^d = 0$.
- d) Pick a fixed function $\phi_0 \in \mathcal{D}(U)$ with $\int \phi_0 dm^d = 1$. Then

$$T(\phi) = T(\phi - \int_{U} \phi dm^{d} \phi_{0}) + \int_{U} \phi dm^{d} T(\phi_{0}) = \int_{U} \phi dm^{d} T(\phi_{0}).$$

Exercise 4

Let $f \in W^{k,p}(U), k \in \mathbb{N}, 1 \le p < \infty$. Prove that

- If $g \in C_b^k(U)$ then $gf \in W^{k,p}(U)$.
- If $\phi:V\to U$ is a C^k diffeomorphism then there exists C>1 so that

$$||f \circ \phi||_{W^{k,p}(V)} \le C ||f||_{W^{k,p}(U)}.$$

• If $1 , then the map <math>J: L^p(U \times \Sigma_k) \to W^{-k,p}(U)$ defined by

$$J((f_{\alpha}))(u) = \sum_{|\alpha| \le k} \int_{U} f_{\alpha} \partial^{\alpha} u \, dm^{d}, \quad \forall u \in W_{0}^{k,p'}(U)$$

has norm 1. Here we define the space $W^{-k,p}(U) = (W_0^{k,p'}(U))^*$.