
Analysis 1, Solutions to problem set 14

Problem 1 (Integration)

Symmetry considerations show that the area A in question equals twice the area of the region

E+ := {(x, y) ∈ E : y ≥ 0}.

In the region E+, the defining equation can be solved for y, yielding

E+ =
{

(x, y) ∈ R2 : −a ≤ x ≤ a and 0 ≤ y ≤ b
√

1− x2

a2

}
.

It follows that

A = 2

∫ a

−a
b

√
1− x2

a2
dx.

We simplify this integral via the substitution x = at:

A = 2ab

∫ 1

−1

√
1− t2dt.

A further substitution t = sinu shows that∫ 1

−1

√
1− t2dt =

∫ π
2

−π2
cos2 u du =

∫ π
2

−π2

(1 + cos 2u

2

)
du =

π

2
,

and so
A = πab.

Remark. This formula is rather intuitive: start with a circle of radius b (and area πb2) and stretch it by a factor
a/b to obtain the desired ellipse. This should affect the area by the same factor; indeed, πb2(a/b) = πab.

Problem 2 (Partial fraction decomposition)

Start by noticing that the equation x4 + 1 = 0 has the following four distinct (complex) solutions:

x1 := e
iπ
4 =

1 + i√
2
, x2 := e

3iπ
4 =

−1 + i√
2

, x3 := e
5iπ
4 =

−1− i√
2

, x4 := e
7iπ
4 =

1− i√
2
.

Further note that the polynomials

(x− x1)(x− x4) = x2 −
√

2x+ 1 and (x− x2)(x− x3) = x2 +
√

2x+ 1

have real coefficients. As a consequence, we can easily calculate the partial fraction decomposition

1

x4 + 1
=

√
2x− 2

4(−x2 +
√

2x− 1)
+

√
2x+ 2

4(x2 +
√

2x+ 1)
.

We start by analyzing the first integrand, (a multiple of) which can be rewritten as

√
2x− 2

−x2 +
√

2x− 1
= −

√
2− 2x√

2(−x2 +
√

2x− 1)
− 1

−x2 +
√

2x− 1
(1)

For the first summand on the right-hand side of (1), substitute u = −x2 +
√

2x− 1. For the second summand
on the right-hand side of (1), complete the square and then substitute v = x − 1√

2
. The resulting expression

reads as follows: ∫ √
2x− 2

−x2 +
√

2x− 1
dx = − log(1−

√
2x+ x2) + 2 arctan(1−

√
2x)√

2
+ C. (2)

Let us now focus on the second integrand, (a multiple of) which can be rewritten as

√
2x+ 2

x2 +
√

2x+ 1
=

2x+
√

2√
2(x2 +

√
2x+ 1)

+
1

x2 +
√

2x+ 1
. (3)



For the first summand on the right-hand side of (3), use the substitution u = x2 +
√

2x + 1. For the second
summand on the right-hand side of (3), complete the square and then change variables v = x + 1√

2
. The

resulting expression is∫ √
2x+ 2

x2 +
√

2x+ 1
dx =

log(1 +
√

2x+ x2) + 2 arctan(1 +
√

2x)√
2

+ C. (4)

Combining (2) and (4) one finally gets that∫
1

x4 + 1
dx =

−2 arctan(1−
√

2x) + 2 arctan(1 +
√

2x)− log(1−
√

2x+ x2) + log(1 +
√

2x+ x2)

4
√

2
+ C.

Problem 3 (Stirling’s formula, first part)

We follow the suggestion, and start by recalling the Wallis’ integrals: for n ∈ N, they are defined as

Wn :=

∫ π
2

0

sinn(x)dx.

In Problem 3(b) of ÜB 11 we computed the value of the subsequence {W2k} exactly:

W2k =
1

2
· 3

4
· 5

6
· . . . · 2k − 3

2k − 2
· 2k − 1

2k
· π

2
=

(2k)!

22k(k!)2
π

2
.

Integrating by parts twice as before, one shows that the recurrence relation

nWn = (n− 1)Wn−2 (5)

holds in general for every natural number n ≥ 2. This implies that the sequence

ωn := (n+ 1)WnWn+1

does not depend on n. In particular,

ωn = ω0 = W0W1 =
π

2
.

We now claim that Wn+1 ∼Wn, in the sense that

lim
n→∞

Wn+1

Wn
= 1. (6)

To verify (6), start by noting that the sequence {Wn} is decreasing in n since

Wn −Wn+1 =

∫ π
2

0

sinn(x)(1− sin(x))dx ≥ 0.

(Recall that the function x 7→ sinx is nonnegative on the interval x ∈ [0, π/2].) In other words,

Wn+2 ≤Wn+1 ≤Wn, for every n ∈ N.

Since Wn > 0, this is equivalent to

Wn+2

Wn
≤ Wn+1

Wn
≤ 1,

which in light of identity (5) can be rewritten as

n+ 1

n+ 2
≤ Wn+1

Wn
≤ 1.

The claimed asymptotic (6) now follows by squeezing. As a consequence,

lim
n→∞

nW 2
n = lim

n→∞

( n

n+ 1
(n+1)WnWn+1

Wn

Wn+1

)
=
(

lim
n→∞

n

n+ 1

)(
lim
n→∞

(n+ 1)WnWn+1︸ ︷︷ ︸
=ωn=

π
2

)( 1

limn→∞
Wn+1

Wn

)
=
π

2
.

In particular, for n = 2k we see that
(2k)!

22k(k!)2
π

2
= W2k ∼

√
π

4k
. (7)



Let us now suppose that

k! ∼ L
√
k
kk

ek

for some 0 < L <∞, as given by the assumptions of the problem. Plugging this into the left-hand side of (7),
one gets that

L
√

2k (2k)2k

e2k

22k(L
√
k k

k

ek
)2
π

2
=

1

L

π√
2k
∼
√

π

4k
,

whence L =
√

2π, as desired.

Problem 4 (Gaussian Integral)

(a) (a1) Letting t/n = s ∈ (0, 1], the inequality in question is seen to be equivalent to

(1− s)n ≤ e−sn

which after extraction of n-th roots (this is possible since 1− s ∈ [0, 1)) amounts to

1− s ≤ e−s. (8)

This last inequality holds for every s ∈ R, as was already shown in Problem 2(a) of ÜB 9 via
Bernoulli’s inequality. Further proofs include Taylor expansion with remainder, and convexity via
Jensen’s inequality.

(a2) Reasoning as in part (a1), the desired inequality is seen to be equivalent to

1 + s ≤ es, ∀s ≥ 0.

That this inequality holds for every s ∈ R is equivalent to inequality (8) holding in the same range.

(b) Letting t = x2, we have from part (a1) that, for every natural number n ≥ 1 and real number 0 ≤ x ≤
√
n,(

1− x2

n

)n
≤ e−x

2

.

Integrating from 0 to
√
n, ∫ √n

0

(
1− x2

n

)n
dx ≤

∫ √n
0

e−x
2

dx ≤
∫ ∞
0

e−x
2

dx.

On the other hand, part (a2) implies the inequality∫ ∞
0

e−x
2

dx ≤
∫ ∞
0

(
1 +

x2

n

)−n
dx.

Combining these two inequalities,

∫ √n
0

(
1− x2

n

)n
dx ≤

∫ ∞
0

e−x
2

dx ≤
∫ ∞
0

(
1 +

x2

n

)−n
dx. (9)

The first and the last integrals in this chain of inequalities can be expressed in terms of the Wallis’
integrals {Wn} from Problem 3. Indeed, the first one equals

√
nW2n+1 as can be seen via the substitution

x =
√
n cos t; the last one equals

√
nW2n−2, and the substitution x =

√
n cot t shows. We have already

shown in the course Problem 3 that

lim
n→∞

√
nWn =

√
π

2
.

By the squeeze theorem, it then follows from (9) that

∫ ∞
0

e−x
2

dx = lim
n→∞

√
nW2n+1 =

(
lim
n→∞

√
n√

2n+ 1

)(
lim
n→∞

√
2n+ 1W2n+1

)
=

1√
2

√
π

2
=

√
π

2
.



Problem 5 (Leibniz series)

Start by observing that ∫ x

π

cos kt dt =
sin kx

k
.

On the other hand, from Problem 1 of ÜB 13 we already know that, for 0 < t < 2π,

n∑
k=1

cos kt =
sin[(n+ 1

2 )t]

2 sin( t2 )
− 1

2
.

It follows that, for every n ∈ N \ {0} and x ∈ (0, 2π),

n∑
k=1

sin kx

k
=

n∑
k=1

∫ x

π

cos kt dt =

∫ x

π

( n∑
k=1

cos kt
)
dt =

∫ x

π

( sin[(n+ 1
2 )t]

2 sin( t2 )
− 1

2

)
dt.

Now, the integral ∫ x

π

1

2 sin( t2 )
sin
[(
n+

1

2

)
t
]
dt→ 0 as n→∞

in view of the Riemann-Lebesgue lemma proved in class (one just needs to check that the function t 7→
(2 sin( t2 ))−1 is continuously differentiable on the interval (0, 2π), the details of which are straightforward and
therefore omitted). It follows that

∞∑
k=1

sin kx

k
= −1

2

∫ x

π

dt =
π − x

2
, (10)

as desired. Leibniz formula amounts to the special case of (10) for x = π
2 .

Problem 6 (Leibniz series, revisited)

From the lectures, we know that

arctan′(t) =
1

1 + t2
=

∞∑
n=0

(−1)nt2n.

The geometric series

1

1 + t2
= 1− t2 + t4 − . . .+ (−1)nt2n + . . .

converges uniformly in every closed interval contained in (−1, 1). (Caveat: however, it does not converge
uniformly on the closed interval [−1, 1] since it diverges at both of its endpoints.) Therefore we can integrate it
term by term and get that, for |r| < 1,

arctan r =

∫ r

0

dt

1 + t2
= r − r3

3
+
r5

5
− . . .+ (−1)n

r2n+1

2n+ 1
+ . . . (11)

This is the Taylor expansion of the function r 7→ arctan r on the interval (−1, 1). What about the endpoints?
Well, the series

∞∑
n=0

(−1)n
r2n+1

2n+ 1

converges at r = −1 and at r = 1 by Leibniz criterion, which makes us think that the Taylor expansion (11)
should hold in the whole interval [−1, 1]. That this is indeed the case in the content of one of Abel’s theorem,
whose proof is somewhat lengthy and technical (but very interesting and worth the extra study!). A more
elementary justification is as follows. Start with the identity

1

1 + t2
= 1− t2 + t4 − . . .+ (−1)n

t2n

1 + t2
.

Integrate it from 0 to r (with |r| ≤ 1) to get

arctan r = r − r3

3
+
r5

5
− . . .+ (−1)n−1

r2n−1

2n− 1
+Rn(r),

where

Rn(r) := (−1)n
∫ r

0

t2n

1 + t2
dt.



For |r| ≤ 1, we get that

|Rn(r)| ≤
∫ |r|
0

t2ndt =
|r|2n+1

2n+ 1
≤ 1

2n+ 1
.

It follows that limn→∞Rn(r) = 0 if |r| ≤ 1, and so

arctan r = r − r3

3
+
r5

5
− . . .+ (−1)n

r2n+1

2n+ 1
+ . . .

for every r ∈ [−1, 1]. In particular, for r = 1, we again deduce Leibniz formula.


