Analysis 1, Solutions to problem set 14

Problem 1 (Integration)
Symmetry considerations show that the area A in question equals twice the area of the region
By = {(z,y) € B1y >0},

In the region E, the defining equation can be solved for y, yielding
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We simplify this integral via the substitution x = at:

1
A= 2ab/ v 1 —t2dt.
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It follows that

A further substitution ¢ = sin u shows that
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and so
A = mab.

Remark. This formula is rather intuitive: start with a circle of radius b (and area wb?) and stretch it by a factor
a/b to obtain the desired ellipse. This should affect the area by the same factor; indeed, mb?(a/b) = mab.

Problem 2 (Partial fraction decomposition)

Start by noticing that the equation x% + 1 = 0 has the following four distinct (complex) solutions:

1+1 3in -1+ bix —1—1 Tix 1—1
=—— Iy:=¢e 4 = , T3:=e 41 = , Tyi=ed = .
NG 2 NG 3 4 NG

V2
Further note that the polynomials
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(x—z) (2 —24) =2% — V22 + 1 and (z — z9)(z — 23) = 22 + V22 + 1
have real coefficients. As a consequence, we can easily calculate the partial fraction decomposition
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We start by analyzing the first integrand, (a multiple of) which can be rewritten as
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For the first summand on the right-hand side of , substitute v = —x2 + v/2z — 1. For the second summand

on the right-hand side of , complete the square and then substitute v = z — % The resulting expression

reads as follows:
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Let us now focus on the second integrand, (a multiple of) which can be rewritten as
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For the first summand on the right-hand side of , use the substitution u = 22 4+ /22 + 1. For the second
summand on the right-hand side of , complete the square and then change variables v = x + % The

resulting expression is

V2 + 2 dp — log(1 4 v/2z + 22) + 2arctan(1 + v/22)
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Combining and one finally gets that
/ 1 dr — —2arctan(1 — v/2x) + 2arctan(1 + v/2x) — log(1 — v2z + 22) + log(1 + 2z + 2?) LC
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Problem 3 (Stirling’s formula, first part)

We follow the suggestion, and start by recalling the Wallis’ integrals: for n € N, they are defined as

z
W, = / sin™(x)dx.
0
In Problem 3(b) of UB 11 we computed the value of the subsequence {Wy;} exactly:

2k—-3 2k—-1 7 (2K)! =

Wap = : Z
2k 2k —2 2k 2 22k(kDZ2

3.0
476

DN | =

Integrating by parts twice as before, one shows that the recurrence relation
nW, = (n—1)W,_, (5)

holds in general for every natural number n > 2. This implies that the sequence

Wp 1= (’I”L + 1)W7LW7L+1
does not depend on n. In particular,
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We now claim that W,, 11 ~ W,,, in the sense that
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To verify @, start by noting that the sequence {W,,} is decreasing in n since

i

Wy — Wit = /2 sin” (z)(1 — sin(z))dx > 0.
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(Recall that the function z — sin z is nonnegative on the interval = € [0,7/2].) In other words,

Wito < Wyi1 < W, for every n € N.

Since W,, > 0, this is equivalent to
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which in light of identity can be rewritten as
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The claimed asymptotic @ now follows by squeezing. As a consequence,
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Let us now suppose that
kk
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for some 0 < L < oo, as given by the assumptions of the problem. Plugging this into the left-hand side of ,
one gets that
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whence L = v/2m, as desired.

Problem 4 (Gaussian Integral)
(a) (al) Letting t/n = s € (0, 1], the inequality in question is seen to be equivalent to
(I-s)"<e™m
which after extraction of n-th roots (this is possible since 1 — s € [0, 1)) amounts to
1—s<e”. (8)

This last inequality holds for every s € R, as was already shown in Problem 2(a) of UB 9 via
Bernoulli’s inequality. Further proofs include Taylor expansion with remainder, and convexity via
Jensen’s inequality.

(a2) Reasoning as in part (al), the desired inequality is seen to be equivalent to
1+s<e®, Vs> 0.
That this inequality holds for every s € R is equivalent to inequality holding in the same range.

(b) Letting ¢ = 22, we have from part (al) that, for every natural number n > 1 and real number 0 < x < \/n,
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(1 — x—) < e_c”z.
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Integrating from 0 to /n,
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On the other hand, part (a2) implies the inequality

/ e da < / (1 + 7) dzx.
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Combining these two inequalities,
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The first and the last integrals in this chain of inequalities can be expressed in terms of the Wallis’
integrals {W,,} from Problem 3. Indeed, the first one equals v/nWa, 1 as can be seen via the substitution
x = /ncost; the last one equals \/nWa, o, and the substitution z = y/ncott shows. We have already
shown in the course Problem 3 that
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By the squeeze theorem, it then follows from @D that
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Problem 5 (Leibniz series)

Start by observing that

/ coskt dt = smkkx.

On the other hand, from Problem 1 of UB 13 we already know that, for 0 < ¢ < 2,
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It follows that, for every n € N\ {0} and z € (0,27),
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Now, the integral
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in view of the Riemann-Lebesgue lemma proved in class (one just needs to check that the function ¢ +—
(2sin(%))~! is continuously differentiable on the interval (0,27), the details of which are straightforward and

therefore omitted). It follows that
>\ sin ka 1 [ T
> Y /ﬂ dt = ——, (10)

k=1

as desired. Leibniz formula amounts to the special case of for x = 5.

Problem 6 (Leibniz series, revisited)

From the lectures, we know that
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converges uniformly in every closed interval contained in (—1,1). (Caveat: however, it does not converge
uniformly on the closed interval [—1, 1] since it diverges at both of its endpoints.) Therefore we can integrate it
term by term and get that, for |r| < 1,
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This is the Taylor expansion of the function r — arctanr on the interval (—1,1). What about the endpoints?
Well, the series
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converges at r = —1 and at r = 1 by Leibniz criterion, which makes us think that the Taylor expansion
should hold in the whole interval [—1,1]. That this is indeed the case in the content of one of Abel’s theorem,
whose proof is somewhat lengthy and technical (but very interesting and worth the extra study!). A more
elementary justification is as follows. Start with the identity
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Integrate it from 0 to r (with |r| < 1) to get
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where
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For |r| <1, we get that
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Tt follows that lim,, o R,(r) =0 if |#| <1, and so
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for every r € [—1,1]. In particular, for r = 1, we again deduce Leibniz formula.
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