

# **Functional Analysis and Partial Differential Equations**

Sheet Nr.1

Prof. Dr. Herbert Koch

Winter Term 2016/2017

Dr. Xian Liao

Due: 28.10.2016

## Exercise 1

Prove that  $\mathbb{B}(X)$  with the sup norm is a Banach space.

# Exercise 2

Let *X* be a metric space equipped with the distance  $d(\cdot, \cdot)$ . Prove that  $C_b(X)$  is a Banach space.

Let  $C_0(X) \subset C_b(X)$  be the subset of functions  $f \in C_b(X)$  with

 $f(x) \to 0$  for  $d(x, x_0) \to \infty$ .

Here  $x_0 \in X$ . Verify that this notion is independent of  $x_0$  and prove that  $C_0(X)$  is a Banach space.

#### **Exercise 3**

Prove that the map from  $l^1$  to  $c_0$ :

$$l^1 \ni (x_j) \to \left(y \to \sum_{j=1}^{\infty} x_j y_j\right) \in c_0^*$$

is welldefined and an isometric isomorphism. By this we mean that it is injective and surjective, and

$$\|(x_j)\|_{l^1} = \left\| \left( y \to \sum_{j=1}^{\infty} x_j y_j \right) \right\|_{c_0^*}$$

## **Exercise 4**

Let  $\frac{1}{p} + \frac{1}{q} = 1$ ,  $1 \le p, q \le \infty$ . Prove that

$$l^q \ni x \to \left(y \to \sum_{j=1}^{\infty} x_j y_j\right) \in (l^p)^*$$

and that this map is an isometry. Is it surjective?