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1 Furstenberg correspondence principle

The main motivation for the theory that will be covered in this course is the following.

Theorem 1.1 ([Sze75]). Let E ⊂ Z be a set with positive upper density

d(E) := lim sup
N→∞

|E ∩ [1, N ]|
N

> 0. (1.2)

Then for every k there exist a ∈ Z and n > 0 such that

a, a+ n, . . . , a+ kn ∈ E.

The approach that will be presented here has been started in the seminal article
of Furstenberg [Fur77] and has led to a number of generalizations of Theorem 1.1,
some of which we may discuss, time permitting.

The starting point of this approach is a more flexible reformulation of the above.
Let T be the translation operator

Tf(n) = f(n+ 1)

on `∞(Z → C). Consider the smallest T -invariant closed sub-∗-algebra A ⊂ `∞

containing the characteristic function 1E . Then A is separable and there exists a
subsequence (Nk) of N that realizes the supremum in (1.2) and such that

µ(f) := lim
k→∞

1

Nk

Nk∑
n=1

f(n)

exists for every f ∈ A. In particular, µ is a positive bounded linear form on A that is
T -invariant.

This gives the following reformulation of Szemerédi’s theorem.

Theorem 1.3. Let A be a separable commutative unital C∗ algebra, T an automor-
phism of A, µ : A→ C a T -invariant positive linear form, and f ∈ A with f ≥ 0 and
µ(f) > 0. Then for every k ≥ 0 we have

lim inf
N→∞

1

N

N∑
n=1

µ(f · Tnf · · ·T knf) > 0.

Taking f = 1E and A as above it is clear that Theorem 1.1 is already implied by

µ(f · Tnf · · ·T knf) > 0

for a single n > 0, so Theorem 1.3 is formally substantially stronger (but it can be in
fact deduced from Theorem 1.1, this might appear as an exercise once we have the
necessary technology).

In this lecture we prove the following result

Theorem 1.4 ([Sár78]). Let E ⊂ Z be a set with positive upper density. Then for
every polynomial p with integer coefficients and no constant term there exist a ∈ Z
and n > 0 such that

a, a+ p(n) ∈ E.

Passing to the translation invariant algebra spanned by 1E we see that it suffices
to prove the following formally stronger statement.

Theorem 1.5. Let A be a separable commutative unital C∗ algebra, T an automor-
phism of A, µ : A→ C a T -invariant positive linear form, and f ∈ A with µ(f) > 0.
Then for every polynomial p with integer coefficients and zero constant term we have

lim inf
M→∞

lim inf
N→∞

1

N

N∑
n=1

µ(f · T p(M !n)f̄) > 0.
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This is much easier to prove than Theorem 1.3 because this is a Hilbert space
problem in disguise. Without loss of generality assume µ(1) = 1 and p 6≡ 0. Consider
the sesquilinear form

〈f, g〉 := µ(fḡ)

on A. By the positivity assumption on µ this form is positive definite, which makes
A a pre-Hilbert space and T an invertible isometry. Let H be the Hilbert space
completion of A; T extends to a unitary operator on H. The problem now reduces to
the following:

we are given a Hilbert space H with a unitary operator T acting on it and a vector
f ∈ H. There is also a distinguished element 1 ∈ H with T1 = 1 and 〈f, 1〉 > 0. We
have to show

lim inf
M→∞

lim inf
N→∞

1

N

N∑
n=1

〈
f, T p(M !n)f

〉
> 0.

Recall that the Borel functional calculus of a normal operator T is the unique
homomorphism of unital ∗-algebras that maps a bounded complex-valued Borel
function f on the spectrum σ(T ) to an operator, denoted by f(T ), with the following
properties:

1. the function f(z) = z is mapped to the operator f(T ) = T ,

2. if fk is a uniformly bounded sequence of Borel functions that converges pointwise
to a function f , then fk(T )→ f(T ) in the strong operator topology.

The spectrum of the unitary operator T is a subset of the unit circle Λ ⊂ C. Let

gM,N (λ) :=
1

N

N∑
n=1

λp(M !n).

These are bounded Borel functions on Λ ⊃ σ(T ), and with the Borel functional
calculus we have

1

N

N∑
n=1

〈
f, T p(M !n)f

〉
= 〈f, gM,N (T )f〉 .

By the Borel functional calculus it suffices to understand pointwise behaviour of the
functions gM,N as first N →∞ and then M →∞.

The first claim is that for all M and all λ ∈ Λ that are not roots of unity we have
limN→∞ gM,N (λ) = 0. The easiest way to prove this is to use the van der Corput
differencing argument. For future use we formulate a Hilbert space valued version of
this argument, in the current application the Hilbert space in question will be C.

Proposition 1.6. Let V be a Hilbert space and let (vn) be a bounded sequence in V .
Then

lim sup
N→∞

‖ 1

N

N∑
n=1

vn‖2 ≤ lim sup
K→∞

1

K

K∑
k=1

lim sup
N→∞

| 1
N

N∑
n=1

〈vn+k, vn〉 |

Proof. On the left-hand side we can replace the average by the following double
average

1

N

N∑
n=1

vn =
1

K

K∑
k=1

1

N

N∑
n=1

vn+k +O(K/N)

By triangle and Hölder’s inequality

‖ 1

K

K∑
k=1

1

N

N∑
n=1

vn+k‖2 ≤ (
1

N

N∑
n=1

‖ 1

K

K∑
k=1

vn+k‖)2 ≤ 1

N

N∑
n=1

‖ 1

K

K∑
k=1

vn+k‖2.
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This can be written

1

K2

K∑
k1,k2=1

1

N

N∑
n=1

〈vn+k1 , vn+k2〉 ≤
1

K2

K∑
k1,k2=1

| 1
N

N∑
n=1

〈
vn+|k1−k2|, vn

〉
|+O(K/N),

and the conclusion follows from

1

K2

K∑
k1,k2=1

δ|k1−k2| =
1

K2

K∑
K′=1

2
K′∑
k=1

δk+O(1/K) =
2

K2

K∑
K′=1

K ′(
1

K ′

K′∑
k=1

δk)+O(1/K).

Corollary 1.7. Let p be a polynomial with real coefficients, at least one of which is
irrational. Then

lim
N→∞

1

N

N∑
n=1

e(p(n)) = 0.

Proof. Splitting into progressions modulo the least common denominator of the
rational coefficients we may assume that the leading coefficient is irrational. Moreover,
we may assume that the constant term of p vanishes.

We induct on the degree of p. If deg p = 1, then p(n) = αn, so

1

N

N∑
n=1

e(p(n)) =
1

N

N∑
n=1

e(2πi)αn =
1

N

e(2πi)α(N+1) − 1

e(2πi)α − 1
→ 0

as N →∞. Suppose now deg p > 1. Then for every k > 0 we have

lim sup
N→∞

| 1
N

N∑
n=1

e(p(n+ k))e(p(n))| = lim sup
N→∞

| 1
N

N∑
n=1

e(pk(n))|,

where pk(n) = p(n+ k)− p(n) is a polynomial of lower degree with irrational leading
coefficient. Hence by the inductive hypothesis this limit vanishes. The conclusion
follows from the van der Corput lemma with the Hilbert space C.

Let us now return to the proof of Theorem 1.5. We have just proved that
gM,N (λ)→ 0 as N →∞ for λ that are not roots of unity. On the other hand, if λ is
a root of unity, then the sequence (λp(M !n)) is periodic, so limN→∞ gM,N exists and
equals a complete trigonometric sum. The reason for introducing the parameter M is
to avoid further analysis of these sums: for a fixed λ and sufficiently large M we will
have λp(M !n) = 1 for all n. Thus

lim
M→∞

lim
N→∞

gM,N (λ) =

{
1 if λ is a root of unity and
0 otherwise.

In particular,
P := lim

M→∞
lim
N→∞

gM,N (T )

exists in the strong operator topology and is a projection operator, and we have
P (1) = 1 since T (1) = 1.

Therefore

〈f, Pf〉 ≥ | 〈f, 1〉 |
2

〈1, 1〉
> 0,

and this concludes the proof of Theorem 1.5.
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1.1 C∗ algebras

In this section we recall the main structural result about commutative C∗-algebras.
Recall their definition.

Definition 1.8. A C∗-algebra is an algebra A over C equipped with a Banach space
norm ‖ · ‖ and an involution ∗ : A → A that satisfy the following axioms for all
a, b ∈ A and µ, λ ∈ C:

1. (λa+ µb)∗ = λ̄a∗ + µ̄b∗ (antilinear),

2. ‖ab‖ ≤ ‖a‖‖b‖ (Banach algebra),

3. ‖a‖2 = ‖a∗a‖ (C∗ property),

4. (ab)∗ = b∗a∗ (antimultiplicative),

5. (a∗)∗ = a (involutive)

The positive elements of a C∗ algebra are, by definition, the elements of the form
a∗a. It is a non-trivial fact that the sum of two positive elements is again positive. A
continuous linear form on A is called positive if it maps positive elements to positive
real numbers.

Theorem 1.9 (Gelfand, Naimark, unital separable case). Let A be a commutative
unital separable C∗ algebra. Its Gelfand spectrum Â is by definition the set of all
unital ∗-homomorphisms from A to C. Every ∗-homomorphism is continuous, positive,
and bounded in norm by 1. Hence Â inherits the weak-∗ topology from the Banach
space dual A′, and with this topology Â is a compact metrizable space. Moreover, the
map

A→ C(Â,C), a 7→ (ϕ 7→ ϕ(a))

is an isomorphism of C∗ algebras (the norm on C(Â,C) being the supremum norm).

The proof can be found in any of the standard books on C∗ algebras, e.g. by
Takesaki [Tak02].

In the construction of Furstenberg we obtain, along with a commutative unital
C∗-algebra A, also an algebra automorphism T and a positive continuous linear form
µ : A→ C. The former induces a homeomorphism on Â, again denoted by T , by the
formula Tϕ = ϕ ◦ T . The latter corresponds to an (outer and inner) regular Borel
probability measure on Â, again denoted by µ, with the property∫

Â
a(ϕ)dµ(ϕ) = µ(a)

for every a ∈ A. The correspondence is given by the Riesz–Markov–Kakutani
representation theorem.
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2 Ergodicity

2.1 Three perspectives on measure-preserving dynamical systems

In the last lecture we have seen a construction of an “algebraic” measure-preserving
dynamical system. Such system consists of the following data:

1. A commutative separable unital C∗-algebra A,

2. a positive linear functional µ : A→ C (without loss of generality we will assume
µ(1) = 1 from now on),

3. and an automorphism T : A→ A that preserves µ in the sense µ ◦ T = µ.

The Gelfand spectrum Â is by definition the set of non-zero algebra homomorphisms
A→ C. It is a weak-∗ closed subset of the the Banach space dual A′ and therefore a
compact metrizable space. The map

A→ C(Â,C), a 7→ (ϕ 7→ ϕ(a))

is a C∗-algebra isomorphism by the Gelfand–Naimark theorem. There is a unique
regular Borel measure µ on Â satisfying∫

Â
ϕ(a)dµ(ϕ) = µ(a),

and the map Tϕ = ϕ ◦ T is a homeomorphism of Â that preserves the measure µ in
the sense that ∫

Â
fdµ =

∫
Â

(f ◦ T )dµ (2.1)

for every f ∈ C(Â). We will write

Tf := f ◦ T.

This gives a second perspective on measure-preserving dynamics. A “topological”
measure-preserving dynamical system (mps) consists of the following data.

1. A compact metric space X,

2. a regular Borel probability measure µ on X,

3. and a homeomorphism T : X → X that preserves µ.

The correspondence between algebraic and topological mps’s is one-to-one. Many
important concepts in measure-preserving dynamics are most conveniently defined
purely in terms of the measurable structure of X and do not directly involve the
topology (the first example being ergodicity, which we will discuss later in this lecture).
Let us therefore make the following definition.

Definition 2.2. A measure-preserving dynamical system (mps) consists of the fol-
lowing data:

1. A complete separable measure space X,

2. a probability measure µ on X,

3. and a measurable, invertible map T : X → X that preserves the measure µ in
the sense that (2.1) holds for all f ∈ X := L∞(X,µ).

From now on we denote the C∗ algebra of bounded measurable functions modulo
equality almost everywhere by the calligraphic version of the letter that denotes the
base space. The full notation for an mps is (X,µ, T ), but it may be abbreviated to
X or X , context permitting.
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Clearly, a “topological” mps induces an mps by forgetting the topological structure.
This process is not invertible, because on a given compact metric space there typically
exist many other compact metrizable topologies with the same Borel structure. One
can nevertheless attempt to invert it by observing that L∞(X,µ) is a C∗-algebra, µ
induces a positive linear functional on it, and T a µ-preserving algebra automorphism.
This has the downside that the Gelfand spectrum of L∞(X,µ) is in general non-
metrizable (unless X is finite), and metrizability is desirable for a number of technical
reasons.

The right thing to do is to consider a separable closed T -invariant L2-dense
sub-∗-algebra A ⊂ L∞(X,µ). The Gelfand spectrum Â (with measure µ and home-
omorphism T ) is then called a topological model of the mps (X,µ, T ). From a
topological model we can recover the original C∗-algebra L∞(X,µ) as follows. As in
the previous lecture, consider the inner product

〈a, b〉 := µ(ab∗)

on A. This coincides with the inner product on L2(X,µ), and by the density
assumption the Hilbert space completion H of (A, 〈·, ·〉) is isomorphic to L2(X,mu).
We have an injective C∗-algebra homomorphism ι : A→ L(H), with the operator ι(a)
given by ι(a)h = ah for h ∈ A and extended to H by continuity. By the von Neumann
double commutant theorem, the closure of ι(A) in the weak operator topology on
L(H) equals the double commutant1 ι(A)′′.

On the other hand, L∞(X) embeds into L(H) as the space of multiplication
operators, and this space is weakly closed in L(H). The weak operator topology on
this space coincides with the weak-∗ topology on L∞ as a dual space of L1. Hence it
suffices to show that the unit ball BA of A is weak-∗-dense in the unit ball B∞ of
L∞ in order to establish that

L∞(X,µ) ∼= ι(A)′′

as C∗ algebras. Using the fact that A is an algebra and the Stone–Weierstraß theorem
it is not hard to show that BA is L2 dense in B∞. But on the unit ball B∞ the L2

topology is finer that the σ(L∞, L1) topology, and we are done.
Running the same argument on L∞(Â, µ) (using the fact that A ∼= C(Â) is dense

in L2(Â, µ)) we see that

L∞(Â, µ) ∼= L∞(X,µ) as C∗ algebras.

In other words, the passage to a topological model preserves the algebra of bounded
measurable functions (and also µ and T , which is in a easier to show in the sense
that no sophisticated tools such as the double commutant theorem are needed).

Since we will be mostly concerned with results that can be formulated in terms
of bounded measurable functions, we will be free to choose topological models for
our measure-preserving systems. It will be convenient to choose different models at
different stages of our investigations, and the above result gives us the freedom to do
so.

2.2 Factors

Definition 2.3. Let (X,µ, T ) be an mps. A factor of X is a (closed) T -invariant
unital sub-C∗-algebra of X .

1If A ⊂ L(H) is a C∗ algebra, then its commutant is defined by A′ := {b ∈ L(H) : ∀a ∈ Aab = ba}.
The double commutant is A′′ = (A′)′. Observe that A′′ ⊇ A. We will not use the notion of commutant
outside of the current argument, and A′ will otherwise always stand for the Banach space dual of A.
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Example. The set of invariant functions

I(X,T ) := {f ∈ X : Tf = f}

is a factor of X, called the invariant factor.

If Y ⊂ X is a factor, then every topological model B of Y can be extended to a
topological model A of X :

Y X

B A

What does this say about the corresponding compact metric spaces? Since B ⊂ A,
we have a natural map π : Â→ B̂ between Gelfand spectra, which maps a C∗-algebra
homomorphism defined on A to its restriction to B. The map π is clearly continuous,
T -equivariant, and pushes the measure induced from µ on Â to the measure induced
from µ on B̂ (hence it makes sense to denote both these measures by µ).

A less obvious fact is that the map π is surjective. This is most easily seen using
an alternative characterization of Â for a commutative C∗ algebra A. Namely,

Â = extrM(Â).

Here extr stands for “extremal points” andM(Â) is the set of regular Borel probability
measures on the compact metric space Â. Indeed, by the Riesz–Markov–Kakutani
representation theorem we have

M(Â) = {ϕ ∈ A′ : ‖ϕ‖ ≤ 1, ϕ(1) = 1},

and this is a convex set which is weak-∗-compact by the Banach–Alaoglu theorem.
Its extreme points are the (Dirac δ) point measures.

Now, given ψ ∈M(B̂) consider the set

{ϕ ∈M(Â) : ϕ|B ≡ ψ}.

This is a weak-∗-compact convex set, and it is non-empty by the Hahn–Banach
theorem. By the Krein–Milman theorem it has an extreme point, and it is not hard
to verify that every such extreme point must already be an extreme point of M(Â)
using extremality of ψ in M(B̂). Thus we have found a ψ ∈ Â that maps to ψ under
π.

Summarizing, the topological model of a factor has the form of a surjective
continuous map

Â→ B̂

which intertwines the maps T on the left and on the right and pushes the measure µ
from the left to the right.

This description also makes sense in the measurable category: in the literature a
factor is frequently defined as a measurable map π : X → Y between mps (X,µ, T )
and mps (Y, ν, S) such that π◦T = S◦π holds almost everywhere and the pushforward
measure π∗µ equals ν. I prefer the algebraic definition because invariant algebras of
functions are easier to construct than corresponding measure spaces, as is already
apparent from the example of the invariant factor.

2.3 Invariant factors in some examples

Example (Rotation on the torus). The simplest measure-preserving system (after the
finite ones) is a rotation on the circle. Let X = T := R/Z be the torus with the
Lebesgue measure µ and the map Tx = Tαx := x+ α with some fixed α ∈ T. The
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invariant factor I(X) clearly depends on α. If α is rational with denominator q in
reduced form, then I(X) consists precisely of the 1/q-periodic functions.

Suppose now that α is irrational. For any L2 function f we have

T̂ f(n) = e(nα)f̂(n),

where ·̂ denotes the Fourier transform. Therefore, f ∈ fixT if and only if all but the
0-th Fourier coefficients vanish. Hence in this case

I(X) = C1X . (2.4)

An mps for which (2.4) holds is called ergodic.

An example of a non-ergodic mps is given by a rational rotation with α = 1
q

rational. In this example we can write X as a product space {0, 1
q , . . . ,

q−1
q } × [0, 1

q ),
and the transformation T factors into a cyclic permutation on the first multiplicand
and the identity of the second multiplicand. Hence the overall system is a union of
infinitely many copies of {0, 1

q , . . . ,
q−1
q }, one for each point in [0, 1

q ). This gives a
very misleading picture of what a generic non-ergodic system looks like. It is true in
general that any non-ergodic system is essentially a union of ergodic systems (this will
be proved in the next lecture). However, the ergodic components may vary wildly.

Example. Consider the space X = T2 with the Lebesgue measure and the transfor-
mation

T (x, y) := (x, y + x).

Let Y ⊂ X be the space of functions that depend only on the first coordinate. Then
I(X) = Y. Indeed, the inclusion ⊇ is clear. To see the converse, take f ∈ I(X)
and fix an everywhere defined representative for it (recall that L∞ is defined modulo
equality almost everywhere). In order for f to be T -invariant, the following must
hold: for almost every x we have

f(x, ·) ∈ I(T, Tx).

On the other hand, almost every x is irrational, and then I(T, Tx) = C1T. Hence
f(x, ·) is equivalent to a constant for almost every x, and the claim follows using
Fubini’s theorem.

For your amusement, here is another ergodic mps that plays a role in the theory
of continued fractions.

Example (Gauss). Let X = [0, 1) and Tx := {1/x} (fractional part of 1/x). Then
the measure dµ(x) = 1

log 2
dx

1+x is T -invariant and the mps (X,µ, T ) is ergodic.

Ergodicity is substantially harder to prove here than above. A well-known
(family of) open problem(s) in thermodynamics involving ergodicity is the ergodic
hypothesis, which postulates that certain Hamiltonian systems (equipped with the
Lioville measure) are ergodic.

2.4 Mean ergodic theorem

Let (X,µ, T ) be an mps. In the proof of Sárkőzy’s theorem on polynomial differences
in sets of positive measure we have observed that, for every function f ∈ L2(X,µ),
the limit

Pf := lim
N→∞

1

N

N∑
n=1

Tnf (2.5)

exists in L2(X,µ). Moreover, P is a projection operator given by the functional
calculus of T as the image of the indicator function of {1} ⊂ σ(T ). Note that 1 ∈ σ(T )
because the constant function 1X is an eigenvector of T with this eigenvalue.
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What is an explicit description of P ? The answer is that its range consists of the
T -invariant functions:

ranP = fixT.

This fact, together with the existence of the above limit, is known as the mean ergodic
theorem (on L2(X)). Let us prove the last inequality. The inclusion ⊇ is clear from
(2.5). On the other hand, suppose g ∈ ranP , so g = Pf . Then

Tg = T lim
N→∞

1

N

N∑
n=1

Tnf = lim
N→∞

T
1

N

N∑
n=1

Tnf

= lim
N→∞

1

N

N∑
n=1

Tnf +
TN+1f − Tf

N
= lim

N→∞

1

N

N∑
n=1

Tnf = g

as required. In particular we have

I(X) = ranP ∩ X .

for the invariant factor.
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3 Measure disintegration and ergodic decomposition

The next few lectures (up to relatively compact and weakly mixing extensions) will
cover classical material which appears most notably in [Fur81], [EW11], [Tao09].

Recall that a measure-preserving dynamical system (X,µ, T ) is called ergodic if
the T -invariant subspace I(X) ⊂ X consists only of the constant functions. It is in
fact possible to write any measure-preserving system as a direct integral of ergodic
systems, similarly to the example (x, y) 7→ (x, y + x) on the 2-torus. More precisely,
the following holds.

Proposition 3.1 (Ergodic decomposition). Let (X,µ, T ) be an mps. Then, upon
passing to a suitable topological model for the invariant factor Y , there exists a
continous T -invariant map

µ· : Y →M(X), y 7→ µy

such that
µ =

∫
Y
µydµ(y) (3.2)

and, for µ-almost every y, the measure µy is T -invariant and the mps (X,µy, T ) is
ergodic.

One application of this result is the reduction of the multiple recurrence problem
to ergodic systems. Recall that one of our goals is to prove Szemerédi’s theorem in
the following form: let (X,µ, T ) be an mps and 0 ≤ f ∈ X a not identically zero
function. Then

lim inf
N→∞

1

N

N∑
n=1

∫
X
f · Tnf · · ·T knfdµ > 0.

Suppose that this is known for ergodic systems. In the general case we may write the
left-hand side as

lim inf
N→∞

1

N

N∑
n=1

∫ ∫
f · Tnf · · ·T knfdµxdµ,

and by Fatou’s lemma this is bounded from below by∫ (
lim inf
N→∞

1

N

N∑
n=1

∫
f · Tnf · · ·T knfdµx

)
dµ.

Since f is not almost everywhere zero, it is not µx-a.e. zero for a positive µ-measure
set of x, so the quantity in the brackets is positive on a positive measure set by the
ergodic case of the multiple recurrence theorem.

A decomposition of a measure of the form (3.2) is called a measure disintegra-
tion. We will construct measure disintegrations over a general factor and obtain
Proposition 3.1 in the case of the invariant factor.

3.1 Conditional expectation

Definition 3.3. Let Y ⊂ X be a factor. The conditional expectation onto Y is the
orthogonal projection from L2(X) to L2(Y ). It is denoted by E(·|Y).

The L2 spaces in this definition can be thought of as the Hilbert space completions
of the respective C∗ algebras or the L2 spaces on Gelfand spectra of some compatible
topological models of X and Y . This definition does not make use of the measure-
preserving transformation T , nothing changes if e.g. T is replaced by the identity
map.
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Lemma 3.4. The conditional expectation has the following properties.

1. E(1|Y ) = 1.

2.
∫
E(f |Y ) =

∫
f for f ∈ L1(X).

3. Let f ∈ L2(X) and F ⊂ Y measurable. Then E(f1F |Y ) = E(f |Y )1F .

4. Conditional expectation maps positive functions in L1(X) to positive functions.

5. E : L∞(X)→ L∞(Y ) is a contraction.

6. E : L1(X)→ L1(Y ) is a contraction.

7. Assume that f ∈ L1(X), g ∈ L0(Y ) and either fg ∈ L1(X) or f ≥ 0,E(f |Y )g ∈
L1(Y ). Then

E(fg|Y ) = E(f |Y )g, and both functions are in L1(Y ).

This is of course well-known but it is important to have the weakest possible
assumptions in (7).

Proof. (1) holds since 1 ∈ L2(Y ).
(2) holds for f ∈ L2(X) since

∫
E(f |Y ) = 〈E(f |Y ), 1〉 = 〈f,E(1|Y )〉 = 〈f, 1〉 =∫

f .
For (3) note first that suppE(f1F |Y ) ⊂ F , since otherwise E(f1F |Y )1F ∈ L2(Y )

would have strictly smaller L2 distance to f1F , contradicting the fact that E is an
orthogonal projection. Suppose now E(f1F |Y ) 6= E(f |Y )1F , then∫

F
|E(f1F |Y )− f |2 <

∫
F
|E(f |Y )− f |2.

It follows that the function g := E(f1F |Y )1F + E(f |Y )1F c ∈ L2(Y ) has strictly
smaller L2 distance to f than E(f |Y ), a contradiction.

To show (4) let 0 ≤ f ∈ L2(X) and F = {E(f |Y ) < 0}. Then ‖f1F − 0‖ <
‖f1F − 1FE(f |Y )‖ = ‖f1F − E(f1F |Y )‖, which is a contradiction unless F = ∅.

To show (5) note that Πk(z) = z ·min(1, k/|z|) is a contraction on C for every
k ≥ 0. It follows that∫
|f − E(f |Y )|2 ≥

∫
|Π‖f‖∞ ◦ f −Π‖f‖∞ ◦ E(f |Y )|2 =

∫
|f −Π‖f‖∞ ◦ E(f |Y )|2

with equality if and only if ‖E(f |Y )‖∞ ≤ ‖f‖∞. But strict inequality would contradict
the fact that E(f |Y ) is the function in L2(Y ) that has the smallest distance from f .

Since E is self-adjoint and L∞(X) ⊂ L2(X) this implies (6). Thus E can be
extended to a contraction L1(X)→ L1(Y ) by continuity. The properties (2) and (4)
continue to hold for f ∈ L1(X).

Consider now (7). By linearity we obtain E(fg|Y ) = E(f |Y )g for f ∈ L2(X)
and simple functions g ∈ L∞(Y ). By density we may weaken the assumption to
g ∈ L∞(Y ).

Suppose now fg ∈ L1(X) and denote the truncation of g at level k by gk := Πkg.
By (4), the monotone convergence theorem, (2), and monotone convergence theorem
again we see that∫

|E(f |Y )g| ≤
∫

E(|f ||Y )|g| = lim
k

∫
E(|f ||Y )|gk| = lim

k

∫
E(|f ||gk||Y )

= lim
k

∫
|f ||gk| =

∫
|fg|,

12



so that E(f |Y )g ∈ L1(Y ). Moreover, the inequality turns into an equality in the case
f ≥ 0, and we obtain the converse implication.

By linearity we may now assume f, g ≥ 0. Then, by the monotone convergence
theorem,

E(fg|Y ) = lim
k→∞

E(fkgk|Y ) = lim
k→∞

E(fk|Y )gk = E(f |Y )g.

3.2 Measure disintegration

Theorem 3.5 (Measure disintegration). Let (X,µ, T ) be an mps and Y ⊂ X a factor.
Then, upon passing to a suitable topological model, there exists a continous map

µ· : Y →M(X), y 7→ µy

such that (3.2) holds, µTy = T∗µy, and for every representative f of every equivalence
class (modulo equality a.e.) in L1(X) we have∫

fdµy = E(f |Y )(y) (3.6)

pointwise a.e. (in particular, f ∈ L1(µy) for a.e. y ∈ Y ).
Finally, let π : X → Y be the spatial factor map. Then for µ-a.e. y and µy-a.e.

x ∈ X we have
µx := µπ(x) = µy. (3.7)

Proof. We use (3.6) to define the measures µy. In order to do so we first choose a
suitable topological model. Let B0 ⊂ A0 be any topological model of Y ⊂ X . Define
inductively

Bn+1 := E(An|Y ), An+1 := 〈An,Bn+1〉 .

This is an increasing sequence of topological models since E(An|Y ) is separable by
L∞-contractivity of conditional expectation. Let finally

B := ∪n∈NBn, A := ∪n∈NAn.

Then B ⊂ A and E(A|Y ) = B. Write Y := B̂.
For each y ∈ Y define a linear form on A by

µy(f) := E(f |Y )(y).

This is a positive linear form and ‖µy‖L∞→C = 1 by the properties of conditional
expectation. Moreover, by T -invariance of B we have

µTy(f) = E(f |Y )(Ty) = E(f ◦ T |Y )(y) = (T∗µy)(f).

Now we will show (3.7). Let 0 ≤ g ∈ B, then∫∫
|g(y)− g(π(x))|2dµy(x)dµ(y) =

∫∫
g(y)2 − 2g(y)g(π(x)) + g(π(x))2dµy(x)dµ(y)

=

∫
g(y)2 − 2g(y)E(g|Y )(y) + E(g2|Y )(y)dµ(y)

= 0,

so for µ-a.e. y we have g◦π = g(y) µy-a.e.. It follows that π∗µy = δy, and in particular
(3.7) holds.

It remains to extend (3.6) to f ∈ L1(X). Consider first an everywhere defined
bounded function f on X. Take a bounded sequence (fk) ⊂ A such that fk → f
in L2(X) and pointwise almost everywhere. Then for a.e. y we have convergence
µy-pointwise a.e. and also E(fk|Y )(y) → E(f |Y )(y). The dominated convergence
now gives (3.6). Integrable functions are handled similarly, restricting to positive
functions and using the monotone convergence theorem.

13



Proof of Proposition 3.1. Consider the measure disintegration over the invariant fac-
tor constructed in Theorem 3.5. Since T |I = idI we obtain T∗µy = µTy = µy.

It remains to show that a.e. measure µy is T -ergodic. To this end we consider the
alternative description of the invariant factor provided by the mean ergodic theorem.
Let f ∈ L∞(X). The mean ergodic theorem tells that

1

N

N∑
n=1

Tnf → E(f |I)

in L2 as N →∞. Passing to a subsequence2 we may assume convergence pointwise
a.e. In particular, for a.e. y we have convergence µy-a.e. and, since the sequence is
uniformly bounded in L∞, also in L2(µy).

On the other hand, by the mean ergodic theorem for the mps (X,µy, T ) we also
have

1

N

N∑
n=1

Tnf → E(f |I(X,µy, T ))

in L2(µy). It follows that

E(f |I(X,µy, T ))(z) = E(f |I)(z) =

∫
fdµz

for µy-a.e. z. By (3.7) this function of z is constant µy-a.e., so E(f |I(X,µy, T )) is
a constant function. By separability of A it follows that E(A|I(X,µy, T )) = C1, so
that (X,µy, T ) is ergodic.

2By the pointwise ergodic theorem the full sequence already converges poinwise a.e., but we will
not need this fact.
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4 Kronecker factor

4.1 Weyl equidistribution theorem

We will need the following Fourier analytic fact.

Theorem 4.1 (Weyl equidistribution theorem). Let α1, . . . , αd ∈ R \Q be rationally
independent. Then the sequence n~α is equidistributed modulo Zd in the sense that

lim
N→∞

1

N

N∑
n=1

f(n~α+ Zd) =

∫
f

for every continuous function f ∈ C(Rd/Zd). The integral on the right-hand side is
taken with respect to the Lebesgue measure.

In particular, this shows that the sequence n~α is dense modulo Zd, which is what
will be used in this lecture.

Proof. Approximating f uniformly we may assume that f is smooth, and in particular
that its Fourier series converges absolutely. In the latter case it suffices to consider a
single Fourier mode, f(~x) = e2πi

∑
i kixi . Then

1

N

N∑
n=1

f(n~α+ Zd) =
1

N

N∑
n=1

e2πin
∑
i kiαi .

There are two cases. If k~k = ~0, then this is indentically 1, and the limit is 1 as
required. Otherwise the number

∑
i kiαi is irrational, and in particular non-integer,

by the hypothesis, and the average converges to 0 as required.

4.2 Eigenfunctions

Throughout the remaining part of the lecture let (X,µ, T ) be an ergodic measure-
preserving system. Consider an eigenvector f ∈ L2 of T . Since T is unitary, the
corresponding eigenvalue λ has absolute value |λ| = 1. Moreover, since T comes from
a transformation on X, we have

T |f | = |Tf | = |λf | = |f |.

Hence, by ergodicity assumption, |f | is a constant function. In particular, f ∈ L∞(X).
Note also that the constant function 1 is an eigenfunction to eigenvalue 1.

Let now f1, f2 be two eigenfunctions with eigenvalues λ1, λ2, respectively. We
may normalize |f1| = |f2| ≡ 1. Then, since T is an algebra homomorphism, we have

T (f1f̄2) = Tf1 · Tf2 = λ1f1λ2f2.

Hence the set of L∞-normalized eigenfunctions is a group under multiplication, and
the point spectrum σd(T ) is a subgroup of the complex unit circle Λ.

Moreover, if λ1 = λ2, then f1f̄2 is an eigenfunction to eigenvalue 1, so it is a
constant function. It follows that all eigenspaces of T are at most 1-dimensional.

Let E denote the L∞ closed linear subspace of X spanned by the eigenfunctions
of X. Since products of eigenfunctions are eigenfunctions, this is a subalgebra. The
factor E is called the Kronecker factor. It has a useful spatial description.

Definition 4.2. A group Γ is called monothetic if there exists a group element γ
such that the orbit {γn, n ∈ Z} is dense in Γ.

Theorem 4.3 (Halmos–von Neumann). There exists a compact metrizable monothetic
Abelian group (G, γ) and a homeomorphism Ê ∼= Γ that intertwines T with the map
g 7→ γg and pushes the measure µ forward to the Haar measure on G.
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Proof. Define

G := {ϕ : σd(T )→ Λ homomorphism}, Λ = {z ∈ C : |z| = 1}

with pointwise operations and the topology of pointwise convergence (G is the
Pontryagin dual of the group σd(T ) equipped with the discrete topology). It is clear
that G is compact, metrizable, and Abelian.

Fix any point a ∈ Ê and for each eigenvalue λ ∈ σd(T ) fix the (unique) corre-
sponding eigenfunction fλ with fλ(a) = 1. Define the map

Φ : Ê → G, a 7→ (fλ(a))λ.

This is well-defined (in the sense that the right-hand side is an element of G) because
fλ1

¯fλ2 = fλ1λ̄2 by construction. The map Φ is clearly continuous from the weak*
topology to the topology of pointwise convergence. Moreover,

Φ(Ta) = (fλ(Ta))λ = (λfλ(a))λ = (λ)λ(fλ(a))λ,

so Φ intertwines T with the translation by the group element γ := (λ)λ.
Now we will show that the orbit of γ is dense in G. By definition this means that

for every finite set F ⊂ σd(T ), every homomorphism ϕ : σd(T )→ Λ, and every ε > 0
there is a power of γ that approximates ϕ on F to within ε.

Consider the subgroup 〈F 〉 of σd(T ) generated by F . By the structure theorem for
finitely generated Abelian groups it is isomorphic to Zd ×

∏
i Z/riZ. But σd(T ) ⊂ Λ,

and Λ has only 1 subgroup of order r for each integer r ≥ 1, so by the Chinese
remainder theorem 〈F 〉 ∼= Zd × Z/rZ. Let λ1, . . . , λd and λ0 be generators of 〈F 〉.
Since ϕ is a homomorphism, we may assume F = {λ0, . . . , λd}.

Since ϕ is a homomorphism, the order of the value ϕ(λ0) must be divisible by
the order of λ0, so it in fact lies in the subgroup generated by λ0. Hence, multiplying
ϕ by a power of γ, we may assume ϕ(λ0) = 1. It remains to approximate ϕ on
{λ1, . . . , λd} by powers of γr. But the values λr1, . . . , λrd are rationally independent,
so this is possible by Weyl’s equidistribution theorem.

This shows in particular that Φ(Ê) is dense in G, and since E is compact and by
continuity the map Φ is surjective. Compactness also implies that Φ is a homeomor-
phism.

Finally, the pushforward measure Φ∗µ is a Borel probability measure on G that
is invariant under the shift by the element γ. Since the orbit of γ is dense in G, it is
in fact invariant under the action of G on itself. But there is only one such measure,
namely the Haar measure.

The construction of G shows that the structure of the factor E is uniquely
determined by the point spectrum σd(T ), so the point spectrum classifies measure-
preserving dynamical systems for which E is L2-dense. Such systems are called
compact.

4.3 Orthogonal complement of the Kronecker factor

We define several subspaces of L2(X).

• The space spanned by eigenfunctions of T :

E(X) := E ⊂ L2(X).

• The space of almost periodic functions

A(X) := {f : TZf ⊂ L2 totally bounded} ⊂ L2(X).
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• The weakly mixing space

W (X) := {f : lim
N→∞

1

N

N∑
n=1

| 〈Tnf, f〉 |p = 0} ⊂ L2(X),

where 0 < p <∞.

Note that the space W (X) does not depend on 0 < p < ∞ because the sequence
| 〈Tnf, f〉 | is bounded, and for every positive bounded sequence (an) and 0 < p <
q <∞ by Jensen’s inequality and a termwise estimate we have

( 1

N

N∑
n=1

apn

)1/p
≤
( 1

N

N∑
n=1

aqn

)1/q
≤
( 1

N

N∑
n=1

apn

)1/q
‖(an)‖1−p/q`∞ .

It is clear that E(X) and A(X) are closed linear subspaces of L2. It is also clear that
W (X) is closed in L2, but the proof that it is a linear subspace requires the following
lemma.

Lemma 4.4. Let f ∈W (X) and g ∈ L2(X). Then for every 0 < p <∞ we have

lim
N→∞

1

N

N∑
n=1

| 〈Tnf, g〉 |p = 0.

Proof. It suffices to show this for p = 2. In this case the left-hand side of the
conclusion can be written

lim
N→∞

1

N

N∑
n=1

〈Tnf, g〉 〈Tnf, g〉 = lim
N→∞

〈
1

N

N∑
n=1

〈Tnf, g〉Tnf, g

〉
.

By the van der Corput differencing lemma it suffices to show

lim sup
H→∞

1

H

H∑
h=1

lim sup
n→∞

∣∣∣ 1

N

N∑
n=1

〈
〈Tn+hf, g〉Tn+hf, 〈Tnf, g〉Tnf

〉
| = 0.

By T -invariance of the inner product the left-hand side can be written as

lim sup
H→∞

1

H

H∑
h=1

lim sup
N→∞

∣∣∣ 1

N

N∑
n=1

〈
〈Tnf, g〉 〈Tn+hf, g〉T hf, f

〉 ∣∣∣
≤ ‖f‖2‖g‖2 lim sup

H→∞

1

H

H∑
h=1

|
〈
T hf, f

〉
|

= ‖f‖2‖g‖2 lim sup
H→∞

1

H

H∑
h=1

|
〈
T hf, f

〉
|,

and this vanishes by the assumption.

Now we consider the relations between these spaces. In the remaining part of the
lecture we will show

E(X) = A(X) = W (X)⊥.

The inclusion E(X) ⊂ A(X) is clear. The next two lemmas show the inclusions
A(X) ⊂W (X)⊥ and W (X)⊥ ∩ E(X)⊥ = {0}, from which the conclusion follows.

Lemma 4.5. W (X) ⊥ A(X).
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Proof. Let f ∈ W (X), g ∈ A(X), and ε > 0. By the assumption there exist
g1, . . . , gk ∈ L2(X) such that for every n there exists i(n) with ‖Tng − gi(n)‖2 < ε.
It follows that

| 〈f, g〉 | = lim
N→∞

1

N

N∑
n=1

| 〈Tnf, Tng〉 |

= lim
N→∞

1

N

N∑
n=1

|
〈
Tnf, gi(n)

〉
|+O(‖f‖2ε)

=

k∑
i=1

lim
N→∞

1

N

N∑
n=1

| 〈Tnf, gi〉 |+O(‖f‖2ε).

By the assumption f ∈ W (X) the limits in the last line vanish, so that 〈f, g〉 =
O(‖f‖2ε). Since ε was arbitrary, this implies 〈f, g〉 = 0 as claimed.

Lemma 4.6. Let f ∈ L2(X) \W (X). Then f 6⊥ E(X).

Proof. We need to construct an eigenfunction of T that correlates with f . By the
hypothesis we know

lim
N→∞

1

N

N∑
n=1

| 〈Tnf, f〉 |2 6= 0.

This can be written as

lim
N→∞

1

N

N∑
n=1

〈
(T × T )n(f ⊗ f̄), f ⊗ f̄

〉
6= 0,

the inner product now being taken in L2(X×X,µ×µ). By the mean ergodic theorem
applied to this product space the left-hand side equals

〈
H, f ⊗ f̄

〉
with a (non-zero)

function H ∈ L2(X ×X).
Consider the integral operator

Sg(x) :=

∫
H(x, x′)g(x′)dµ(x).

The operator S is self-adjoint because H(x, x′) = H(x′, x). Moreover, it is a Hilbert–
Schmidt operator, and in particular compact.

By the spectral theorem for compact operators there exists a finite-dimensional
eigenspace V ⊂ L2(X) to a non-zero eigenvalue λ. Since the integral kernel H is
T -invariant, the operator S commutes with T , so the space V is T -invariant. But T
is unitary, so there exists a 0 6= g ∈ V that is an eigenvalue of both S and T .

By construction we have

0 6= λ‖g‖2 = 〈Sg, g〉 =

∫∫
g(x)H(x, x′)g(x′)dµ(x′)dµ(x).

By definition of H it follows that there exists n ∈ N such that

0 6=
∫∫

g(x)Tnf(x)Tnf̄(x′)g(x′)dµ(x′)dµ(x) = | 〈Tnf, g〉 |2 = |
〈
f, T−ng

〉
|2.

Thus g is an eigenfunction of T with the required property.
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5 Roth’s theorem

Theorem 5.1 (Roth, [Rot53]). Let E ⊂ Z be a set with positive upper density. Then
there exist a ∈ Z and n > 0 such that a, a+ n, a+ 2n ∈ E.

Roth’s theorem has the following ergodic-theoretic formulation.

Theorem 5.2. Let (X,µ, T ) be an ergodic measure-preserving system and f ∈ X
non-negative with

∫
f > 0. Then

lim inf
N→∞

1

N

N∑
n=1

∫
f · Tnf · T 2nfdµ > 0. (5.3)

The proof consists of two steps: reduction to the Kronecker factor and an applica-
tion of Weyl’s equidistribution theorem to eigenvalues of T .

Lemma 5.4. Let (X,µ, T ) be an ergodic mps, f0, f1, f2 ∈ X and suppose that
fi ∈W (X) for some i ∈ {0, 1, 2}. Then

lim
N→∞

1

N

N∑
n=1

∫
f0 · Tnf1 · T 2nf2dµ = 0.

Proof. Suppose first either f1 ∈ W (X) or f2 ∈ W (X). By the van der Corput
differencing lemma applied to the vectors un = Tnf1 · T 2nf2 it suffices to show

lim sup
H→∞

1

H

H∑
h=1

lim sup
N→∞

∣∣∣ 1

N

N∑
n=1

〈un, un+h〉
∣∣∣ = 0.

The left-hand side equals

lim sup
H→∞

1

H

H∑
h=1

lim sup
N→∞

∣∣∣ 1

N

N∑
n=1

∫
Tnf1T

2nf2T
n+hf̄1T

2n+2hf̄2

∣∣∣
= lim sup

H→∞

1

H

H∑
h=1

lim sup
N→∞

∣∣∣ ∫ 1

N

N∑
n=1

f1T
nf2T

hf̄1T
n+2hf̄2

∣∣∣.
By the mean ergodic theorem applied to the average over n this equals

lim sup
H→∞

1

H

H∑
h=1

∣∣∣ ∫ f1T
hf̄1E(f2T

2hf̄2|I)
∣∣∣.

By the ergodicity assumption the conditional expectation onto the invariant factor
equals the integral of the function, so this equals

lim sup
H→∞

1

H

H∑
h=1

∣∣∣ ∫ f1T
hf̄1

∣∣∣ · ∣∣∣ ∫ f2T
2hf̄2

∣∣∣.
By Cauchy–Schwarz in the summation over h this is bounded by

lim sup
H→∞

( 1

H

H∑
h=1

|
〈
f1, T

hf1

〉
|2
)1/2( 1

H

H∑
h=1

|
〈
f2, T

2hf2

〉
|2
)1/2

.

By the assumption one of the factors goes to 0 as H →∞, while the other is certainly
bounded.

It remains to consider the case f0 ∈W (X). In this case use the fact that T is a
homomorphism to write

1

N

N∑
n=1

∫
f0 · Tnf1 · T 2nf2dµ =

1

N

N∑
n=1

∫
(T−1)2nf0 · (T−1)nf1 · f2dµ

and apply the above reasoning, noting that W (X) does not change upon replacing T
by T−1.
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By multilinearity (splitting fi = E(fi|E) + f⊥i with f⊥i ∈W (X)) it follows that

1

N

N∑
n=1

∫
f0 ·Tnf1 ·T 2nf2dµ− 1

N

N∑
n=1

∫
E(f0|E)·TnE(f1|E)·T 2nE(f2|E)dµ→ 0 (5.5)

as N →∞ for any functions f0, f1, f2 ∈ X . The property (5.5) is described by saying
that the Kronecker factor is characteristic for the ergodic averages (5.3). There are
also other characterisitc factors, for instance X itself is characteristic for any kind of
ergodic averages. The point here is that the Kronecker factor has an explicit algebraic
description.

Proof of Theorem 5.2. Note that
∫
E(f |E) =

∫
f > 0, so by Lemma 5.4 we may

assume f ∈ E(X)∩X . This means that f can be approximated in L2 by finite linear
combinations of eigenfunctions of T . Let ε > 0 and write

f =

r∑
i=1

aifλi +O(ε)

accordingly, where λi are distinct eigenvalues of T and fλi are corresponding (orthog-
onal) L2 normalized eigenfunctions. Then

Tnf =

r∑
i=1

λni aifλi +O(ε).

By Weyl’s equidistribution theorem the sequence ((λni )i)n is equidistributed in a
subgroup H of the torus Λr. Let ϕ ∈ C(Λr) be a non-zero positive function supported
in a δ-neighborhood of the identity and bounded by 1. Then ϕ((λni )i) 6= 0 implies

Tnf =
r∑
i=1

(1 +O(δ))aifλi +O(ε) = f +O(ε) +O(δ).

It follows that∫
f · Tnf · T 2nfdµ ≥ ϕ((λni )i)

∫
f · Tnf · T 2nfdµ

= ϕ((λni )i)

∫
f · (f +O(ε) +O(δ)) · (f +O(ε) +O(δ))dµ

= ϕ((λni )i)
(∫

f3dµ+O(ε) +O(δ)
)

If both ε and δ are small enough, this is

≥ ϕ((λni )i)c, where c =
1

2

∫
f3dµ > 0.

Averaging in n, taking the limit, and using equidistribution we obtain the lower bound
c
∫
H ϕ > 0 for (5.3).

5.1 Uniformity seminorms

Let us now introduce higher order analogues of the weakly mixing space W , which
are going to have a properties analogous to Lemma 5.4 for “longer” ergodic averages.

Let (X,µ, T ) be an mps. We introduce the following sequence of functionals on
L∞(X,µ, T ):

‖f‖[0],X,µ,T :=

∫
X
fdµ, ‖f‖2k+1

[k+1],X,µ,T := lim sup
N→∞

∣∣∣ 1

N

N∑
n=1

‖fTnf‖2k[k]

∣∣∣.
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We will usually omit the subscripts X,µ, T if they are clear from the context. The
functional ‖ · ‖[k], k > 1, is called the k-th uniformity seminorm (or Gowers–Host–Kra
seminorm). Other common notations in the literature include ‖ · ‖[k] = ‖| · ‖|k =
‖ · ‖Uk(X,µ,T ). Bibliographical remark: currently the only reference for the structural
theory of these seminorms is the original article of Host and Kra [HK05]. A more
axiomatic treatment of the surrounding issues is being prepared by Gutman, Manners,
and Varjú.

At this point subadditivity of the uniformity seminorms is not clear; we shall
prove it when a diffirent characterization becomes available. We shall also see that the
limit in the above definition actually exists. Moreover, note that the absolute value
in the definition of the k + 1-th seminorm, which we included to make the lim sup
a priori well-defined, is unnecessary: for k > 0 this is clear because the previous
seminorm is already positive. For k = 0 note

1

N

N∑
n=1

‖fTnf‖[0] =
1

N

N∑
n=1

∫
fTnfdµ→

∫
fE(f |I)dµ = ‖E(f |I)‖22 > 0

by the mean ergodic theorem, so ‖f‖[1] = ‖E(f |I)‖2. This shows in particular that
‖f‖[1] = 0 ⇐⇒ f ⊥ I.

The uniformity seminorm of order 2 recovers the weakly mixing space, but only
for ergodic systems. Indeed, assume that X is ergodic, then the projection onto the
invariant factor equals the integral of a function, and by the above calculation we
obtain

‖f‖[1] =
∣∣∣ ∫ fdµ

∣∣∣.
Hence, by definition,

‖f‖4[2] = lim sup
N→∞

1

N

N∑
n=1

‖fTnf‖2[1]

= lim sup
N→∞

1

N

N∑
n=1

∣∣∣ ∫ fTnfdµ
∣∣∣2

= lim sup
N→∞

1

N

N∑
n=1

| 〈f, Tnf〉 |2,

and the right-hand side provides one of the equivalent descriptions of W (X).
Next we will show that uniformity seminorms control ergodic averages.

Lemma 5.6. Let f1, . . . , fk ∈ X . Then

lim sup
N→∞

∥∥∥ 1

N

N∑
n=1

k∏
j=1

T jnfj

∥∥∥
2
.k min

l
‖fl‖[k]

∏
j 6=l
‖fj‖2k .

Here and later A .k B means A ≤ CkB with a constant Ck that depends only
on k.

Proof. By induction on k. In the case k = 1 we have

1

N

N∑
n=1

k∏
j=1

T jnfj =
1

N

N∑
n=1

Tnf1 → E(f1|I)

in L2, and the conclusion follows since, as observed above, ‖f1‖[1] = ‖E(f1|I)‖2.
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Suppose now that the conclusion is known for some k ≥ 1. Applying the van der
Corput differencing lemma with vn =

∏k+1
j=1 T

jnfj , we see that it suffices to obtain
the estimate

lim sup
H→∞

1

H

H∑
h=1

lim sup
N→∞

∣∣∣ 1

N

N∑
n=1

〈vn, vn+h〉
∣∣∣ . min

l
‖fl‖2[k+1]

∏
j 6=l
‖fj‖22k+1 .

The left-hand side can be written

lim sup
H→∞

1

H

H∑
h=1

lim sup
N→∞

∣∣∣ 1

N

N∑
n=1

∫ k+1∏
j=1

T jnfjT j(n+h)fjdµ
∣∣∣.

Suppose first that the minimum is assumed for some l ≥ 2. Then, by T -inavriance of
µ, this can be written as

lim sup
H→∞

1

H

H∑
h=1

lim sup
N→∞

∣∣∣ 1

N

N∑
n=1

∫
f0T hf0

k+1∏
j=2

T (j−1)n(fjT jhfj)dµ
∣∣∣.

By the Cauchy–Schwarz inequality this is bounded by

‖f0T hf0‖2 lim sup
H→∞

1

H

H∑
h=1

lim sup
N→∞

∥∥∥ 1

N

N∑
n=1

k+1∏
j=2

T (j−1)n(fjT jhfj)
∥∥∥

2
,

and by the inductive hypothesis this is bounded by

‖f0‖24 lim sup
H→∞

1

H

H∑
h=1

‖flT lhfl‖[k]

∏
j≥2,j 6=l

‖fjT jhfj‖2k ,

and this is bounded by

∏
j 6=l
‖fj‖22k+1 · lim sup

H→∞

1

H

H∑
h=1

‖flT lhfl‖[k].

By positivity of the k-th uniformity seminorm the latter lim sup is bounded by

l lim sup
H→∞

1

H

H∑
h=1

‖flT hfl‖[k],

and by Jensen’s inequality in the average over h this is bounded by

(
lim sup
H→∞

1

H

H∑
h=1

‖flT hfl‖2
k

[k]

)2−k

= ‖fl‖2[k+1],

as required.
In the case l = 1 we can write the expression obtained from the van der Corput

differencing lemma as

lim sup
H→∞

1

H

H∑
h=1

lim sup
N→∞

∣∣∣ 1

N

N∑
n=1

∫
fk+1T (k+1)hfk+1

k∏
j=1

T (j−k−1)n(fjT jhfj)dµ
∣∣∣,

and use the same argument as before with T replaced by T−1 (note that the uniformity
seminorms ‖ · ‖[k],T and ‖ · ‖[k],T−1 coincide).
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6 Cube spaces

6.1 Joinings

Definition 6.1. A joining of measure-preserving systems (Yi, µi, Ti), i = 1, . . . , r,
is a measure-preserving system (X,µ, T ), where X = Y1 × · · · × Yr (the product of
topological model spaces), T = T1× · · · ×Tr, and the marginal of µ on each Yi equals
µi.

Example. The product measure µ = µ1 × · · · × µr defines a joining for any tuple of
systems. This joining is called the (cartesian) product.

Example. Suppose Y1 = · · · = Yr. Then the diagonal measure∫
X
F (y1, . . . , yr)dµ(y1, . . . , yr) =

∫
Y1

F (y, . . . , y)dµ1(y)

defines a joining.

Let Yi, i = 1, . . . , r, be measure-preserving systems and πi : Yi → Zi factors.
Then any joining (X,µ, T ) of the Yi’s restricts to a joining (X̃, µ̃, T ) of the Zi’s with
the measure

µ̃ = (π1 × · · · × πr)∗µ.

We write X̃ = Z1 ∨ · · · ∨ Zr if the ambient joining X is understood.
Any joining of the Zi’s admits at least one extension to a joining of the Yi’s.

Definition 6.2. Let πi : Yi → Zi, i = 1, . . . , r, be factors, and X̃ a joining of the
Zi’s. The relatively independent joining of Yi’s over X̃ is defined by the measure∫

X̃
µ1,z1 × · · · × µr,zrdµ̃(z1, . . . , zr),

where µi =
∫
Zi
µi,zdµ(z) are the disintegrations of the measures on Yi over Zi.

It is not hard to verify that the relatively independent joining is in fact a joining.
It is the unique joining that satisfies∫

X
f1(y1) · · · fr(yr)dµ(y1, . . . , yr) =

∫
X̃
E(f1|Z1)(z1) · · ·E(fr|Zr)(zr)dµ̃(z1, . . . , zr)

for all fi ∈ Yi.
An important special case occurs when Z1 = · · · = Zr.

Definition 6.3. Let Yi, i = 1, . . . , r be measure-preserving systems that share a
common factor Z. The relatively independent joining of Yi’s over Z, denoted by
Y1×Z · · · ×Z Yr, is the relatively independent joining of Yi’s over the diagonal joining
of the common factors Z.

In other words, it is given by the measure

µ1 ×Z · · · ×Z µr =

∫
Z
µ1,z × · · · × µr,zdµ(z),

where µi =
∫
Z µi,zdµ(z) are the respective disintegrations.

The relatively independent joining over the common factor Z is the unique joining
with the property∫

X
f1(y1) · · · fr(yr)dµ =

∫
Z
E(f1|Z) · · ·E(fr|Z)dµ.
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6.2 Cube spaces

Definition 6.4. Let (X,µ, T ) be a measure-preserving system. We define a sequence
of measure-preserving systemsX [k] = (X [k], µ[k], T [k]) inductively starting withX [0] =
X. Once X [k] is defined, let I [k] be the invariant factor of X [k] and set

X [k+1] := X [k] ×I[k] X
[k].

The measure µ[k] is called the cube measure and the measure space (X [k], µ[k])
the cube space of the mps (X,µ, T ). The mps X [k] is a joining of 2k copies of X,
which will be indexed by the cube Vk = {0, 1}k in such a way that

X [k+1] = XVk+1 = XVk×{0} ×XVk×{1} = X [k] ×X [k].

We write3 points of X [k+1] as ~x = (xε)ε∈Vk and coordinate projections as πε~x = xε.

Cube spaces and disintegrations

Lemma 6.5. Let X be a compact metric space, T : X → X a homeomorphism, Ω a
probability space, and ω 7→ µω a measurable map from Ω to the space of T -invariant
regular probability measures on X. Then for every k we have∫

Ω
µ[k]
ω dω = µ[k], where µ =

∫
Ω
µωdω.

Proof. It suffices to consider k = 1, all other cases follow from the identity µ[k+1] =
(µ[k])[1]. It suffices to test both measures in the conclusion of the lemma on tensor
products f0 ⊗ f1 with f0, f1 ∈ C(X). We have∫
X2

f0 ⊗ f1dµ[1]
ω =

∫
X2

f0 ⊗ f1d(µω ×I µω) =

∫
X
E(f0|I(X,µω))E(f0|I(X,µω))dµω.

By the mean ergodic theorem the right-hand side equals

lim
N→∞

1

N

N∑
n=1

∫
X
f0T

nf1dµω.

Integrating over Ω and using the dominated convergence theorem we obtain∫
Ω

∫
X2

f0 ⊗ f1dµ[1]
ω dω = lim

N→∞

1

N

N∑
n=1

∫
Ω

∫
X
f0T

nf1dµωdω.

By the mean ergodic theorem on the system (X,µ, T ) this equals∫
X
E(f0|I(X,µ))E(f0|I(X,µ))dµ,

and this by definition is
∫
X2 f0 ⊗ f1dµ[1].

6.3 The space X [2]

Let X be an ergodic mps. Then X [1] is just the cartesian product of two copies of X.
In order to construct X [2] we need a description of the invariant factor of X [1]. We
begin with the following seminorm estimate.

3It would be nice to denote elements of Vk by v, but ε is the usual convention in this topic. I
also like to write Vk = 2k because 2 = {0, 1}, but this is probably even more confusing.
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Lemma 6.6. Let (X,µ, T ) and (Y, ν, S) be measure-preserving systems. Then for
every k ≥ 0 and every f ∈ X , g ∈ Y we have

|‖f ⊗ g‖[k],X×Y | ≤ ‖f‖[k+1],X‖g‖[k+1],Y .

Proof. We induct on k. For k = 0 we can use the explicit description of both sides:

|‖f⊗g‖[k],X×Y | = |
∫
X
f |·|

∫
Y
g| ≤ ‖E(f |I(X))‖2‖E(g|I(Y ))‖2 = ‖f‖[k+1],X‖g‖[k+1],Y .

Suppose now that the claim is known for some k and let us prove it for k + 1. On
the left-hand side we have

‖f ⊗ g‖2k+1

[k+1],X×Y = lim
N→∞

1

N

N∑
n=1

‖f ⊗ g · (Tnf̄ ⊗ Snḡ)‖2k[k],X×Y

≤ lim sup
N→∞

1

N

N∑
n=1

‖fTnf̄‖2k[k+1],X‖gS
nḡ‖2k[k+1],Y .

By Cauchy–Schwarz in the summation over n this is bounded by

lim sup
N→∞

( 1

N

N∑
n=1

‖fTnf̄‖2k+1

[k+1],X

)1/2( 1

N

N∑
n=1

‖gSnḡ‖2k+1

[k+1],Y

)1/2
= ‖f‖2k+1

[k+2],X‖g‖
2k+1

[k+2],Y ,

as required.

An immediate corollary is that the sequence of uniformity seminorms increases
monotonically (take Y to be the trivial system and g = 1 in the above lemma).

In the case k = 1 we know that ‖f‖[2] = 0 if and only if f is orthogonal to the
Kronecker factor. Hence, whenever f ⊥ K(X) or g ⊥ K(Y ), we have ‖f ⊗ g‖[1] = 0,
which means that f ⊗ g ⊥ I(X × Y ). In other words, the invariant factor I(X × Y )
is contained in the joining of Kronecker factors K(X) ∨ K(Y ).

Now return to the case X = Y , X ergodic, and let us compute the invariant factor
of the square of the Kronecker factor. Recall that by the Halmos–von Neumann
theorem the Kronecker factor has a topogical model that is a rotation on a compact
monothetic group (Z, γ) (this group is commutative and the group operation will be
written additively). On the product space Z × Z the diagonally invariant functions
(i.e. functions constant on each coset of the diagonal subgroup {(z, z), z ∈ G}) are
certainly invariant under translation by (γ, γ). On the other hand, the translation
by (γ, γ) is ergodic with respect to the Haar measure on every coset of the diagonal
group, because it is isomorphic to (Z, γ). Hence any invariant function is almost
everywhere constant on almost every coset of the diagonal subgroup. It follows that
the invariant factor of X ×X consists of the diagonally invariant functions on the
product of Kronecker factors:

I(X ×X) = {f(z1 − z2)}.

We use this information to give an explicit formula for the cube measure µ[2]. By
definition∫

X[2]

f00 ⊗ f10 ⊗ f01 ⊗ f11dµ[2] =

∫
X[1]

E(f00 ⊗ f10|I [1])E(f01 ⊗ f11|I [1])dµ[2].

Since I [1] ⊂ K(X) × K(X), we may replace the functions fε by their respective
projections onto the Kronecker factor f̃ε. The projection onto the invariant factor
then equals the average along the cosets of the diagonal subgroup, so we obtain∫

Z2

(

∫
Z
f̃00(z1 + z3)f̃10(z2 + z3)dz3)(

∫
Z
f̃01(z1 + z4)f̃11(z2 + z4)dz4)dz1dz2.

It is unsurprising that this is symmetric under exchanging fi0 and fi1. Note however
that this is also symmetric under exchanging fij and fij . The higher oder measures
µ[k] also have similar symmetries.
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6.4 Symmetries of the cube measures

Let α be a permutation of the cube Vk and let α∗µ[k] be the pushforward of µ[k] under
the coordinate permutation map (xε) 7→ (xα(ε)). We are interested in determining
those α leaving the cube measure invariant: α∗µ[k] = µ[k]. It is clear from definition
that this holds for the reflection in the last coordinate α(ε′, j) = (ε′, 1− j).

We will now prove that the digit permutations α(ε1, . . . , εk) = (εσ(1), . . . , εσ(k)),
where σ is a permutation on {1, . . . , k}, also leave µ[k] invariant (we write σ∗µ[k] =
α∗µ

[k] in this case). For k = 1 there is nothing to show, and for k = 2 the claim has
been verified above for ergodic systems X, and for non-ergodic systems it follows
from Lemma 6.5.

Suppose that the claim is known for some k ≥ 2. The group of permutations
of {1, . . . , k + 1} is spanned by the permutations that leave k + 1 invariant and the
transposition (k, k + 1), which we consider separately. Let σ be a permutation of
{1, . . . , k}. Then by construction of µ[k+1] we have

σ∗µ
[k+1] = (σ∗µ

[k])[1],

and the claim follows by the inductive hypothesis. On the other hand, for the
permutation σ = (k, k + 1) we have

σ∗µ
[k+1] = σ∗(µ

[k−1])[2],

and the claim follows from the case k = 2.
It follows that cube measures are invariant under the group of symmetries gener-

ated by digit permutations and reflections in the last coordinate, which includes also
reflections in any other coordinates.

Remark. The last section contains the original proof by Host and Kra that cube
measures are invariant under digit permutations and reflections. From the current
point of view this fact can also be seen as an easy consequence of norm convergence
of multiple ergodic averages associated to commuting actions of Zk, first proved in
[Aus10].

26



7 Host–Kra–Ziegler factors

Uniformity seminorms can be written in terms of cube spaces:

‖f‖2k[k] =

∫
X[k]

∏
ε∈Vk

C |ε|f(xε)dµ
[k](~x), (7.1)

where C denotes complex conjugation annd |ε| is the number of 1’s in ε. Indeed, for
k = 0 this is immediate. Suppose this is known for some k and consider the k + 1-th
uniformity seminorm. By definition

‖f‖2k+1

Uk+1 = lim sup
N→∞

∣∣∣ 1

N

N∑
n=1

‖fTnCf‖2kUk
∣∣∣.

By the inductive hypothesis this equals

lim sup
N→∞

∣∣∣ 1

N

N∑
n=1

∫
X[k]

∏
ε∈Vk

C |ε|f(xε) · C
∏
ε∈Vk

C |ε|Tnf(xε)dµ
[k]
∣∣∣.

By the mean ergodic theorem on the system X [k] the average inside the absolute
value converges to∫

X[k]

∏
ε∈Vk

C |ε|f ◦ πε · E(C
∏
ε∈Vk

C |ε|f ◦ πε|I [k])dµ[k],

and this gives the claim. This argument shows in particular that the limit superior
in the definition of uniformity seminorms is in fact a limit.

7.1 Cauchy–Schwarz–Gowers inequality

The 2k-linear form

(fε)ε∈Vk 7→
∫
X[k]

∏
ε∈Vk

C |ε|fε(xε)dµ
[k](~x)

cab be thought of as an “inner product”. Indeed, in the case k = 1, X ergodic, this is
just the inner product in L2(X). In this case the triangle inequality for the L2 norm
follows from the Cauchy–Schwarz inequality for the inner product. Similarly, the
triangle inequality for the uniformity seminorms follows from a multilinear version of
the Cauchy–Schwarz inequality.

Proposition 7.2. Let X be an mps annd k ≥ 1. Then∣∣∣ ∫
X[k]

∏
ε∈Vk

C |ε|fε(xε)dµ
[k](~x)

∣∣∣ ≤ ∏
ε∈Vk

‖fε‖[k]

Proof. By definition µ[k] = µ[k−1] ×I[k−1] µ[k−1]. Hence∫
X[k]

∏
ε∈Vk

C |ε|fε(xε)dµ
[k](~x)

=

∫
X[k−1]

E(
∏

ε′∈Vk−1

C |ε
′|fε′0 ◦ πε′ |I [k−1])E(

∏
ε′∈Vk−1

C |ε
′|+1fε′1 ◦ πε′ |I [k−1])dµ[k−1].

Applying the usual Cauchy–Schwarz inequality in the integral over X [k−1] we reduce
to the case fε′0 = fε′1 for all ε′ ∈ Vk−1, that is, fε does not depend on the last digit
of ε. Recalling the permutation symmetry of µ[k] we may as well assume that fε does
not depend on the first digit of ε.

Repeating the above argument k times we reduce to the case when fε does not
depend on any digit of ε. But then the left-hand side and the right-hand side of the
claim coincide.
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Corollary 7.3. The uniformity seminorms satisfy the triangle inequality

‖f + g‖[k] ≤ ‖f‖[k] + ‖g‖[k], k ≥ 1.

Proof. Use the expression (7.1) for ‖f + g‖2k[k] and expand anto 2k terms by multilin-
earity. Estimate each of the terms using Proposition 7.2 and notice that the estimates
sum precisely to (‖f‖[k] + ‖g‖[k])

2k .

7.2 Characteristic factors

We have seen that uniformity seminorms control multilinear ergodic averages, and
now we also know that the space Nk of functions with zero k-th uniformity seminorm
is linear. Thus it suffices to consider ergodic averages on the orthogonal complement
of Nk. This orthogonal complement turns out to describe a factor, which we will now
construct.

Definition 7.4. Let X be an mps. The factor Zk of X consists of those functions
f ∈ X for which the function f ◦ π~0 on X [k+1] coincides almost everywhere with a
function in ∨ε∈Vk+1\{~0}X ◦πε, that is, a function that does not depend on the variable
x~0.

It is counterintuitive to speak of functions of the variable x~0 that coincide with
functions that does not depend on x~0, and indeed, the only such functions are the
constants. However, here we are talking about equality almost everywhere, which
changes things. Imagine for instance the diagonal joining of two copies of a measure
space. Then every function of the first coordinate coincides almost everywhere with
a function of only the second coordinate (just take the same function).

The objective is now to obtain the orthogonal splitting L2(X) = Zk +Nk+1. This
follows from the equivalence f ∈ Nk+1 ⇐⇒ f ⊥ Zk. We will prove this in the
contrapositive form ‖f‖[k+1] 6= 0 ⇐⇒ f 6⊥ Zk. The direction ⇐= is not hard:

Lemma 7.5. ‖f‖[k+1] 6= 0 ⇐= f 6⊥ Zk

Proof. By the hypothesis there exists a function in Zk that correlates with f . By
definition of Zk this means ∫

X[k+1]

(f ◦ π~0)Fdµ[k+1] 6= 0

for some function F that does not depend on the ~0-th coordinate. Approximating F
by tensor products it follows that∫

X[k+1]

(f ◦ π~0)
∏

ε∈Vk+1\{0}

fε ◦ πεdµ[k+1] 6= 0

for some functions fε. The conclusion follows from the Cauchy–Schwarz-Gowers
inequality.

The converse direction is slgihtly more difficult and requires some additional
information about the measures µ[k]. A side of the cube Vk is a set of the form
α = {ε : εi = j} with i ∈ {1, . . . , k} and j ∈ {0, 1}. A side transformation is a map
on X [k] of the form

(Tα~x)ε∈Vk =

{
Txε, ε ∈ α,
xε, ε 6∈ α.

The side transformations preserve the measure µ[k]. Indeed, by the previously
established symmetries of µ[k] it suffices to establish this for the side α = {ε : εk = 1}.

28



In this case we have∫
X[k]

⊗ε′∈Vk−1
fε′0 ⊗⊗ε′∈Vk−1

Tfε′1dµ[k]

=

∫
X[k]

E(⊗ε′∈Vk−1
fε′0|I [k−1])E(⊗ε′∈Vk−1

Tfε′1|I [k−1])dµ[k],

and the claim follows by since T [k−1] is the identity on I [k−1].
Let J [k] denote the factor of X [k] consisting of the functions invariant under all

side transformations for the sides not containing ~0 ∈ Vk. This algebra is indeed a
factor: invariance follows from the fact that all side transformations commute with
T [k].

Lemma 7.6. The factor J [k] coincides with the algebra of functions depending only
on the ~0-th variable.

Proof. It is clear that any function depending only on the ~0-th variable is invariant
under side transformations that act trivially on the ~0-th variable.

The converse is proved by induction on k. In the case k = 0 there is nothing to
prove. Suppose now F ∈ J [k+1]. Consider the side α = {ε ∈ Vk+1 : εk+1 = 1}. Let

µ[k] =

∫
I[k]

µωdω

be ergodic decomposition of the measure µ[k]. Then

µ[k+1] =

∫
Ω

∫
X[k]

δx × µωdµω(x)dω =

∫
X[k]

δx × µπ(x)dµ
[k](x)

(in the last line we have used that µω(x) = µω0 holds for µω0-a.e. x), and this is in
fact the ergodic decomposition with respect to the side transformation Tα. Hence F
is δx × µω-a.e. constant for µ[k]-a.e. x ∈ X [k], and it follows that F is a.e. equal to a
function that does not depend on the coordinates in α.

But then F comes from a function in J [k], and we can use the inductive hypothesis.

With this knowledge at hand, we are ready to prove the implication =⇒
mentioned above.

Lemma 7.7. ‖f‖[k+1] 6= 0 =⇒ f 6⊥ Zk.

Proof. Let
F := 1 ◦ π~0 ⊗⊗ε∈Vk+1\{0}f,

so that by the assumption f ◦π~0 correlates with F with respecto to the measure µ[k+1].
Now project F successively onto the invariant factors of all side transformations
corresponding to sides that do not contain ~0.

By the mean ergodic theorem, each such projection is given by the limit of certain
ergodic averages. It follows that each such projection still does not depend on the
coordinate ~0. Moreover, after projecting onto all factors we obtain a function in J [k+1].
By the previous lemma it coincides with a function of the form g ◦π~0 (depending only
on the ~0-th variable), and by definition the function g is contained in Zk. Moreover,
by construction f correlates with g.
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8 Conditional weak mixing and almost periodicity

Let X be an ergodic mps. For every k, the factor Zk+1(X) is an extension of Zk(X)
(which means that the latter factor is contained in the former). In the case k = 0
we have seen that the factor Z0 is trivial, and Z1 is the Kronecker factor, which is
spanned by eigenfunctions. In this lecture we will see that Zk+1 is also spanned by
(suitably generalized) eigenfunctions.

Let X be an mps and Y a factor of X. The conditional scalar product is defined
by

〈f, g〉L2(X|Y ) := E(fḡ|Y ) ∈ L1(Y ), f, g ∈ L2(X)

and the conditional norm by

‖f‖L2(X|Y ) := 〈f, f〉1/2
L2(X|Y )

= E(|f |2|Y )1/2 ∈ L2(Y ), f ∈ L2(X).

The space L2(X|Y ) consists of f ∈ L2(X) such that ‖‖f‖L2(X|Y )‖L∞(Y ) is finite.
Using Cauchy–Schwarz in each fiber of a measure disintegration of X over Y we
obtain the conditional Cauchy–Schwarz inequality

| 〈f, g〉L2(X|Y ) | ≤ ‖f‖L2(X|Y )‖g‖L2(X|Y ).

The space L2(X|Y ) is a module over the algebra L∞(Y ). A finitely generated
module zonotope of L2(X|Y ) is a set of the form f1B + · · · + frB, where B is the
unit ball of L∞(Y ) and fi ∈ L2(X|Y ).

1. A function f ∈ L2(X|Y ) is called a conditional eigenfunction (or a generalized
eigenfunction) if its orbit TZf is contained in a finitely generated T -invariant
sub-L∞(Y )-module. The space of conditional eigenfunctions is denoted by
E(X|Y ).

2. A function f ∈ L2(X|Y ) is called conditionally almost periodic (cap) if for every
ε > 0 there exists a finitely generated module zonotope C such that the orbit
TZf is contained in an ε-neighborhood of C. The space of cap functions is
denoted by A(X|Y ).

3. A function f ∈ L2(X) is called conditionally weakly mixing (cwm) if

C-lim
n
‖ 〈Tnf, f〉L2(X|Y ) ‖

p
L1(Y )

= 0

for some/all 0 < p <∞. Here C-lim stands for the Cesàro limit, i.e. C-limn an =
limN

1
N

∑N
n=1 an. The space of cwm functions is denoted by W (X|Y ).

In the case of the trivial factor Y the definition of conditional weak mixing and
conditional almost periodicity coincide with their non-conditional counterparts. The
definition of a conditional eigenfunction is different from an eigenfunction because we
do not ask for rank 1 submodules.

As in the non-conditional case the space of cwm functions is in fact a closed linear
subspace of L2(X), and we have

E(X|Y ) = A(X|Y ) = W (X|Y )⊥.

We begin by showing that any conditional eigenfunction f is conditionally almost
periodic. To this end we employ the following version of the Gram–Schmidt process:
given any sequence of functions (fi)i ⊂ L2(X) define

f ′i := fi −
∑
j<i

〈
fi, f

′′
j

〉
L2(X|Y )

f ′′j , f ′′i := f ′i/‖f ′i‖L2(X|Y ).
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Here we set 0/0 := 0 and note that division of a non-zero number by zero can occur
only on a set of measure 0. This process coincides with the usual Gram–Schmidt
process on each fiber of the measure disintegration, and the main additional feature
is that it produces measurable functions on X. Now, applying the above conditional
Gram–Schmidt process to the finite set of generators of the module containing a
conditional eigenfunction we obtain a normalized set of generators f ′′i . Then we can
write

Tnf =
∑
i

〈
Tnf, f ′′i

〉
L2(X|Y )

f ′′i .

This equality holds in L2(X) because it holds in L2(µy) for almost every fiber measure
µy in the disintegration of X over Y . Now, | 〈Tnf, f ′′i 〉L2(X|Y ) | ≤ ‖T

nf‖L2(X|Y ) by
conditional Cauchy–Schwarz, and since the latter function is bounded we see that
the orbit TZf is in fact contained in a finitely generated module zonotope.

The remaining inclusions are separated in a sequence of lemmas that we have
already seen in the non-conditional case.

Lemma 8.1. Let f ∈W (X|Y ) and g ∈ L2(X). Then

C-lim
n
‖ 〈Tnf, g〉L2(X|Y ) ‖

2
L1(Y ) = 0.

This shows in particular that W (X|Y ) ⊂ L2(X) is a linear subspace.

Proof. Consider first the case f, g ∈ L2(X|Y ). In this case the conditional Cauchy–
Schwarz inequality implies that 〈g, Tnf〉L2(X|Y ) is uniformly bounded in L∞(Y ), say
by C. Write

1

N

N∑
n=1

‖ 〈Tnf, g〉L2(X|Y ) ‖
2
L2(Y ) =

1

N

N∑
n=1

∫
Y
〈g, Tnf〉L2(X|Y ) 〈T

nf, g〉L2(X|Y )

=
1

N

N∑
n=1

∫
Y

〈
〈g, Tnf〉L2(X|Y ) T

nf, g
〉
L2(X|Y )

=

〈
1

N

N∑
n=1

〈g, Tnf〉L2(X|Y ) T
nf, g

〉
L2(X)

.

By the van der Corput differencing lemma it suffices to show that

C-lim
h

lim sup
n

1

N

N∑
n=1

|
〈
〈g, Tnf〉L2(X|Y ) T

nf,
〈
g, Tn+hf

〉
L2(X|Y )

Tn+hf

〉
L2(X)

| = 0.

We estimate the scalar product inside the absolute value as follows:

|
∫
X
〈g, Tnf〉L2(X|Y ) T

nf〈g, Tn+hf〉L2(X|Y )T
n+hf̄ |

= |
∫
Y
〈g, Tnf〉L2(X|Y ) 〈g, Tn+hf〉L2(X|Y )E(TnfTn+hf̄ |Y )|

≤ C2

∫
Y
|E(TnfTn+hf̄ |Y )|

= C2

∫
Y
|E(fT hf̄ |Y )|

≤ C2‖E(fT hf̄ |Y )‖L2(Y )

= C2‖
〈
f, T hf

〉
L2(X|Y )

‖L2(Y ),

and this converges to 0 in the Cesàro sense by the hypothesis f ∈W (X|Y ).
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To pass to the general case note

‖ 〈f, g〉L2(X|Y ) ‖L1(Y ) = ‖E(fḡ|Y )‖L1(Y ) ≤ ‖fḡ‖L1(X) ≤ ‖f‖L2(X)‖g‖L2(X).

The conclusion follows using the approximations g1|g|<a → g and f1|E(f |Y )|<a → f in
L2(X) as a→∞. Note that the second approximation is chosen inside W (X|Y ) ∩
L2(X|Y ).

Lemma 8.2. Let f ∈W (X|Y ) and g ∈ A(X|Y ). Then 〈f, g〉L2(X|Y ) = 0.

Proof. Let ε > 0 and choose g1, . . . , gr ∈ L2(X|Y ) such that TZg in contained in an
ε-neighborhood of the zonotope generated by the gi’s:

Tng =

r∑
i=1

bn,igi + rn, ‖bn,i‖L∞(Y ) ≤ 1, ‖rn‖L2(X|Y ) ≤ ε.

Then

‖ 〈f, g〉L2(X|Y ) ‖L2(Y )

= C-lim
n
‖ 〈Tnf, Tng〉L2(X|Y ) ‖L2(Y )

≤ lim sup
N

1

N

N∑
n=1

( r∑
i=1

‖b̄n,i 〈Tnf, gi〉L2(X|Y ) ‖L2(Y ) + ‖ 〈Tnf, rn〉L2(X|Y ) ‖L2(Y )

)
≤ lim sup

N

1

N

N∑
n=1

( r∑
i=1

‖ 〈Tnf, gi〉L2(X|Y ) ‖L2(Y ) + ‖‖Tnf‖L2(X|Y )‖rn‖L2(X|Y )‖L2(Y )

)
≤

r∑
i=1

lim sup
N

1

N

N∑
n=1

‖ 〈Tnf, gi〉L2(X|Y ) ‖L2(Y ) + ε‖‖Tnf‖L2(X|Y )‖L2(Y ).

The first summand is zero by Lemma 8.1 and the second summand is arbitrarily
small.

Lemma 8.3. If f ∈ L2(X) \W (X|Y ), then f 6⊥L2(X) E(X|Y ).

Proof. Consider first the case f ∈ L2(X|Y ). Fix a disintegration µ =
∫
Y µy of

the measure on X over Y . Applying the mean ergodic theorem to the relatively
independent product X ×Y X we obtain

1

N

N∑
n=1

Tnf̄ ⊗ Tnf → H in L2(X ×Y X),

where H is a T × T -invariant function. By the hypothesis we have

lim sup
N→∞

〈
1

N

N∑
n=1

Tnf̄ ⊗ Tnf, f̄ ⊗ f

〉
L2(X×YX)

= lim sup
N→∞

1

N

N∑
n=1

∫
X×YX

fTnf̄⊗f̄Tnf

= lim sup
N→∞

1

N

N∑
n=1

∫
Y
E(fTnf̄ |Y )E(f̄Tnf |Y ) = lim sup

N→∞

1

N

N∑
n=1

‖ 〈Tnf, f〉L2(X|Y ) ‖
2
L2(Y ) > 0,

where we have used Jensen’s inequality on Y in the last passage. It follows that
H 6= 0. Moreover, M := ‖‖H‖L2(X×YX|Y )‖L∞(Y ) ≤ ‖‖f‖2L2(X|Y )‖L∞(Y ).

Fix a representative for H. Passing to a subsequence of N ’s we may assume that

1

N

N∑
n=1

Tnf̄ ⊗ Tnf → H in L2(µy × µy) (8.4)
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for almost every y ∈ Y . For almost every y we can define an integral operator

Syg(x) :=

∫
H(x′, x)g(x′)dµy(x

′) on L2(X,µy).

Its Hilbert–Schmidt norm is bounded by M for a.e. y. The direct integral of the
operators Sy is the operator

Sg(x) = Sπ(x)g(x) on L2(X).

The properties of measure disintegration imply that Sg = Syg in L2(X,µy) for a.e. y,
and moreover the norm of S is bounded by M .

Using T -invariance of H one can verify that the operator S commutes with T :

STg(x) = Sπ(x)Tg(x)

=

∫
H(x′, x)Tg(x′)dµπ(x)(x

′)

=

∫
H(Tx′, Tx)g(Tx′)dµπ(x)(x

′)

=

∫
H(x′′, Tx)g(x′′)dµπ(Tx)(x

′′)

= Sg(Tx).

Note also that

〈Sf, f〉L2(X) =

∫ ∫
H(x′, x)f(x′)f̄(x)dµπ(x)(x

′)dµ(x)

=

∫ ∫ ∫
H(x′, x)f(x′)f̄(x)dµπ(x)(x

′)dµy(x)dν(y)

= lim
N

∫ ∫ ∫
1

N

N∑
n=1

Tnf̄(x′)Tnf(x)f(x′)f̄(x)dµπ(x)(x
′)dµy(x)dν(y)

= lim
N

1

N

N∑
n=1

∫
| 〈Tnf, f〉L2(X|Y ) (y)|2dν(y)

> 0.

The operators S and Sy are self-adjoint by construction. By the measurable
functional calculus there exists a constant a > 0 such that 〈p(S)Sf, f〉L2(X) 6= 0,
where p = χ[−a,a]{ . We claim that the function p(S)Sf is a generalized eigenfunction.

Let pn be a sequence of polynomials such that pn(−a) = 0 = pn(a) and pn → p
pointwise and boundedly on [−M,M ] and uniformly on [−M,−a− ε]∪ [−a, a]∪ [a+
ε,M ] for every ε. Since Sy are self-adjoint Hilbert–Schmidt operators on Hilbert
spaces, σ(Sy)\{0} is discrete. By the continuous functional calculus pn(Sy) converges
in the operator norm topology to the projection onto the linear span of the eigenspaces
of Sy with eigenvalues outside [−a, a].

Recall that the Hilbert-Schmidt norm of Sy is uniformly bounded. Therefore the
number of eigenspaces to eigenvalues with absolute value at least a is also uniformly
bounded. Therefore the rank of p(Sy) is uniformly bounded. Moreover pn(S)→ p(S)
in the strong operator topology by the measurable functional calculus.

Let g ∈ L2(X). For a.e. y and every n we have pn(S)g = pn(Sy)g in L2(X,µy).
Here the right-hand side converges in L2(X,µy). The left-hand side converges in
L2(X), so we can pass to a subsequence such that the convergence is pointwise
µ-almost everywhere, hence also pointwise µy-a.e. for a.e. y. Therefore the two limits
coincide µy-a.e. for a.e. y, i.e. p(S)g = p(Sy)g in L2(X,µy).

It follows that p(S)Sf ∈ L2(X|Y ). Since T commutes with S, we have TZp(S)Sf =
p(S)STZf . The above reasoning shows that the latter is a bounded sequence in
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L2(X|Y ). Applying the Gram–Schmidt procedure with the conditional inner prod-
uct we obtain a conditionally orthogonal generating set for the module spanned by
p(S)STZf . However, for each y ∈ Y there can be only boundedly many functions in
this basis that are not zero µy-a.e., since p(Sy) has uniformly bounded rank. It is
therefore possible to construct a finite generating set for the above module.

Consider now the case f 6∈ L2(X|Y ). Let F = {|E(f |Y )| ≤ a} be a sublevel set
with a so large that 1F f 6∈ W (X|Y ) (such a exists because 1F f → f as a → ∞ in
L2(X) and because the expression defining W (X|Y ) is L2(X)-continuous). Since
1F f ∈ L2(X|Y ), by the above case we know that 1F f correlates with a conditional
eigenfunction g. But then 1F g is also a non-zero conditional eigenfunction, and it
correlates with f .
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9 Compact extensions

Let X be an mps and π : X → Y a factor. In the last lecture we have proved the
splitting

L2(X) = E(X|Y )⊕W (X|Y )⊥.

The space of conditional eigenfunctions E(X|Y ) is spanned by the finitely generated
T -invariant sub-L∞(Y )-modules of L2(X|Y ). Now we would like to show that this
space defines a factor and extend the Halmos–von Neumann theorem to this setting,
that is, write the extension4 X in terms of the factor Y and a compact group. For
simplicity we assume throughout that X is ergodic.

9.1 Conditional eigenfunctions are bounded

The main obstacle to showing that conditional eigenfunctions define a factor is that
we cannot a priori multiply them (and stay in a reasonable space). As we shall
presently see, there is in fact no problem with this because they are bounded.

Consider a finitely generated T -invariant L∞(Y )-submodule of L∞(X) and con-
struct a relatively orthonormal generating set f1, . . . , fr for it. By the assumption of
T -invariance we have

Tfi =
∑
j

ai,jfj ,

where ai,j ∈ L∞(Y ) with the convention ai,j ≡ 0 on the set {‖fj‖L2(X|Y ) = 0}. Then

T 〈fi, fi′〉L2(X|Y ) =
∑
j,j′

ai,jai′,j′
〈
fj , fj′

〉
L2(X|Y )

=
∑
j

ai,jai′,j ,

so the non-zero blocks of the matrices (ai,j) are isometric.
Consider now the vector-valued function ~f(x) = (f1(x), . . . , fr(x)) and the matrix-

valued function A(x) = (ai,j(x)). Then T ~f = A~f , and the matrices A are partial
isometries. Taking `2 norms on both sides we obtain

T
∑
i

|fi|2 ≤
∑
i

|fi|2

pointwise a.e. Integrating both sides and using the fact that T is measure-preserving
we see that equality holds a.e. Hence

∑
i |fi|2 is an invariant function, so it it constant

by the ergodicity assumption. In particular, the functions fi are bounded, and this
shows that the product of two finite rank submodules is again a finite rank submodule.
Hence E(X|Y ) defines a factor of X (which equals A(X|Y ). The usual notation is
A(X|Y )).

Moreover, taking the conditional expectation with respect to Y , we obtain∑
i

‖fi‖2L2(X|Y ) = const =: R2.

This means that the functions fi span an R-dimensional subspace of almost every
fiber L2(µy). It follows that we can rearrange them into a generating set consisting
of R relatively orthogonal functions. In order to preserve measurability we do so by
the following procedure:

fi,0 := 0, fi,j+1 := fi,j + (1− ‖fi,j‖L2(X|Y ))fj+1.

Then the functions fi,r span the same sub-L∞(Y )-module of L∞(X) as the fi’s and
we have

‖fi,1‖L2(X|Y ) = · · · = ‖fi,R‖L2(X|Y ) = 1, ‖fi,R+1‖L2(X|Y ) = · · · = ‖fi,r‖L2(X|Y ) = 0.
4In case I forgot to say this: if Y is a factor of X, then X is called an extension of Y .
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9.2 Group extensions

Definition 9.1. Let (Y, T ) be a dynamical system (without a measure), G a compact
group, H ≤ G a closed subgroup, and a : Y → G a function. We define

S(y, gH) = (Ty, a(y)gH) (9.2)

and denote the dynamical system (X,S) by Y na G/H.
A compact extension of an mps (Y, µ, T ) is an extension of the form (Y naG/H,µ×

mG/H), where a is measurable and mG/H is the Haar measure. A group extension is
a compact extension with H = {idG}.

The generalization of the Halmos–von Neumann theorem to almost periodic
extensions tells that such extensions are compact. The converse is also true.

Exercise 9.3. Show that a compact extension is generated by generalized eigenfunctions
(use the Peter–Weyl theorem).

We will need a classification of invariant measures for the map (9.2). We state it
first in the case H = {eG}.

Lemma 9.4. Let (Y, µ, T ) be an ergodic mps, G a compact group, and a : Y → G a
measurable function. Then there exists a closed subgroup K ≤ G and a measurable
map γ : Y → G such that the following holds.

1. The function a′(y) = γ(Ty)−1a(y)γ(y) takes values in K almost surely.

2. Every invariant ergodic measure on Y na′ G that projects onto µ on the first
coordinate has the form µ×mKg0 , where mKg0 is the Haar measure on a coset
Kg0.

In other words, there is a change of variables of the form (y, g) 7→ (y, γ(y)−1g)
that decomposes the transformation (9.2) into a disjoint union of invariant sets of the
form Y ×Kg0, each of which admits only one invariant measure extending µ, namely
the product measure.

The group K is called the Mackey group of the cocycle5 a : Y → G. It is unique
up to conjugation.

Proof. The measure µ×mG on Y ×G is S-invariant, and by ergodic decomposition
we can find an ergodic invariant measure ν on Y ×G that extends µ.

The group G acts on Y ×G on the right via

rh(y, g) = (y, g)h = (y, gh).

This action commutes with the transformation S. Let K ≤ G denote the subgroup
whose right action leaves ν invariant.

By the mean ergodic theorem we have

lim
N→∞

1

N

N∑
n=1

Snf =

∫
fdν

in L2(ν) for every f ∈ C(Y × G). Using separability of the space of continuous
functions and passing to a subsequence of N ’s we may assume that for ν-a.e. point
(y, g) is generic, that is, convergence holds at that point for all continuous functions
f .6

5The actual cocycle here, in the sense of group cohomology, is the map a(y, n) =
a(Tn−1y) · · · a(T 0y). For us “cocycle” is just a convenient shortcut to designate a function taking
values in a compact group.

6In view of the pointwise ergodic theorem there is no need to pass to a subsequence of N ’s here,
but will not use this fact.
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The set of generic points is invariant under the right action of K. Moreover, if
(y, g1) and (y, g2) are generic, then it is easy to see that g−1

1 g2 ∈ K. Hence, for every
y the set Gy of g such that (y, g) is generic is either a coset of K or empty. The latter
(empty) possibility can occur only for a zero measure set of y’s.

Since the set of generic points is measurable, we can find a measurable function
γ : Y → G such that γ(y) ∈ Gy whenever Gy 6= ∅. This is not obvious; existence
of such functions is guaranteed by so-called measurable selector theorems; the one
that is most convenient in ergodic theory is due to Arsenin and Kunugui, see [Kec95,
Theorem 18.18]. Under the coordinate change (y, g) 7→ (y, γ(y)−1g) the measure ν
is mapped to a measure supported on Y ×K, and since this measure is invariant
under the right action of K, it in fact equals µ×mK , where mK stands for the Haar
measure on K.

Under this change of variabels the measure-preserving transformation S is inter-
twined with the transformation

(y, g) 7→ (Ty, a′(y)g).

Since this map preserves the measure µ×mK , the function γ(Ty)−1a(y)γ(y) has to
take values in K almost surely.

It remains to show that all other ergodic S′-invariant measures that extend µ
have the claimed form. Given any ergodic S′-invariant measure ν ′ that extends µ,
any pushforward measure (rg)∗ν

′ also extends µ. Moreover, the measure
∫
G(rg)∗ν

′dg
is invariant under the right G action and extends µ, so it equals µ×mG. The claim
follows from essential uniqueness of measure disintegration.

Lemma 9.5 ([FW96, Lemma 7.3]). Let X ω−→ W
π−→ Y be a chain of factors of an

ergodic system and assume that X → Y is a group extension. Then X →W is also a
group extension.

Proof. By the hypothesis we have X = Y na G. Consider the map

ι : X = Y ×a G→W ×a◦π G, x = (y, g) 7→ (ω(x), g).

This map is injective: a left inverse is given by (w, g) 7→ (π(w), g). Moreover, it
intertwines the transformations on X and W na◦π G. The pushforward measure
ι∗(µX) is ergodic, so by Lemma 9.4, up to a change of coordinates, it has the form
µW ×mK , where K is the Mackey group of the cocycle a ◦ π : W → G.

9.3 Compact extensions

Return now to the setting of Definition 9.1.

Lemma 9.6. Let (Y, µ, T ) be an ergodic mps, G a compact group, H ≤ G a closed
subgroup, and a : Y → G measurable. Let ν be an invariant ergodic measure on
X := Y naG/H that extends µ. Then (X, ν, S) is measurably isomorphic to a compact
extension of Y .

In other words, an extension of the form (9.2) cannot carry invariant measures
which are not of product type.

Proof. After a change of variable we may assume a = a′ in Lemma 9.4. The measure
ν lifts to an S- and H- invariant measure on Y na G. By ergodic decomposition this
lift can be written as an integral of ergodic measures, and each such measure has the
product form µ×mKg0 by Lemma 9.4.

The projection of such measures onto Y ×G/H has the form µ×mKg0/H . These
measures are ergodic and provide an ergodic decomposition of ν. By essential
uniqueness of ergodic decomposition ν itself has this form.
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9.4 Construction of homogeneous spaces

We have seen that every finite rank T -invariant sub-L∞(Y )-module of L∞(X) admits
a set of generators f1, . . . , fR that satisfy

‖f1‖L2(X|Y ) = · · · = ‖fR‖L2(X|Y ) = 1,
∑
i

‖fi‖2L2(X|Y ) = R2, T fi =
∑
j

ai,jfj ,

with functions ai,j ∈ L∞(Y ) such that the matrices A = (ai,j) are unitary almost
everywhere. Passing to a suitable topological model we may assume that fi, ai,j are
continuous.

The vector-valued function ~f takes values in the R-dimensional sphere SR of
radius R. The unitary group U(R) acts on this sphere transitively, so the sphere is
homeomorphic to a quotient of the unitary group, namely the quotient U(R)/U(R−1).
We have a map from X to Y × SR ∼= Y × U(R)/U(R− 1) given by (π, ~f). Moreover,
on Y × U(R)/U(R− 1) we have the continuous map

S(y, gU(R− 1)) = (Ty,A(y)gU(R− 1))

that satisfies

S(π(x), ~f(x)) = (Tπ(x), A(π(x))~f(x)) = (Tπ(x), (T ~f)(x)) = (π(Tx), (~f)(Tx)).

Equipping Y × U(R)/U(R − 1) with the pushforward measure we thus obtain a
measure-preserving system that is a topological model of the factor generated by Y
and the fi’s (note that the space of continuous functions on Y × SR is generated by
C(X) and the coordinate functions on SR).

Using a countable family of finite rank submodules that span A(X|Y ) we obtain
a topological model for the factor A(X|Y ) of the form

Y ×G/H, S(y, gH) = (Ty, a(y)gH),

where G is compact group, H ≤ G a closed subgroup, a : Y → G is a continuous map,
with some S-invariant ergodic measure ν. By Lemma 9.6 this extension is measurably
isomorphic to a compact extension.
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10 HKZ factors are almost periodic

Let X be an ergodic mps. By monotonicity of uniformity seminorms we know that
Zk(X) ⊃ Zk−1(X). Our next objective is to show that this extension is almost
periodic. This is contained in the following lemma.

Lemma 10.1. Suppose f ∈W (X|Zk−1). Then ‖f‖[k+1] = 0.

Proof. We may assume that f is real-valued, this will simplify notation. Recall that

‖f‖2k+1

[k+1] =

∫
X[k]

|E(⊗Vkf |I
[k])|2dµ[k].

Hence it suffices to show ⊗Vkf ⊥ I [k]. We will prove the stronger statement

⊗Vkf ∈W (X [k]|Zk−1 ◦ π~0 ∨X
[k]∗),

where X [k]∗ is the subalgebra of functions that do not depend on the ~0-th coordinate.
This is indeed stronger because the space of invariant functions is spanned by one-
dimensional invariant subspaces and is contained in the almost periodic subspace
over any factor.

To this end it suffices to show that, for every f ∈ L1(X), we have

E(f ◦ π~0|Zk−1 ◦ π~0 ∨X
[k]∗) = E(f |Zk−1) ◦ π~0.

Assuming this, we can conclude using only the definition of relative weak mixing.
By L1 continuity of conditional expectation we may assume f ∈ X . Splitting
f = E(f |Zk−1) + (f − E(f |Zk−1)) we may consider two cases separately:

1. f ∈ Zk−1. In this case both sides clearly are equal to f ◦ π~0.

2. E(f |Zk−1) = 0. In this case we will show that f ⊥ ⊗ε∈Vkfε for any f~0 ∈ Zk−1

and fε ∈ X for ε ∈ V ∗k := {0, 1}k \ {~0}. Indeed, note that E(ff~0|Zk−1) =
f~0E(f |Zk−1) = 0, and hence ‖ff~0‖[k] = 0. By the Cauchy–Schwarz–Gowers
inequality we obtain ∫

X[k]

(ff~0)⊗⊗ε∈V ∗k fεdµ
[k] = 0,

as required.

10.1 Monotone approximation by almost periodic functions

LetX → Y be a factor and f ∈ A(X|Y ) (L2 closure). Then in particular f ∈ E(X|Y ),
so let (fn) ⊂ E(X|Y ) be a sequence such that fn → f in L2. One way to write this is∫

Y
E(|f − fn|2|Y )→ 0.

By Egorov’s theorem we may pass to a subsequence of fn’s such that for every ε > 0
convergence is uniform outside a subset Fε of Y of measure ≤ ε. It follows that the
functions f1Y \Fε are conditionally almost periodic over Y .

If f is positive, then 0 ≤ f1Y \Fε ≤ f and f1Y \Fε → f as ε > 0.

39



10.2 Product systems of compact extensions

Notation: Let X = Y na G/H be a compact extension. Wer have a left G-action on
X given by

lg(y, g0H) = g(y, g0H) = (y, gg0H).

In general, this action does not commute with the measure-preserving transformation
(T, a).

Lemma 10.2. Let X = Y na G be an ergodic group extension. Then the left and
right G-actions coincide on the Kronecker factor K(X) and vanish on the commutator
subgroup [G,G].

Proof. Let f be a non-zero eigenfunction on X with eigenvalue λ. Then f ◦ rg is also
an eigenfunction with eigenvalue λ, so by ergodicity f ◦ rg = π(g)f with π(g) ∈ C.
Since ‖f‖2 = ‖f ◦ rg‖2, we have |π(g)| = 1. Moreover, it is easy to verify that π is a
group homomorphism. Since the range of π is an abelian group, it vanishes on the
commutator subgroup [G,G].

Finally, this shows that f comes from a function on Y ×G/[G,G]. On the latter
space the left and the right G-actions coincide.

Lemma 10.3. Let X = Y naG be an ergodic group extension. Then for every g ∈ G
the left action of the element (g, g) ∈ G2 on the invariant factor I(X2) is trivial.

Proof. Recall that I(X2) ⊂ K(X)2. Moreover, I(X2) is spanned by functions of the
form f ⊗ f̄ , where f is an eigenfunction on X. We have just seen that

f ◦ lg = π(g)f,

where π : G→ {z ∈ C, |z| = 1} is a homomorphism. Hence

f ◦ lg ⊗ f ◦ lg = π(g)f ⊗ π(g)f = f ⊗ f

as required.

10.3 HKZ factors are abelian group extensions

Errata: in [FW96, Lemma 8.4] replace Ẑ by Z2. The proof of [HK05, Proposition 6.3(1)] does not work as

stated because the ergodicity hypothesis in [HK05, Lemma 6.1] is not satisfied. Solution: pass to a “normal”

extension in the sense of [FW96]. This introduces additional complications in the inductive scheme that

proves the structure theorem for Zk factors, see [Zie07] for details. Since I have failed to account for this

problem, we will probably have to stick to k = 2 in this course.

Lemma 10.4. Let X → Y be a factor of an ergodic mps. Then Zk(Y ) = Zk(X)∩Y.

Proof. To see the inclusion ⊆ recall the definition of Zk(Y ): it consists of the functions
f such that the function f ◦ π~0 on Y [k+1] coinsides µ[k+1]-a.e. with a function F that
does not depend on the ~0-th coordinate. Then F lifts to a function on X [k+1] that
does not depend on the ~0-th coordinate, and this shows that f ∈ Zk(X).

To see the inclusion ⊇ note

Zk(X) ∩ Y = Nk+1(X)⊥ ∩ Y ⊆ Nk+1(Y )⊥ ∩ Y = Zk(Y ).

Lemma 10.5. Let Y be an ergodic mps. Then for every k ≥ 0 there exists an ergodic
extension X → Zk+1(Y ) such that X → Zk(X) is a group extension.
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Proof. We know that Zk+1(Y )→ Zk(Y ) is a compact extension, hence Zk+1(Y ) =
Zk(Y ) na G/H, and we can choose a,G,H so that the system X := Zk(Y ) na G is
ergodic.

By Lemma 10.4 we have Zk(X) ⊇ Zk(Y ). Since X is a group extension of Zk(Y ),
a lemma from the previous lecture implies that X is a group extension of Zk(X).

Lemma 10.6. Let X be an ergodic mps, k ≥ 2, and suppose that X = Zk−1(X)naG
is a group extension. Then

1. For every g ∈ G and every edge α ⊂ Vk, the transformation

(gα~x)ε =

{
gxε, ε ∈ α
xε, ε 6∈ α

acts trivially on I [k].

2. For every g ∈ G and every edge α ⊂ Vk+1, the transformation gα preserves
µ[k+1].

3. For every g ∈ [G,G] the transformation g acts trivially on Zk(X).

4. Zk(X) is an abelian group extension of Zk−1(X).

Proof. I only write down the proof of the first claim and refer to [HK05, Proposition
6.3] for the remaining claims. By symmetry it suffices to prove the first claim for any
fixed edge α ⊂ Vk, say α = {0 . . . 00, 0 . . . 01}.

We claim
E(F |I [k−1]) = E(F̃ |I [k−1]), (10.7)

for every bounded function F on X [k−1], where

F̃ ((yε, gε)ε∈Vk−1
) =

∫
G2k−1

F ((yε, g
′
ε)ε∈Vk−1

)d(g′~0, . . . , g
′
~1
).

It suffices to verify this for the dense subspace of tensor products F = ⊗ε∈Vk−1
fε. In

this case we can write fε = fε,k−1 + fε,⊥ with fε,k−1 = E(fε|Zk−1). The expectation
on the left-hand side splits into 2k−1 terms. All but one of them (the one without ⊥
functions) vanish in view of the Cauchy–Schwarz–Gowers inequality. This allows to
conclude the proof of (10.7).

Let
µ

[k−1]
k−1 =

∫
µ

[k−1]
k−1,ωdω

be an ergodic decomposition of the measure on Zk−1(X)[k−1]. Then by (10.7) and
the definition of measure disintegration

µ[k−1] =

∫
µ[k−1]
ω ×m2k−1

G dω

is an ergodic decomposition of the measure on X [k−1]. Thus by definition we have

µ[k] =

∫
µ

[k−1]
k−1,ω ×m

2k−1

G × µ[k−1]
k−1,ω ×m

2k−1

G dω.

A bounded function on X [k] is µ[k]-a.e. invariant under T [k] iff it is a.e. invariant
under T [k] with respect to ω-a.e. measure

(µ
[k−1]
k−1,ω ×mG2k−1 )2.

The first claim of the Lemma follows from Lemma 10.3 applied with the ergodic
group extension (Z

[k−1]
k−1 n

a⊗2k−1 G2k−1
, µ

[k−1]
k−1,ω × m

G2k−1 ) and the group element
(g, idG, . . . , idG) ∈ G2k−1 .
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11 The Conze–Lesigne equation

11.1 Nilpotent groups acting on HKZ factors

Lemma 11.1. Let (X,µ, T ) be an mps, k ≥ 1, and g : X → X. Then the following
conditions are equivalent.

1. g[k] preserves µ[k] and acts trivially on I [k],

2. for every face α ⊂ Vk+1 the transformation gα preserves µ[k+1],

3. for every face α ⊂ Vk the transformation gα preserves µ[k] and maps I [k] to
itself.

We denote the set of transformations satisfying the above equivalent conditions by Gk.

Proof. (1) =⇒ (2): By symmetry we may consider the side α = Vk × {0}. Then∫
(F ⊗ F̃ ) ◦ gαdµ[k+1] =

∫
F ◦ g[k] ⊗ F̃dµ[k+1] =

∫
E(F ◦ g[k]|I [k])F̃dµ[k],

and one can remove g[k] by the hypothesis (1).
(3) =⇒ (2): By symmetry we may consider a side of the form α = α′ × {0, 1},

where α′ ⊂ Vk is a side. Then∫
(F ⊗ F̃ ) ◦ gαdµ[k+1] =

∫
F ◦ gα′ ⊗ F̃ ◦ gα′dµ[k+1] =

∫
E(F ◦ gα′ |I [k])F̃ ◦ gα′dµ[k].

By the hypothesis that gα′ maps I [k] to itself we may pull it out of the conditional
expectation, and by the hypothesis that gα′ preserves µ[k] we may remove it.

(2) =⇒ (3): Let α ⊂ Vk be a face, then α′ = α × {0, 1} ⊂ Vk+1 is also a face.
Invariance of µ[k] under gα follows by projection from invariance of µ[k+1] under gα′ .
The algebra I [k] is mapped to itself because

‖E(F ◦ gα|I [k])‖2
L2(µ[k])

=

∫
F ◦ gα ⊗ F ◦ gαdµ[k+1] =

∫
(F ⊗ F ) ◦ gα′dµ[k+1],

and by the hypothesis g can be replaced by identity.
(2) =⇒ (1): We have already proved (3), so gα preserves µ[k] for every side

α ⊂ Vk; a fortiori g[k] preserves µ[k]. Let now F ∈ L2(I [k]), then∫
(F ◦ g[k])F̄dµ[k] =

∫
E(F ◦ g[k]|I [k])F̄dµ[k]

=

∫
(F ◦ g[k])⊗ F̄dµ[k+1] =

∫
(F ⊗ F̄ ) ◦ gαdµ[k+1],

where α = Vk × {0} ⊂ Vk+1 is a side. By the hypothesis we may remove g.

Observations:

1. Using face projections we see Gk+1 ⊆ Gk.

2. The transformation T is contained in every Gk.

3. Each set Gk is a group.

Lemma 11.2. Suppose that X = Zk(X). Then Gk is a nilpotent group of step k.
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Proof. It suffices to show that each k-fold iterated commutator g = [. . . [g1, g2], . . . , gk+1]
with gi ∈ Gk acts trivially on X. To this end it suffices to show that for each bounded
real-valued function f on X one has

0 = ‖f − f ◦ g‖2k+1

[k+1] =

∫
⊗Vk+1

(f − f ◦ g)dµ[k+1].

Expanding the multilinear expression on the right-hand side we obtain signed integrals
that cancel out precisely provided that each map gα, α ⊂ Vk+1, preserves the measure
µ[k+1], where

(gα~x)ε =

{
gxε, ε ∈ α
xε, ε 6∈ α.

It suffices to consider singletons α = {ε}. In this case we can write α = ∩k+1
i=1 αi,

where αi ⊂ Vk+1 are sides. Then gα = [. . . [(g1)α1 , (g2)α2 ], . . . , (gk+1)αk+1
], and the

claim follows because each map (gi)αi preserves µ[k+1].

It is interesting to know when the group Gk acts transitively on Zk. We will
address this question only in a special case. An mps X is said to have order 2 if
X = Z2(X) and Z2(X) is an abelian group extension of Z1(X). Recall that Z1 is a
compact abelian group on which T acts by translation by a group element t ∈ Z1.
Our objective is to obtain information on the cocycle defining the group extension X
from the hypothesis that X is of order 2.

For simplicity we make the standing assumption that the group in the extension
Z2 = Z1 nρ S

1 is the circle group S1 = {z ∈ C : |z| = 1}.

11.2 Conze–Lesigne equation

Let (X,µ, T ) be an ergodic mps and let U be a group of automorphisms that acts
freely on X. Let also ρ : X → S1. The Conze–Lesigne equation is

ρ ◦ u/ρ = cf ◦ T/f, (11.3)

where u ∈ U , f : X → S1, c ∈ S1.
Let (u, f, c) and (u′, f ′, c′) be two solutions to the CL equation. Then

ρ ◦ (uu′)/ρ = (ρ ◦ u′/ρ) ◦ u · (ρ ◦ u/ρ) = (c′f ′T/f ′) ◦ u · (cfT/f) = c′cf ′′T/f ′′,

where f ′′ = f ′ ◦ u · f . Hence (uu′, f ′ ◦ u · f, cc′) is also a solution. Therefore the set
of solutions of the CL equation is a (closed) subgroup of U n C(X,S1)× T.

Denote this group by H. It follows from ergodicity that the commutator subgroup
of H is contained in H2 := {idU} × Cconst(X,T) × {1}, where Cconst(X,T) ∼= T is
the set of constant maps. Then K := H/H2 is a locally compact abelian group. The
projection onto the last coordinate defines a character ϕ on K. Denote the projection
onto the first coordinate by q : K → U .

By the structure theorem for locally compact abelian groups, K admits an open
subgroup L ∼= K × Rd, where K is a compact abelian group. Set K0 := K ∩ kerϕ,
then U0 := q(K0) is a closed subgroup of U . Claim: U/U0 is a compact Lie group.
Consider the short exact sequence

0→ q(L)/U0 → U/U0 → U/q(L)→ 0.

The last group in this sequence is finite because q(L) is an open subgroup of U ,
because q is an open map.

0→ q(K)/q(K0)→ q(L)/U0 = q(L)/q(K0)→ q(L)/q(K)→ 0
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The first group in this sequence is a quotient of K/K0
∼= ϕ(K), which is subgroup of

the torus. The last group in this sequence is a compact quotient of L/K ∼= Rd, hence
a torus.

Let U1 be the connected component of the identity of U0, then H∩U1nC(X,T)×
{1} is an abelian group (this follows from compactness of U0). In other words, if
(u, f, 1) and (u′, f ′, 1) are two solutions with u, u′ ∈ U1, then f ′ ◦ u · f = f ◦ u′ · f ′.

11.3 Solvability of the Conze–Lesigne equation

The main structural result will be that in the case X = U = Z1 the set of solutions
of (11.3) has full projection onto the coordinate U , that is, for every s ∈ S1 there is
a solution (s, f, c)..

It is easy to see that the set of s for which (11.3) has a solution is a group.
Moreover, for s = t it has the solution f = ρ, c = 1. Thus it suffices to consider s in
a sufficiently small neighborhood of the identity.

For any mps X, compact abelian group U and map ρ : X → U denote

∆kρ : X [k] → U, (xε)ε∈Vk 7→
∏
ε∈Vk

C |ε|ρ(xε),

where C denotes inversion in U .

Lemma 11.4. Let ρ : Zk−1 → S1 be a cocycle that defines a system X = Zk−1 nρ S
1

of order k. Then the cocycle ∆kρ is a coboundary, that is, there exists a function F
on Z [k]

k−1 such that
T [k]F = F∆kρ (11.5)

and |F | ≡ 1.

Proof. Consider the function

ψ : X = Zk−1 × S1 → C, (x, u) 7→ u.

By the hypothesis X = Zk(X) we have ‖ψ‖[k+1] 6= 0. By definition of cube seminorms
we have

‖ψ‖2k+1

[k+1] =

∫
|E(Ψ|I [k])|2dµ[k],

where Ψ = ⊗ε∈VkC |ε|ψ, so E(Ψ|I [k]) 6= 0.
Note

T [k]Ψ = ∆kρ ·Ψ,

and consequently

(T [k])nΨ = Ψ ·
n−1∏
m=0

(T [k])m∆kρ.

By the mean ergodic theorem we obtain

E(Ψ|I [k]) = lim
N→∞

1

N

N∑
n=1

(T [k])nΨ = F̄Ψ

with

F̄ := lim
N→∞

1

N

N∑
n=1

n−1∏
m=0

(T [k])m∆2ρ ∈ L∞(Z
[k]
k−1).

This function is not identically zero because E(Ψ|I [k]) 6= 0 and we have

T [k]F̄ = T [k](F̄ΨΨ̄) = F̄ΨT [k](Ψ̄) = F̄ΨΨ̄∆kρ = F̄∆kρ.
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Thus the function F satisfies (11.5). It remains to ensure |F | ≡ 1. Consider the
function

Π : C→ C, z 7→

{
|z|−1z, z 6= 0,

0, z = 0.

Replacing F by Π ◦ F we may assume that |F | is {0, 1}-valued.
Let now F be a function that satisfies (11.5) and let α ⊂ Vk be a side. Then

T [k](TαF ·∆αρ) = Tα(F ·∆kρ) · Tα∆αρ = TαF ·∆Vk\αρ = (TαF ·∆αρ)∆[k]ρ,

so that the function TαF ·∆αρ also satisfies (11.5). It follows that for every element
T̃ of the side transformation group T [k]

k−1 there is a unimodular function uT̃ such that
T̃F · uT̃ satisfies (11.5). Let (T̃n)∞n=1 be an enumeration of T [k]

k−1 and define

F̃ :=

∞∑
n=0

3−nT̃nF · uT̃n .

By lacunarity of the coefficients 3−n and since the group T [k]
k−1 acts ergodically on

Z
[k]
k−1, this function is non-zero µ[k]-a.e., and Π ◦ F̃ satisfies the conclusion of the

lemma.

Corollary 11.6. Let (X,µ, T ) be an ergodic mps, ρ a cocycle of type k, and U
a compact abelian group that acts on X freely by automorphisms such that the
corresponding edge transformations preserve µ[k] and act weakly L2 continuously. Let
s ∈ U be in a sufficiently small neighborhood of the identity. Then there exists a
non-zero bounded function F on X [1] such that

T [1]F = F∆1(ρ ◦ s · ρ̄).

In fact one need not restrict to s in a small neighborhood of the identity and one
can also take |F | ≡ 1, see [HK05, Corollary 7.5(1)], but this is substantially harder
to prove.

Proof. Let α ⊂ Vk be the first side and ξα : X [k] → X [1] the corresponding coordinate
projection. Then

∆1(ρ ◦ s · ρ̄) ◦ ξα = ∆kρ ◦ sα ·∆kρ.

By the hypothesis
T [k]F = F∆kρ

for some measurable F : X [2] → T. Hence

∆1(ρ ◦ s · ρ̄) ◦ ξα = (F̄ T [k]F ) ◦ sα · F̄ T [k]F

Since the transformation sα on X [k] commutes with T [k], we obtain

T [k]F̃ = F̃ ·∆1(ρ ◦ s · ρ̄) ◦ ξα

with the function F̃s := F ◦ sα · F . Projection onto the first side yields

T [k]E(F̃s| im ξα) = E(F̃s| im ξα)∆1(rsρ · ρ̄) ◦ ξα.

It remains to show that E(F̃s| im ξα) 6= 0. But by weak continuity of the edge action
of U we have

∫
F̃s 6= 0 for s in a sufficiently small neighborhood of the identity, and

the integral is preserved under conditional expectation.

Lemma 11.7. Let (X,µ) be an ergodic mps and ρ : X → S1. Then there exists
λ ∈ S1 such that (X nλρ S

1, µ×mS1) is ergodic.
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Proof. Let λ be rationally independent from all eigenvalues of T on L2(X) and
suppose that both X nρ S

1 and X nλρ S
1 are not ergodic.

Then by the Mackey group construction ρ and λρ are cohomologous to cocycles
taking values in proper closed subgroups of S1. The only such subgroups are the
finite subgroups, and the two finite subgroups above are contained in a common
finite subgroup, say K. The quotient S1/K is again isomorphic to S1 and under this
isomorphy the congruence class of λ is not an eigenvalue of T .

Hence we may assume that ρ and λρ are both cohomologous to the constant zero
cocycle:

ρ(x) = f1(Tx)/f2(x), λρ(x) = f2(Tx)/f2(x).

But then

λ = (f2(Tx)/f2(x))/(f1(Tx)/f2(x)) = (f2/f1)(Tx)/(f2/f1)(x),

so λ is an eigenvalue of T , a contradiction.

This fills a gap in the proof of the following lemma.

Lemma 11.8 ([FW96, Lemma 10.3]). Let X be an ergodic mps and ρ : X → T be
such that

T [1]F = F∆1ρ

for some non-zero F ∈ L∞(X [1]). Then ρ is a quasi-coboundary, that is, ρ(x) =
λf(Tx)f̄(x) for some f : X → S1 and some constant λ ∈ S1.

Proof. Since for any constant λ we have ∆1ρ = ∆1(λρ) and by Lemma 11.7 we may
assume without loss of generality that X̃ := X nρ S

1 is ergodic. On X̃2 we have the
invariant function

((x1, u1), (x1, u2)) 7→ u1ū2F (x1, x2).

This can be written in terms of eigenfunctions on X̃ as∑
λ

cλϕλ ⊗ ϕλ.

By Fourier expansion in the S1 coordinate ϕλ(x, u) =
∑

m ϕλ,m(x)um we obtain

u1ū2F (x1, x2) =
∑

λ,m1,m2

cλϕλ,m1(x1)um1
1 ϕλ,m2(x2)um2

2 =
∑
λ

cλϕλ,1(x1)u1ϕλ,1(x2)u2,

so that ϕλ,1 6≡ 0 for some λ. On the other hand,

λ
∑
m

ϕλ,m(x)um = (T, ρ)ϕn(x, u) =
∑
m

ϕλ,m(Tx)(ρ(x)u)m,

and by uniqueness of Fourier series

λϕλ,1(x) = ϕλ,1(Tx)ρ(x).

Taking absolute values on both sides we obtain

|ϕλ,1(x)| = |ϕλ,1(Tx)|,

so by ergodicity of X we may normalize |ϕλ,1| ≡ 1, and this gives the claim with
f = ϕλ,1.

Lemma 11.9 ([Zie07, Theorem 3.6]). Let Y be an ergodic mps, Wi = Y nρi Hi be
ergodic abelian group extensions, σi : Wi → T, i = 1, 2, and suppose that σ1σ2 is a
coboundary on W1 ×Y W2. Then σi are cohomologous to functions on Y .
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Proof. By Lemma 11.7 we may assume that the systems Xi := Wi nσi T are ergodic.
By the hypothesis we have

TF = Fσ1σ2

for a function F : W = W1 ×Y W2 → T. It follows that the function

F̃ := Fu−1
1 u−1

2

on X := X1 ×Y X2 is invariant, so

F̃ =
∑
j1,j2

~ψj1Aj1,j2
~ψj2 ,

where the summation indices ji run over a complete orthogonal sets of irreducible
finite rank submodules of L2(Xi|Y ), each submodule ji has rank dji and is spanned
by the components of the bounded vector-valued function ψji : Xi → Cdji satisfying

Tψji = Ujiψji

with a function Uji : Y → U(dji), and where Aj1,j2 : Y → Mat(dj1 × dj2) are
measurable functions. With the Fourier expansion in the Hi and T coordinates

ψji(y, hi, u) =
∑

m∈Z,χ∈Ĥi

ψji,m,χ(y)χ(hi)u
m

we obtain ψji,−1,χi 6≡ 0 for each i and some χi ∈ Ĥi.
On the other hand, we have

Uji(y)ψji(y, hi, u) = Tψji(y, hi, u) = ψji(Ty, ρi(y)hi, σi(y, hi)u) =
∑
m,χ

Tψji,m,χ(y)χ(ρi(y)hi)(σi(y, hi)u)m,

and comparing the Fourier coefficients we obtain

Uji(y)ψji,−1(y, hi) = Tψji,−1(y, hi)σi(y, hi)
−1.

11.4 Transitivity of G2

Lemma 11.10. Let s ∈ S1 and f, c be a solution to the Conze–Lesigne equation
(11.3). Then the transformation

Ss,f (x, u) = (sx, f(x)u)

belongs to G2.

Proof. Recall that in course of the reduction to abelian group extensions we have
proved

µ[2] = µ
[2]
1 ×m

4
S1 .

From here it is easy to see that (Ss,f )α fixes µ[2] for every side α ⊂ V2, since it suffices
to do so over the factor Z1.

We claim that the transformation (Ss,f )α also leaves the algebra I [2] invariant.
To this end we compute

Ss,fT (x, u) = Ss,f (tx, ρ(x)u) = (stx, f(tx)ρ(x)u) = (stx, ρ(sx)f(x)u/c) = T (sx, f(x)u/c) = TSs,f (x, u/c).

Let F ∈ I [2]. The above calculation shows

F ◦ (Ss,f )α ◦ T [2] = F ◦ T [2] ◦ (Ss,f )α ◦ (c−1)α = F ◦ (Ss,f )α ◦ (c−1)α.

Since c−1 commutes with Ss,f , it remains to show F = F ◦ c−1
α . But this has been

proved in the construction of the abelian group extension.

Note that if s is the identity of the group Z1, then every constant function f
solves the Conze–Lesigne equation.
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12 Polynomials in nilpotent groups

12.1 Commutators and filtrations

We use the convention [a, b] = a−1b−1ab for commutators and ab = b−1ab for con-
jugation. We will frequently use the following group identities, first used by Hall
[Hal33]:

[a, bc] = [a, c][a, b]c (12.1)

[ab, c] = [a, c]b[b, c] (12.2)

[[a, b], ca][[c, a], bc][[b, c], ab] = id (12.3)

Theorem 12.4 (see e.g. [MKS66, Theorem 5.2]). Let G be a group and A,B,C E G
be normal subgroups. Then

[[A,B], C] ≤ [[C,A], B][[B,C], A].

Proof. In view of (12.2) it suffices to show that for every a ∈ A, b ∈ B, and c ∈ C
the commutator [[a, b], c] is contained in the group on the right. Since Ca = C, this
follows from (12.3).

Definition 12.5. Let G be a group. The lower central series of G is the sequence of
subgroups Gi, i ∈ N, defined by G0 = G1 := G and Gi+1 := [Gi, G] for i ≥ 1. The
group G is called nilpotent (of nilpotency class d) if Gd+1 = {id}.

A prefiltration G• is a sequence of nested groups

G0 ≥ G1 ≥ G2 ≥ . . . such that [Gi, Gj ] ⊂ Gi+j for any i, j ∈ N. (12.6)

A filtration (on a group G) is a prefiltration in which G0 = G1 (and G0 = G).

We will frequently write G instead of G0. Conversely, most groups G that we
consider are endowed with a prefiltration G• such that G0 = G. A group may admit
several prefiltrations, and we usually fix one of them even if we do not refer to it
explicitly.

A prefiltration is said to have length d ∈ N if Gd+1 is the trivial group and length
−∞ if G0 is the trivial group. Arithmetic for lengths is defined in the same way as
conventionally done for degrees of polynomials, i.e. d− t = −∞ if d < t.

Lemma 12.7 (see e.g. [MKS66, Theorem 5.3]). Let G be a group. Then the lower
central series G• is a filtration.

Proof. The fact that
[G0, Gi] = [Gi, G0] ⊂ Gi

is equivalent to Gi being normal in G, and this is quickly established by induction on
i. This also shows that Gi+1 ⊆ Gi for all i.

It remains to show that

[Gi, Gj ] ⊆ Gi+j for i, j ≥ 1.

To this end use induction on j. For j = 1 this follows by definition of Gi+1, so suppose
that the above statement is known for j. Then we have

[Gi, Gj+1] = [Gi, [Gj , G1]] ⊂ [[G1, Gi], Gj ][[Gj , Gi], Gi]

= [Gi+1, Gj ][Gi+j , G1] ⊂ Gi+1+j

by Theorem 12.4 and two applications of the inductive hypothesis.
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Definition 12.8. Let G be a group and H ⊂ G. We write

r
√
H := {g ∈ G : gr ∈ H} and

√
H :=

⋃
r∈N>0

r
√
H.

The set
√
H is called the closure of H in [BL02].

Lemma 12.9. Let G be a nilpotent group, H ≤ G a finitely generated subgroup, and
suppose that G is generated by H and F , where F ⊂

√
H is finite. Then [G : H] <∞.

Proof. We induct on the nilpotency step d. If d = 1, then G is commutative, so H is
normal, and we may factor out H. Hence G is generated by finitely many torsion
elements, so it is a finite commutative group.

Suppose that the claim is known for groups with nilpotency step ≤ d and consider
a group G of step d+1. Let G• be the lower central series of G. Then the commutator
maps

[·, ·] : G1 ×Gd → Gd+1,

and the image of this map generated Gd+1. Since the conjugation action of G on
Gd+1 is trivial, the identities (12.1) and (12.2) and the fact that G• is a filtration
show that the commutator map factors through a bihomomorphism

B : G1/G2 ×Gd/Gd+1 → Gd+1.

By the inductive hypothesis H/Gd+1 ≤ G/Gd+1 is a finite index subgroup. In
particular, H/G2 ≤ G1/G2 and (H∩Gd)/Gd+1 ≤ Gd/Gd+1 are finite index subgroups,
with index a, b, say. Since B is a bihomomorphism, it follows that the power ab of
every element in the image of B is contained in H ∩Gd+1. On the other hand, the
image of B generates the group Gd+1, and since it has a finite generating subset an
by the d = 1 case of the lemma the subgroup H ∩Gd+1 ≤ Gd+1 has finite index.

Since Gd+1 is central in G, it follows that the group H has finite index in the
group H ′ generated by H and Gd+1. Replacing H by H ′ we can factor out the
subgroup Gd+1 and reduce to step d.

Corollary 12.10. Let G be a nilpotent group and H ≤ G. Then
√
H is a subgroup

of G.

12.2 Polynomial mappings

In this section we set up the algebraic framework for dealing with polynomials with
values in a nilpotent group.

Let G• be a prefiltration of length d and let t ∈ N be arbitrary. We denote by G•+t
the prefiltration of length d− t given by (G•+t)i = Gi+t and by G•/t the prefiltration
of length min(d, t − 1) given by Gi/t = Gi/Gt (this is understood to be the trivial
group for i ≥ t; note that Gt is normal in each Gi for i ≤ t by (12.6)). These two
operations on prefiltrations can be combined: we denote by G•/t+s the prefiltration
given by Gi/t+s = Gi+s/Gt, it can be obtained applying first the operation /t and
then the operation +s (hence the notation).

We define G•-polynomial maps by induction on the length of the prefiltration.

Definition 12.11. Let G• be a prefiltration of length d ∈ {−∞} ∪ N. A map
g : Zr → G0 is called G•-polynomial if either d = −∞ (so that g identically equals
the identity) or for every a ∈ Zr the map

Dag(n) = g(n)−1Tag(n) := g(n)−1g(n+ a) (12.12)

is G•+1-polynomial. We write P (Zr, G•) for the set of G•-polynomial maps.
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Informally, a map g : Zr → G0 is polynomial if every discrete derivative Dg is
polynomial “of lower degree” (the “degree” of a G•-polynomial map would be the
length of the prefiltration G•, but we prefer not to use this notion since it is necessary
to keep track of the prefiltration G• anyway).

Note that if a map g is G•-polynomial then the map gGt is G•/t-polynomial
for any t ∈ N (but not conversely). We abuse the notation by saying that g is
G•/t-polynomial if gGt is G•/t-polynomial. In assertions that hold for all a ∈ Zr we
omit the subscript in Da, Ta.

The next theorem is the basic result about G•-polynomials.

Theorem 12.13. For every prefiltration G• of length d ∈ {−∞} ∪ N the following
holds.

1. Let ti ∈ N and gi : Zr → G be maps such that gi is G•/(d+1−t1−i)+ti-polynomial
for i = 0, 1. Then the commutator [g0, g1] is G•+t0+t1-polynomial.

2. Let g0, g1 : Zr → G be G•-polynomial maps. Then the product g0g1 is also
G•-polynomial.

3. Let g : Zr → G be a G•-polynomial map. Then its pointwise inverse g−1 is also
G•-polynomial.

Proof. We use induction on d. If d = −∞, then the group G0 is trivial and the
conclusion hold trivially. Let d ≥ 0 and assume that the conclusion holds for all
smaller values of d.

We prove part (1) using descending induction on t = t0 + t1. We clearly have
[g0, g1] ⊂ Gt. If t ≥ d+ 1, there is nothing left to show. Otherwise it remains to show
that D[g0, g1] is G•+t+1-polynomial. To this end we use the commutator identity

D[g0, g1] = [g0, Dg1] · [[g0, Dg1], [g0, g1]]

· [[g0, g1], Dg1] · [[g0, g1Dg1], Dg0] · [Dg0, g1Dg1]. (12.14)

We will show that the second to last term is G•+t+1-polynomial, the argument for the
other terms is similar. Note that Dg0 is G•/(d+1−t1)+t0+1-polynomial. By the inner
induction hypothesis it suffices to show that [g0, g1Dg1] is G•/(d−t0)+t1-polynomial.
But the prefiltration G•/(d−t0) has smaller length than G•, and by the outer induction
hypothesis we can conclude that g1Dg1 is G•/(d−t0)+t1-polynomial. Moreover, g0 is
clearly G•/(d−t0−t1)-polynomial, and by the outer induction hypothesis its commutator
with g1Dg1 is G•/(d−t0)+t1-polynomial as required.

Provided that each multiplicand in (12.14) is G•+t+1-polynomial, we can conclude
that D[g0, g1] is G•+t+1-polynomial by the outer induction hypothesis.

Part (2) follows immediately by the Leibniz rule

D(g0g1) = Dg0[Dg0, g1]Dg1 (12.15)

from (1) with t0 = 1, t1 = 0 and the induction hypothesis.
To prove part (3) notice that

D(g−1) = g(Dg)−1g−1 = [g−1, Dg](Dg)−1. (12.16)

By the induction hypothesis the map g−1 is G•/d-polynomial, the map Dg is G•+1-
polynomial, and the map (Dg)−1 is G•+1-polynomial. Thus also D(g−1) is G•+1-
polynomial by (1) and the induction hypothesis.

Discarding some technical information that was necessary for the inductive proof
we can write the above theorem succinctly as follows.
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Corollary 12.17 ([Lei02, Proposition 3.7]). Let G• be a prefiltration of length d.
Then the set P (Zr, G•) of G•-polynomials on Zr is a group under pointwise operations
and admits a canonical prefiltration of length d given by

P (Zr, G•) ≥ P (Zr, G•+1) ≥ · · · ≥ P (Zr, G•+d+1).

Remark. In [Lei02] a polynomial has a “vector degree” that is given by a sequence
d̄ = (di)i∈N ⊂ N that is superadditive in the sense that di+j ≥ di + dj for all i, j ∈ N;
by convention d−1 = −∞. This is included in our treatment: a map has vector degree
d̄ with respect to a prefiltration G• if and only if it is Gd̄•-polynomial, where the
prefiltration Gd̄• is given by

Gd̄i = Gj whenever dj−1 < i ≤ dj . (12.18)

Remark. Variants of the above definition of polynomials include prefiltrations indexed
by partially ordered semigroups more general than the natural numbers N = {0, 1, . . . },
see [GTZ12, Appendix B].

12.3 Integer Lagrange interpolation

A polynomial of degree d on Z is determined by its values at 0, . . . , d. Similiarly, a
polynomial of degree d on Zr is determined by its values on the set

∆r,d := {k ∈ Zr : ki ≥ 0,
r∑
i=1

ki ≤ d}.

This is proved in two steps: firstly, any polynomial of degree ≤ d that vanishes on
∆r,d vanishes everywhere. Secondly, the dimension of the space of polynomials of
deree ≤ d has dimension |∆r,d|, so every function on ∆r,d can be interpolated by a
polynomial of degree ≤ d. Also, a polynomial maps integer points to integers iff its
restriction to ∆r,d does.

Similar results hold for polynomials in nilpotent groups.

Lemma 12.19. Let G• be a filtration of length ≤ d, g ∈ P (Zr, G•), and suppose that
g vanishes on ∆m,d. Then g vanishes identically.

Proof. By induction on d. In the case d = 0 the map g is constant, and since it
vanishes at 0 it vanishes identically.

Suppose that the claim holds for d and consider it with d replaced by d+ 1. Then
for every basis vector ei ∈ Zr the derivative Deig vanishes on ∆m,d+1∩∆m,d+1− ei ⊃
∆m,d. By the inductive hypothesis the derivative vanishes identically, and the claim
follows.

Lemma 12.20. Let G• be a filtration of length ≤ d and g ∈ P (Zr, G•). Then we
can write

g =
∏

a∈∆r,d

g
(na)
a , where

(
n

a

)
=

r∏
j=1

(
nj
aj

)
, ga ∈ G|a|,

the product taken e.g. in increasing lexicographic order with top level ordering by
|a| =

∑
j aj.

Proof. This follows from the following inductive claim.

Claim 12.21. Let g ∈ P (Zr, G•) vanish on ∆r,l−1. Then g(n) =
∏
a∈∆r,l\∆r,l−1

g(a)(
n
a)g̃(n),

where g̃ ∈ P (Zr, G•) vanishes on ∆r,l.
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To show the claim note that gGl+1 is G•/l-polynomial, hence it vanishes identically

by Lemma 12.19. Therefore g(a) ∈ Gl, so that the maps n → g(a)(
n
a) are G•-

polynomial. Moreover, if
∑

j aj = l, then

(
n

a

)
=

{
1, n = a

0, n ∈ ∆r,l, n 6= a.

It follows that the remainder term g̃ is G•-polynomial and vanishes on ∆r,l.

Despite the fact that every polynomial can be written in such explicit form, it
is usually more convenient to use the abstract definition, particularly when passing
between different prefiltrations.

12.4 Commensurable lattices

We summarize the properties of nilmanifolds that will be necessary for our discussion.
For our purpose one can think of these properties as being provided by the structure
theorem for Host–Kra factors.

Definition 12.22. A nilmanifold consists of the following pieces of information:

1. a nilpotent Lie group G,

2. a prefiltration G• on G consisting of closed (Lie) subgroups, and

3. a finitely generated discrete subgroup Γ ≤ G.

We assume that the homogeneous space Gi/Γ is compact for every group Gi in the
prefiltration G•. We call a group Γ as above a lattice and write Γi = Γ∩Gi. A closed
subgroup G̃ ≤ G such that G̃/Γ is compact is called Γ-rational.

Recall that two subgroups A,B ≤ G are called commensurable if A∩B has finite
index in both A and B.

Lemma 12.23. Let G/Γ be a nilmanifold and Γ̃ ≤ G be a group that is commensurable
with Γ. Then the following assertions hold.

1. Γ̃ is also a discrete cocompact subgroup.

2. Every Γ-rational subgroup G′ ≤ G is also Γ̃-rational.

Proof. To see (1) note that if Γ̃ ≤ Γ, then the natural map G/Γ̃→ G/Γ is a covering
map with finitely many sheets, and it follows that G/Γ̃ is compact. If Γ ≤ Γ̃, then
G/Γ̃ is a quotient space of G/Γ, so it is clearly compact. From this it follows that Γ̃
is cocompact in general. Also, it is clear that Γ̃ is discrete if and only if Γ is discrete.

The assertion (2) follows since the groups Γ ∩G′ and Γ̃ ∩G′ are commensurable
whenever Γ and Γ̃ are commensurable.

An important class of examples of commensuarble lattices arises when one needs
to replace a nilmanifold by a connected one.

Lemma 12.24. Let G/Γ be a nilmanifold. Then there exists a lattice Γ ≤ Γ̃ ≤ G
such that Γ has finite index in Γ̃ and Gi/Γ̃i is connected for every i.

Here and later we denote the connected component of the identity in a group G
by Go.
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Proof. We use induction on the length of the filtration. If G• is trivial, then there is
nothing to show, so suppose that the conclusion holds for filtrations of length d− 1
and consider a Γ-rational filtration G• of length d.

By the rationality assumption we can write Gd = God ⊕ A in such a way that
Γ ∩A ≤ A is a finite index subgroup. Since A is central in G, this implies that Γ has
finite index in ΓA. Replacing Γ by ΓA if necessary, we may assume that ΓGd = ΓGod.

By the inductive assumption ΓGd/Gd is a finite index subgroup of a lattice Γ̃/d
such that (Gi/Gd)/Γ̃/d is connected for every i. Let {γ̃j} ⊂ G/Gd be a finite set
that together with ΓGd/Gd generates Γ̃/d. We can write γ̃j = gjGd, and we have
grj ∈ ΓGd for some r and all j. Now recall that ΓGd = ΓGod and that in the connected
commutative Lie group God arbitrary roots exist. Hence, multiplying gj by an element
of God if necessary, we may assume that grj ∈ Γ.

By Lemma 12.9 Γ has finite index in the group generated by Γ and the elements
gj . It remains to show that Gi/Γ̃i is connected for every i. We have an exact sequence
of topological spaces

Gd/Γ̃→ Gi/Γ̃→ Gi/Γ̃Gd

and the outer two are connected.

12.5 Reduction of polynomials to connected Lie groups

The next step is vaguely parallel to separating rational and irrational coefficients of a
polynomial over the reals. Given a prefiltration G•, we define a prefiltration Go• by
(Go)i = (Gi)

o.

Lemma 12.25. Let G/Γ be a nilmanifold such that Gi/Γi is connected for each i.
Then every G•-polynomial sequence g(n) can be written in the form

g(n) = go(n)γ(n),

where go is a Go•-polynomial sequence, and γ is a Γ•-polynomial sequence.

Proof. It suffices to show the following:
Claim 12.26. Let g ∈ P (Zr, G•) be a polynomial that vanishes on ∆r,l−1. Then we
can factorize

g = gog̃γ,

where go is Go•-polynomial, γ is Γ•-polynomial, and g̃ is G•-polynomial and vanishes
on ∆r,l.

The group Gl/Gl+1 is a commutative Lie group, and its quotient modulo Γ is
a compact connected space. Hence Gl/Gl+1 = Gol /Gl+1 × A, where A is a discrete
subgroup contained in Γ/Gl+1.

The map gGl is G•/l-polynomial, so by Lemma 12.19 it vanishes identically. Hence
g takes values in Gl. By the hypothesis that Gl/Γ is connected we have Gl = Gol Γl.
For every a ∈ ∆r,l \∆r,l−1 write g(a) = gaγa with ga ∈ Gol , γa ∈ Γl. Define

go(n) :=
∏

a∈∆r,l\∆r,l−1

g
(na)
a , γ(n) :=

∏
a∈∆r,l\∆r,l−1

γ
(na)
a ,

the product being taken in any fixed order, say lexicographic. The polynomials
n 7→

(
n
a

)
have degree l and ga, γa ∈ Gl, so these maps are in fact polynomial with

respect to the required filtrations. Also, g̃ = (go)−1g(γ)−1 vanishes on ∆r,l by
construction.

On general nilmanifolds we can use Lemma 12.25 together with Lemma 12.24 and
obtain a splitting in which the second factor takes values in a group Γ̃ ≥ Γ in which
Γ has finite index. The next lemma shows that the latter factor is periodic modulo Γ;
this can be compared to the fact that rational polynomials are periodic modulo Z.
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Lemma 12.27. Let G be a nilpotent group with a prefiltration G• and let Γ ≤ G be
a finite index subgroup. Then for every G•-polynomial sequence g(n) the sequence
g(n)Γ is periodic (that is, constant on cosets of a finite index subgroup of Zr).

Proof. Replacing Γ by a finite index subgroup that is normal in G and working
modulo Γ, we may assume that G is finite and Γ is trivial.

We factorize g as in Lemma 12.20 and observe that each term in the factorization
is periodic.
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13 Equidistribution criterion for polynomials on nilman-
ifolds

13.1 Cube group

We outline a special case of the cube construction of Green, Tao, and Ziegler [GTZ12,
Definition B.2] using notation of Green and Tao [GT12, Proposition 7.2]. We will
only have to perform it on filtrations, but even in this case the result is in general
only a prefiltration.

Definition 13.1 (Cube filtration). Given a prefiltration G• we define the prefiltration
G�• by

G�i :=
〈
G4i , Gi+1 ×Gi+1

〉
where G4 = {(g0, g1) ∈ G2 : g0 = g1} is the diagonal group corresponding to G. By
an abuse of notation we refer to the filtration obtained from G�• by replacing G�0
with G�1 as the “filtration G�• ”.

To see that this indeed defines a prefiltration note first that G�i is normal in
G�0 . Using this and Hall identities it suffices to verify the commutator property on
generators, which is straightforward.

Lemma 13.2 (Rationality of the cube filtration). Let G/Γ be a nilmanifold. Then
G�/Γ2 is a nilmanifold (where G� = G�1 ).

Proof. We have to verify that G�i /Γ
2 is compact for every i. We induct on the length

d of the filtration G•.
The group G�d is just the diagonal group, so its quotient modulo Γ2 is compact

by the hypothesis. Let i < d. On the quotient space G�i /Γ
2 we have a continuous

action of the compact abelian group (Gd/Γ)2. The quotient of G�i /Γ
2 modulo this

action is compact by the inductive hypothesis, and the claim follows.

Lemma 13.3. Let g ∈ P (Zr, G•). Then for every k ∈ Zr the map

g�̃k (n) := (g(n+ k), g(n))

is G�• -polynomial.

Proof. We use induction on the length l of the prefiltration G•. Indeed, for l = −∞
there is nothing to show. If l ≥ 0, then g�̃k takes values in G�0 since g(n)−1g(n+ k) =

Dkg(n) ∈ G1 by definition of a polynomial. Moreover Dk′(g
�̃
k ) = (Dk′g)�̃k (n), so that

Dk′(g
�̃
k ) is G�•+1-polynomial by the induction hypothesis.

13.2 Vertical characters

Let G/Γ be a nilmanifold of nilpotency class l. Then G/Γ is a smooth principal
bundle with the compact commutative Lie structure group Gl/Γl. The fibers of this
bundle are called “vertical” tori.

Definition 13.4 (Vertical character). Let G/Γ be a nilmanifold of nilpotency class
l. A measurable function F on G/Γ is called a vertical character if there exists
a character χ ∈ Ĝl/Γl such that for every gl ∈ Gl and a.e. y ∈ G/Γ we have
F (gly) = χ(glΓl)F (y).

Definition 13.5 (Vertical Fourier series). Let G/Γ be a nilmanifold of nilpotency
class l. For every F ∈ L2(G/Γ) and χ ∈ Ĝl/Γl let

Fχ(y) :=

∫
Gl/Γl

F (gly)χ(gl)dgl. (13.6)
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With this definition Fχ is defined almost everywhere and is a vertical character
as witnessed by the character χ. The usual Fourier inversion formula implies that
F =

∑
χ∈Ĝl/Γl

Fχ in L2(G/Γ).

Remark. The correct analog of the Plancherel identity for vertical Fourier series reads∑
χ

‖Fχ‖2
l

U l(G/Γ) = ‖F‖2lU l(G/Γ),

where U l stands for appropriate Gowers–Host–Kra seminorms, see [ET12, Lemma
10.2] for the case l = 3.

13.3 Fractional part map

Lemma 13.7 (Fundamental domain). Let Γ ≤ G be a cocompact lattice. Then
there exists a relatively compact set K ⊂ G and a map G→ K, g 7→ {g} such that
gΓ = {g}Γ and {{g}} = {g} for each g ∈ G.

This follows readily from local homeomorphy of G and G/Γ, from local compact-
ness of G and from compactness of G/Γ. For example, for G = R and Γ = Z the
fundamental domain K can be taken to be the interval [0, 1) with the usual fractional
part map {·}. In case of a general connected Lie group the fundamental domain can
be taken to be [0, 1)d in Mal’cev coordinates [GT12, Lemma A.14], but we do not
need this information.

For each nilmanifold that we consider we fix some map {·} as above and write
g = {g}bgc with bgc ∈ Γ.

13.4 Linear equidistribution criterion

We will use the following notation for multiparameter averages. A box in Zr is
denoted by the letter I. We write Avn∈I = |I|−1

∑
n∈I and write limI for the limit

as the minimal side length of the box goes to ∞ (similarly for lim inf and lim sup).

Lemma 13.8. Let δ > 0 and g : Zr → Us (a torus, U = R/Z) be a linear sequence.
Suppose that there exists a Lipschitz function F : Us → R such that

lim sup
I

∣∣∣Avn∈I F (g(n))−
∫
F
∣∣∣ > δ‖F‖Lip.

Then there exists a 0 6= k ∈ Zs, k = O(δ−1), such that k · g(n) ≡ const.

Proof. Replacing F by (F −
∫
F )/‖F −

∫
F‖Lip we may assume

∫
F = 0, ‖F‖Lip = 1.

We may also assume δ ≤ 1. Let

F ′ := |δ/10m|−2F ∗ 1 δ
10m

[−1,1]m ∗ 1 δ
10m

[−1,1]m .

Then ‖F ′ − F‖∞ < ‖F‖Lipδ/10, hence

lim sup
I

∣∣∣Avn∈I F
′(g(n))

∣∣∣ > δ/2.

On the other hand,

|F̂ ′(ξ)| = |F̂ (ξ)| · | ̂|δ/10m|−11 δ
10m

[−1,1]m(ξ)|2 . (1 + |ξ|/δ)−2,

so truncating F ′ in frequency at C/δ we obtain

lim sup
I

∣∣∣Avn∈I F
′′(g(n))

∣∣∣ > δ/4
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with a function F ′′ whose Fourier transform is supported in a cube with side length
C/δ, bounded by 1, and vanishes at 0. By the pigeonhole principle it follows that

lim sup
I

∣∣∣Avn∈I e(k · g(n))
∣∣∣ > Cδs+1

with some k as in the conclusion of the lemma. It remains to observe that limI Avn∈I e(k·
g(n)) = 0 unless k·g(n) ≡ const (this is a linear exponential sum that can be computed
explicitly).

13.5 Polynomial equidistribution criterion

The following multiparameter version of the van der Corput inequality is proved in
exactly the same way as the one-parameter version.

Proposition 13.9. Let V be a Hilbert space and let (vn)n∈Zr be a bounded sequence
in V . Then

lim sup
I
‖Avn∈I vn‖2 ≤ lim inf

I′
Avk∈I′ lim sup

I
|Avn∈I 〈vn+k, vn〉 |.

Leibman’s equidistribution criterion [Lei05] tells that the only obstruction to
equidistribution of G•-polynomial sequences on a connected nilmanifold G/Γ are
characters, that is, continuous homomorphisms η : G→ U that vanish on Γ:

Theorem 13.10. Let G/Γ be a nilmanifold associated to a connected group G and
G• a Γ-rational filtration on G. Let F ∈ C(G/Γ), Λ ≤ Zr a finite index subgroup,
and δ > 0. Then there exists a finite set of non-trivial characters on G such that for
every g ∈ P (Zr, G•) with

lim sup
I⊂Λ+ρ

∣∣∣Avn∈I F (g(n)Γ)−
∫
G/Γ

F
∣∣∣ > δ

for some ρ ∈ Zr there exists a character η on this list such that η ◦ g = const.

We will give a qualitative version of the proof that is due to Green and Tao [GT12;
GT14]. The proof proceeds by induction on the length of the filtration and on dimG2.
In each step one performs the cube construction and factors out the diagonal central
subgroup. Uniformity over all polynomials is essential for inductive purposes.

The connectedness hypothesis is needed in order to ensure that any non-zero
multiple of a non-trivial character is again a non-trivial character; this observation
will be used without further reference.

Proof. Replacing F by F −
∫
F we may assume

∫
F = 0. First we reduce to the

case that G• consists of connected groups, Λ = Zr, and g(0) = id. To this end we
split g = goγ, where go is Go•-polynomial and γ is Γ̃•-polynomial for some finite index
surgroup Γ̃ ≥ Γ that does not depend on g. In particular, γΓ is periodic with period
Λ′ ≤ Λ ≤ Zd that does not depend on g. By the pigeonhole principle there is a coset
ρ′ + Λ′ such that

lim sup
I⊂Λ′+ρ′

|Avn∈I F (g(n)Γ)| > δ.

This can be wriiten as

lim sup
I⊂Λ′

|Avn∈I F ({g(ρ)}{g(ρ)}−1g(n+ ρ)bg(ρ)c−1Γ)| > δ.

Since {g(ρ)} lies in a fixed compact set, the set of functions x 7→ F ({g(ρ)}x) is
compact, so it can be covered by finitely many balls of radius δ/2, the covering being
independent of g. Hence we may assume g(ρ) = id. Applying the connected case to the
group Λ′ ∼= Zr we obtain a character such that η({g(ρ)}−1g(Λ′+ρ)bg(ρ)c−1) = const,
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and therefore η(g(Λ′ + ρ)) = const. It follows that η ◦ g ≡ const mod 1
R for some

bounded R, and the claim follows with η replaced by Rη. This completes the
reduction.

It remains to prove the conclusion under the additional assumptions that G•
consists of connected groups, Λ = Zr, and g(0) = id. Replacing g by the sequence

g(n)

r∏
i=1

bg(ei)c−ni

we may also assume that g(ei) = {g(ei)}. Write

glin(n) =

r∏
i=1

g(ei)
ni , gnlin(n) = glin(n)−1g(n),

so that gnlin takes values in G2. By uniform approximation we may assume that F is
smooth.

The case l = 1 is contained in Lemma 13.8.
Suppose now that l ≥ 2. Analogously to the commutative case, smoothness implies

that the vertical Fourier series F =
∑

χ Fχ (Definition 13.5) converges absolutely, so,
decreasing δ if necessary, we can assume that F has a vertical frequency χ. If this
frequency vanishes, then we can factor out Gl and use induction on the length of
filtration.

Assume now that the vertical frequency χ is non-trivial. By the van der Corput
difference lemma the set of h such that

lim sup
I
|Avn∈I F (g(h+ n)Γ)F (g(n)Γ)| > δ2

has positive lower Banach density (bounded below by a constant depending only on
δ and F ). We write

F (g(h+n)Γ)F (g(n)Γ) = F ⊗ F̄ (({glin(h)}, id)︸ ︷︷ ︸
=:F�g,h

({glin(h)}−1g(h+ n)bglin(h)c−1, g(n))︸ ︷︷ ︸
=:g�h (n)

Γ2)

Since the fractional part function {·} has relatively compact range, the set of func-
tions F�g,h is relatively compact. Choosing a g-independent δ2/2-dense subset and
pigeonholing we obtain a function F� that does not depend on h such that

lim sup
I
|Avn∈I F

�(g�h (n))| > δ2/2

for a set of h of positive lower Banach density. Note that F� has a non-trivial vertical
frequency with respect to G2

l and is G∆
l -invariant. Hence, factoring out G∆

l , we see
that g�h is polynomial with respect to the filtration G�• /G∆

l that has length l− 1 and
F� has zero integral on G�1 /G∆

l Γ2.
By the induction hypothesis we obtain a finite list of characters η : G�/G∆

l → U
such that for each h in our positive lower Banach density set there exists a character
on this list such that η ◦ g�h vanishes. By the pigeonhole principle we may assume
that the character η does not depend on h. Write

η(g�h (n)) = η({glin(h)}−1g(h+ n)bglin(h)c−1, g(n))

= η(g(n), g(n)) + η({glin(h)}−1g(h+ n)bglin(h)c−1g(n)−1, id)

= η1(g(n)) + η2({glin(h)}−1g(h+ n)bglin(h)c−1g(n)−1),

where η1 : G1 → U, g 7→ η(g, g) and η2 : G2 → U, g 7→ η(g, id) are characters that
vanish on the normal subgroups [G,G] and [G,G2], respectively, and on Γ. If the
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character η2 is trivial, then η1 is non-trivial and we obtain the conclusion with the
character η1. Hence we may assume that η2 is non-trivial.

Note

η2({glin(h)}−1g(h+ n)bglin(h)c−1g(n)−1)

= η2({glin(h)}−1g(h+ n)g(h)−1{glin(h)}g(n)−1)

= η2([{glin(h)}, glin(h)g(h+ n)−1]g(h+ n)glin(h)−1g(n)−1)

= η2([{g(h)}, glin(h)g(h+ n)−1]) + η2(g(h+ n)glin(h)−1g(n)−1)

= −
r∑
j=1

njη2([{g(h)}, g(ej)]) + η2(glin(h+ n)glin(h)−1glin(n)−1)

+ η2(gnlin(h+ n))− η2(gnlin(n)).

(Here and later we repeatedly use that the commutator induces an antisymmetric
bihomomorphism G/G2 ×G/G2 → G2/[G,G2]). In the second term we note

glin(n)glin(h) ≡ glin(n+ h)
∏
i<j

[g(ej)
hj , g(ei)

ni ] mod [G,G2]

≡ glin(n+ h)
∏
i<j

[g(ej), g(ei)]
hjni mod [G,G2],

so

η2(glin(h+n)glin(h)−1glin(n)−1) = −η2(
∏
i<j

[g(ej), g(ei)]
hjni) =

∑
i<j

nihjη2([g(ei), g(ej)]).

Overall we obtain that for a bounded below density set of h ∈ Zr and every n ∈ Zr
we have

P (n) +Q(n+ h)−Q(n) +

r∑
i=1

σi(h)ni = 0U (13.11)

with P (n) = η1(g(n)), Q(n) = η2(gnlin(n)), and

σi(h) = −η2([{g(h)}, g(ei)]) +
∑
i<j

hjη2([g(ei), g(ej)]).

Since this holds for a positive density set of h, this holds in particular for h, h′

with h′ = h+ δiei and bounded δi for all i = 1, . . . , r. Hence some bounded discrete
derivatives of Q have degree 1 modulo Z. By integer Lagrange interpolation these
discrete derivatives have integer coefficients of orders > 1, so the coefficients of Q of
order > 2 are rational with bounded denominator. A fortiori, the coefficients of P of
order > 1 are rational with bounded denominator. Moreover, by construction P has
no constant term and Q has no constant and no linear terms. Multiplying η by a
bounded non-zero integer we may assume degQ ≤ 2, degP ≤ 1. It follows that

r∑
i=1

1

2
qiih

2
i +

r∑
i=1

(pi + σi(h) +
r∑
j=1

qijhj)ni = 0U, (13.12)

where pi are linear coefficients of P and qij are quadratic coefficients of Q (multiplied
by 2 in the case i = j). Since this holds for all n, we have

pi + σi(h) +

r∑
j=1

qijhj = 0U. (13.13)

At this point we start expanding the definition of σ. The group G/G2 is a connected
commutative Lie group, so there is an isomorphism ψ : G/G2 → Rs/Zs′ × {0},
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s′ ≤ s = dimG − dimG2. We may assume that ψ(Γ/G2) = Zs/Zs′ and that the
fractional part map on G coincides modulo G2 with the usual coordinatewise fractional
part map. We lift ψ to a map with codomain Rs. In coordinates η2([·, ·]) is given by
an antisymmetric bilinear form with integer coefficients, η2([x, y]) = ψ(x)Aψ(y) (that
is well-defined modulo Zs′ in both arguments).

G×G G2 U

Rs × Rs G/G2 ×G/G2 G2/[G,G2]

[·,·]

ψ×ψ

η2

Hence

σi(h) = −ψ({g(h)})Aψ(g(ei)) +
∑
i<j

hjψ(g(ei))Aψ(g(ej))

= −{
∑
j

hjgj}Agi +
∑
i<j

hjgiAgj ,

where gi = ψ(g(ei)) ∈ Rs. Inserting this into the previous display we obtain

Z 3 pi − {
r∑
j=1

hjgj}Agi +
r∑
j=1

(qij + δi<jgiAgj)hj =: pi − {
r∑
j=1

hjgj} · ξi +
r∑
j=1

q̃ijhj ,

where ξi = Agi ∈ Rs is bounded and q̃ij ∈ R. Let i ∈ {1, . . . , r} be arbitrary. For a
positive lower density set H of h ∈ Zr we have

pi − {
r∑
j=1

hjgj} · ξ +

r∑
j=1

q̃ijhj ∈ Z. (13.14)

Hence the sequence h 7→ ({
∑r

j=1 hjgj}, {
∑r

j=1 q̃ijhj}) ∈ [0, 1]s+1 takes values in a
union U of parallel planes with distance ‖(ξ, 1)‖−1/R for h ∈ H, and this distance
is bounded from below. In particular, this sequence is not equidistributed, and
applying Lemma 13.8 with F (·) = (1− C dist(·, U))+ (distance taken on the torus)
we find that this sequence is contained in a proper subtorus described by the equation
{x : k · x = const mod Z} with a bounded non-zero k = (ks, k

′) ∈ Zs × Z. We have
therefore

Z 3 k · (gj , q̃ij) = ks · gj + q̃ijk
′

for all j = 1, . . . , r.
Suppose first that k′ = 0, so that ks · gj ∈ Z for all j. Then g 7→ ks · ψ(g) is a

non-trivial character on G that vanishes on Γ and g(ej), j = 1, . . . , r, hence satisfies
the conclusion of the theorem.

Suppose now that k′ 6= 0. Multiplying (13.14) by k′ we obtain

k′pi ≡ {
r∑
j=1

hjgj} · k′ξ −
r∑
j=1

q̃ijk
′hj

≡ {
r∑
j=1

hjgj} · k′ξ +

r∑
j=1

hjgj · ks

≡ {
r∑
j=1

hjgj} · (k′ξ + ks) mod Z.

If k′ξ + ks 6= (0, . . . , 0), then repeating the above argument we obtain

k̃ · gj ∈ Z, j = 1, . . . , r
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with some bounded non-zero k̃ ∈ Zs, and we can conclude in the same way as in the
case k′ = 0.

If we have not arrived at the conclusion after running the above argument for each
i, then we have ξi ∈ 1

R′Z
s for each i = 1, . . . , r. Multiplying η by R′ we may assume

R′ = 1 (we also obtain pi ∈ Z, so that P (n) = η1(g(n)) = 0, but this information
cannot be used because we cannot exclude the possibility of η1 being trivial).

Consider the characters τι : G → R, g 7→ eιAψ(g) for ι = 1, . . . , s. These
characters vanish on Γ, and τι(g(ej)) = eιAψ(g(ej)) = eι · ξj ≡ 0 mod Z. If one of
these characters is non-trivial, then it satisfies the conclusion of the theorem.

It remains to consider the case when each τι is trivial. Then A = 0, so that η2

vanishes on the commutator subgroup [G,G]. It follows that the sequence

G′1 := G2, G′i := Gi ∩ ker η2, i ≥ 2 (13.15)

is a filtration with dimG′2 < dimG2.
Moreover, η2([G,G]) = 0 implies σi(h) = 0 in (13.11). The differentiation

argument now shows that the coefficients of Q of order > 1 are rational (with
bounded denominator), so, after multiplying η by a bounded number, we may assume
Q(n) = η2(gnlin(n)) = 0. In other words, gnlin takes values in G′2. It follows that
g is polynomial with respect to the filtration G′•, and we obtain the conclusion by
induction on dimG2.

61



14 Jointly intersective polynomials

We call a set of the form Λ =
∏r
i=1(ri + aiZ) ⊂ Zr, ai 6= 0, a lattice. Every coset of a

finite index subgroup of Zr is a lattice modulo a change of coordinates.

14.1 P -sequences in nilpotent groups

Let G be a group and P a ring of functions Z→ Z. A P -sequence in G is a sequence
of the form n 7→

∏l
i=1 g

pi(n)
i , where gi ∈ G and pi ∈ P . We call a ring P of functions

Z → Z gcd-normalized if for every p ∈ P and c ≥ 0 such that c|p(n) for all n also
the function n 7→ p(n)/c is in P . Note that if P is gcd-normalized, j ≥ 1, and p ∈ p,
then also the function n 7→

(
p(n)
j

)
is in P .

Lemma 14.1. Let G be a nilpotent group, P a gcd-normalized ring of functions, and
g a P -sequence in G with values in a subgroup H ≤ G. Then g is a P -sequence in H.

The conclusion means that g(n) can be written as
∏l
i=1 h

pi(n)
i with hi ∈ H and

pi ∈ P .

Proof. We induct on the nilpotency degree of G. If the nilpotency degree equals 0,
then g vanishes identically and the conclusion holds trivially.

Suppose that G has nilpotency degeree d and the lemma is known for groups
with nilpotency degree < d. By the hypothesis g(n) =

∏l
i=1 g

pi(n)
i . Replacing G by

the subgroup generated by the gi’s we may assume that G is finitely generated. We
will factorize g = hg′ with h being a P -sequence in H and g′ a P -sequence in G with
values in G2 := [G,G]. It will then follow that g′ takes values in G2 ∩H, so it is a
P -sequence in H by the inductive hypothesis.

The factorization proceeds in two steps. Let H̃ be the subgroup of G generated
by H and G2. We first factorize g = h̃g′ with h̃ being a P -sequence in H̃. To this end
note that G/G2 is a finitely generated abelian group, and by the structure theorem
for submodules of Zd we can find a set of generators r1, . . . , rd for G/G2 and integers
c1, . . . , cl such that

n1r1 + · · ·+ ndrd ∈ H̃/G2 ≤ G/G2 ⇐⇒ c1|n1, . . . , cl|nl, nl+1 = · · · = nd = 0.

We choose representatives for the congruence classes r1, . . . , rd in G. Then every
element γ ∈ G can be written as

∏d
i=1 r

ki
i · ρ with ρ ∈ G2. Note that the sequences

n 7→ γn and n 7→
∏d
i=1 r

kin
i are both polynomial and coincide modulo G2. Hence we

have

γn =

d∏
i=1

rkini · ρ(n),

where the sequence ρ(n) vanishes at 0 and is polynomial with respect to the filtration
G′• given by

G′0 = G′1 = G′2 = G2, G′i = Gi, i > 2.

By Lagrange interpolation we obtain

ρ(n) =
∏
j≥1

ρ
(nj)
j

with some ρj ∈ G2. It follows that

g(n) =

l∏
i=1

( d∏
j=1

r
ki,jpi(n)
j

∏
j≥1

ρ
(pi(n)j )
i,j

)
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with ρi,j ∈ G2. Note that all functions in the exponents are elements of P . Now we
collect the rj terms; this will produce commutator terms which are P -sequences in
G2 as we will show next. Indeed, let γ, δ ∈ G. Then the sequence

(n,m) 7→ [γn, δm]

is polynomial with respect to the filtration G′• and vanishes if n = 0 or m = 0. By
Lagrange interpolation it can be written in the form∏

j,j′≥1

ρ
(nj)(

m
j′)

j,j′ .

Substituting functions in P for n and m we see that the commutator is indeed a
P -sequence in G2.

This allows us to write

g(n) = h̃(n)g′(n), h̃(n) =
d∏
j=1

r
∑
i ki,jpi(n)

j ,

with g′ being a P -sequence in G2. By the hypothesis that g takes values in H and by
the choice of rj ’s we have

cj |
∑
i

ki,jpi(n), j = 1, . . . , l,
∑
i

ki,jpi(n) = 0, j > l

for all n ∈ Z. It follows that

h̃ =

l∏
j=1

h̃
p̃j(n)
j ,

where h̃j = r
cj
j ∈ H̃ and p̃j =

∑
i ki,jpi(n)/cj ∈ P . This completes the first step in

the factorization.
Now we factorize h̃ = hg′ with h being a P -sequence in H and g′ a P -sequence in

G2. This is similar to the first factorization step, but this time we split H̃ 3 gi = hiρi
with hi ∈ H and ρi ∈ G2.

14.2 Jointly intersective polynomials

A polynomial p : Zr → Z is called intersective if it has a zero modulo every integer.

Example. The polynomial (n2 − 13)(n2 − 17)(n2 − 13 · 17) is intersective. Note first
that it suffices to find zeros modulo powers of prime numbers. We have 17 ≡ 1
mod 8, from which it follows that 17 is a quadratic residue modulo every power of
2 (Gauss, DA, 103). Moreover, 13 is a quadratic residue modulo 17 and 17 is a
quadratic residue modulo 13. From multiplicativity of Legendre symbol we obtain
that at least one of 13, 17, 13 · 17 is a quadratic residue modulo p, where p is a prime
6= 2, 13, 17. We conclude using the fact that if p is an odd prime, (p, q) = 1, and q is
a quadratic residue modulo p, then q is a quadratic residue modulo every power of p
(Gauss, DA, 101).

In this example 13, 17 can be replaced by any primes that are ≡ 1 mod 4 and
which are quadratic residues modulo each other (by quadratic reciprocity it suffices
to check this only one way).

Remark. A criterion for intersectivity that applies to general polynomials is given in
[BB96].

Polynomials p1, . . . , pk : Zr → Z are called jointly intersective if they have a
common zero modulo every integer.
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Lemma 14.2. Let p1, . . . , pk : Zr → Z be jointly intersective polynomials and m ≥ 1
an integer. Then there exists a lattice Λ ⊂ Zr such that the restrictions of the pi’s to
Λ are jointly intersective and vanish modulo m.

Proof. The polynomials pi are periodic modulo m, that is, there exists a finite index
subgroup Λ0 ≤ Zr such that each pi is constant modulo m on each coseet of Λ0. Let
r ≥ 1 be an integer, then by the pigeonhole principle there exists a coset Λr of Λ0

such that the pi’s have a common zero modulo r on Λr. By the pigeonhole principle
there exists a coset Λ such that Λ = Λr! for arbitrarily large r. This is the required
lattice.

Lemma 14.3. Let p1, . . . , pk be jointly intersective functions and α1, . . . , αk ∈ R. If∑k
i=1 αipi(n) ≡ c mod Z for some constant c ∈ R and all n, then c ∈ Z.

Proof. Choose rationally independent numbers 1
R , β1, . . . , βl such that

αi = ni/R+
l∑

j=1

ni,jβj

for some integers ni, ni,j . By rational independence we then have

k∑
i=1

ni,jpi(n) = const,

and since the polynomial on the left-hand side is intersective, it must vanish identically.
Therefore

k∑
i=1

αipi(n) =
1

R

k∑
i=1

nipi(n).

Since the sum on the right-hand side is an intersective polynomial, it has a zero
modulo R, so its constant value modulo Z must be 0.

If G• is a prefiltration and d̄ = (di)i∈N ⊂ N is a superadditive sequence (i.e.
di+j ≥ di + dj for all i, j ∈ N; by convention d−1 = −∞) then Gd̄•, defined by

Gd̄i = Gj whenever dj−1 < i ≤ dj , (14.4)

is again a prefiltration. In particular, if p : Zr → Z is a polynomial and g ∈ G, then
the map n 7→ gp(n) is polynomial with respect to Gd̄•, where di = ideg p.

Proposition 14.5. Let p1, . . . , pk : Zr → Z be jointly intersective polynomials and
P the gcd-normalized ring generated by them. Let also G/Γ be a nilmanifold and g a
P -sequence in G. Then idΓ ∈ g(Zr)Γ ⊂ G/Γ.

Proof. By the above remark a P -sequence is necessarily polynomial with respect
to a suitable filtration. Since G/Γ is compact, GoΓ is a finite index subgroup of
G. It follows from Lemma 14.2 that, passing to a lattice in Zr, we may assume
that g is a P -sequence in GoΓ. The algorithm in Lemma 14.1 gives a factorization
into a P -sequence in Go and a P -sequence in Γ. Hence we may assume that g is a
P -sequence in Go.

If g is equidistributed in Go/Γ, then we are done. Otherwise, by the equidistribu-
tion criterion there exists a non-trivial character η on Go such that η ◦ g is constant.
By Lemma 14.3 this constant must be 0. Hence g takes values in the subgroup
ker η ≤ Go that has strictly smaller dimension. By Lemma 14.1 the sequence g is a
P -sequence in ker η. We conclude by induction on dimG.

See [BLL08] for the deduction of the Szemerédi theorem for jointly intersective
polynomials from Proposition 14.5.
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15 Orbit closure theorem

Definition 15.1. Let Λ ⊂ Zr be a lattice. A sequence (xn)n∈Λ in a regular measure
space (X,µ) is called well-distributed on X if for every f ∈ C(X) we have

lim
I⊂Λ

Avn∈I f(xn) =

∫
fdµ

and totally well-distributed on X if the above display holds for every sublattice Λ′ ⊂ Λ.

An arbitrary polynomial can be factorized into a “totally equidistributed” and a
“rational” part as follows.

Lemma 15.2 (Factorization). Let G/Γ be a nilmanifold. For every g ∈ P0(Zr, G•)
there exists a closed connected rational subgroup H ≤ G such that g can be written in
the form g = hγ, where γ ∈ P0(Zr,

√
Γ•), h ∈ P0(Zr, H•), and for every finite index

subgroup Γ̃ ≤ Γ the sequence gΓ̃ is totally well-distributed on H/Γ̃.

Proof. We induct on the dimension of G. If dimG = 0, then G ≤
√

Γ, and we can set
h ≡ id, γ = g. Suppose now that the conclusion is known for rational subgroups of
dimension < dimH.

Consider the splitting g = goγ into a connected and a rational part; by construction
we have go(0) = γ(0) = id. Suppose that go is not totally equidistributed on Go/Γ̃
for some finite index subgroup Γ̃ ≤ Γ. Then by the equidistribution criterion we have
η ◦ go ≡ 0 for some non-trivial character η on the group Go that vanishes on Γ̃ ∩Go.
Multiplying η by an integer we may assume that it vanishes on Γ ∩ Go. Hence go

takes values in the proper rational subgroup ker η ≤ Go, and we can conclude by the
induction hypothesis.

Corollary 15.3 (Point orbit closure). Let G/Γ be a nilmanifold and g ∈ P (Zr, G•).
Let H ≤ G and g(0)−1g = hγ be the factorization from Lemma 15.2 and Λ ≤ Zr be a
finite index subgroup modulo which γΓ is periodic. The for every coset Λ′ of Λ the
sequence (g(n)Γ)n∈Λ′ is totally well-distributed on the subnilmanifold g(0)Hγ(m)Γ,
where m ∈ Λ′ is arbitrary.

In order to obtain the precise statement of [Lei05, Theorem B] one could consider
g(0)Hg(0)−1 instead of H. Note that this subgroup is in general not Γ-rational.

Corollary 15.4 (Subnilmanifold orbit closure [Lei05, Corollary 1.9]). Let G/Γ be
a nilmanifold and X̃ = g0G̃γ0Γ a connected subnilmanifold, where G̃ ≤ G is a
connected rational subgroup, γ0 ∈

√
Γ, and g0 ∈ G. Let also g ∈ P (Zr, G•). Then

there exists a finite index subgroup Λ ≤ Zr such that for every coset Λ′ of Λ the
orbit closure Y := ∪n∈Λ′g(n)X̃ is also a connected subnilmanifold and the sequence
of subnilmanifolds (g(n)X̃)n∈Λ′ is totally well-distributed in Y in the sense that

lim
I⊂Λ′′⊂Λ′

Avn∈I g(n)∗µX̃ = µY

in the weak* topology on the space of probability measures for every sublattice Λ′′ ⊂ Λ′.

For simplicity assume g0 = γ0 = id (this is the case for the diagonal submanifold
of a power of a nilmanifold).

Proof. Let (g̃(m))m∈Zs be a polynomial sequence in G̃ that is well-distributed on X̃
(by the equidistribution criterion it suffices to ensure that it is dense modulo Γ[G̃, G̃]).

Consider the polynomial sequence (n,m) 7→ g(n)g̃(m). By Corollary 15.3 there
exista finite index subgroup Λ ≤ Zr+s such that the sequence (g(n)g(m)Γ)(n,m)∈Λ′ is
totally well-distributed on its orbit closure, which is a connected subnilmanifold, for
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every coset Λ′ of Λ. Passing to a subgroup of Λ we may assume Λ = Λ̃n ×Λm, where
Λn ≤ Zn, Λm ≤ Zm. Then for every subgroup Λn ≤ Λ̃n we have

µY = lim
I⊂Λn×Λm+(n0,m0)

Av(n,m)∈I(g(n)g̃(m))∗δΓ

= lim
In×Im⊂Λn+n0×Λm+m0

Avn∈In Avm∈Im g(n)∗g̃(m)∗δΓ

= lim
In⊂Λn+n0

lim
Im⊂Λm+m0

Avn∈In g(n)∗Avm∈Im g̃(m)∗δΓ

= lim
In⊂Λn+n0

Avn∈In g(n)∗ lim
Im⊂Λm+m0

Avm∈Im g̃(m)∗δΓ

= lim
In⊂Λn+n0

Avn∈In g(n)∗µX̃

as required.

Let P be a set of jointly intersective polynomials Zr → Z and g a P -sequence
in G. Then for every g0 ∈ G also g0gg

−1
0 is a P -sequence. It follows from the orbit

closure proposition for P -sequences that g(Zr)g0Γ 3 g0Γ.
Let Λ be as in the above corollary. There exists some coset Λ′ of Λ on which P

is still jointly intersective. Therefore also ∪n∈Λ′g(n)X̃ ⊇ X̃. We apply this to the
diagonal in a power of a nilmanifold, see [BLL08] for details.
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