
Analysis 1, Solutions to problem set 1

Problem 1 (Systems of linear equations)

(a) Assume that x and y satisfy the system of equations{
7x + 2y = 6
−2x− 6y = 7

We subtract 7x on both sides of the first equation to obtain

2y = 6− 7x.

We then divide by 2 on both sides of the equation to obtain

y = 3− 7

2
x.

Now we apply the substitution rule, inserting this expression for y into the second equation of the system.
We obtain

−2x− 6
(

3− 7

2
x
)

= 7.

Simplifying the left handside yields
19x− 18 = 7.

Adding 18 on both sides and dividing by 19 gives x = 25
19 . Inserting this into the above equation for y

gives

y = 3− 7

2

25

19
= −61

38
.

We conclude that if x and y satisfy the above system, then x and y are the values above. Conversely, one
observes by inserting these values into each of the equations of the system that they solve the system.

(b) We apply the substitution rule and insert the expression for y given by the third equation into the first
and the second equations, thus obtaining {

4x + z = 3x
x = −2 + 6x + z

Subtracting 3x + z from both sides of the first equation yields

x = −z, (1)

which is equivalent to z = −x by multiplication of both sides by −1 and the symmetry of =. Again by
the substitution rule, we insert (1) into the second equation of the original system thus obtaining

x = −2 + 6x− x,

which can be simplified to −4x = −2 by adding −5x to both sides of the equation. Dividing both sides
of the latter equation by −4 one gets that x = 1/2. The third equation of the original system then tells
us that y = 3x = 3/2. Finally, we know from (1) that z = −x = −1/2. We conclude that if x, y and z
satisfy the system above, then

(x, y, z) =
(1

2
,

3

2
,−1

2

)
,

and one can likewise check by inserting these values into each of the equations of the system that they
solve it.



Problem 2 (Discovering irrationality)

(a) Aiming at a contradiction, let us assume that there exist an integer p and an odd integer q such that(p
q

)2
= 2. (2)

Multiplying by q2 on both sides of the equation yields

p2 = 2q2.

From the representation p2 = 2q2 we conclude that the number p2 is even.

We claim that p is even as well. We prove this claim also by contradiction. Assume p is odd, that is there
exists an integer n such that

p = 2n + 1.

Then we obtain
p2 = (2n + 1)2 = 4n2 + 4n + 1 = 2(2n2 + 2n) + 1.

The last representation shows that p2 is odd. This is in contradiction to p2 being even. We thus have
proved the claim by contradiction and hence p is even.

Hence p is of the form 2m for some integer m. We obtain

(2m)2 = 2q2.

Simplifying and dividing by 2 on either side gives

2m2 = q2.

Similarly as above this first implies that q2 is even and then that q is even. This is a contradiction. Hence(p
q

)2
6= 2,

as we wanted to show.

(b) We split the analysis into two cases:

Case 1. q is odd: this was the content of part (a).

Case 2. p is odd: we again proceed by contradiction. Assuming p is odd and (p/q)2 = 2, we conclude as
before that p2 = 2q2. But this means that p2 is even, which implies that p is even as proved in part
(a). This is in contradiction to the hypothesis (under which we are working) of p being odd.

(c) We split the analysis into three cases:

Case 1. q is odd: this was the content of part (a).

Case 2. q is even and p is odd: this was the content of part (b).

Case 3. q is even and p is even: this means that there exist positive integers p′, q′ such that p = 2p′ and
q = 2q′. Note in particular that p′ < p. By substitution and division by 2, it then follows that(p

q

)2
=
(2p′

2q′

)2
=
(p′
q′

)2
6= 2

by hypothesis. This concludes the proof.



(d) Here is a visual proof of Pythagoras theorem:

Problem 3 (Inequalities)

(a) We start by noticing that −|x| ≤ x ≤ |x|. This can be shown by noting that |x| ≥ 0, and then splitting
into cases according to whether x ≥ 0, in which case x = |x|, or x < 0, in which case x = −|x|. Similarly,
−|y| ≤ y ≤ |y|. Adding the two statements together, we have that

−(|x|+ |y|) ≤ x + y ≤ |x|+ |y|.

The desired conclusion then follows from the following observation: for any real number z and nonnegative
number a, one has that:

If− a ≤ z ≤ a, then |z| ≤ a. (3)

We prove this by considering again two cases. Start by observing that −a ≤ z ≤ a implies (H1): z ≥ −a
and (H2): z ≤ a.

Case 1. If z ≥ 0, then |z| = z, and then |z| ≤ a follows from the hypothesis (H2);

Case 2. If z < 0, then |z| = −z and then |z| ≤ a is equivalent to −z ≤ a, which in turn holds if and only if
z ≥ −a. This is precisely the content of the hypothesis (H1).

This establishes claim (3) and finishes the proof of the triangle inequality.

Alternative proof. Start by noticing that |x| =
√
x2 for every real number x (this can again be proved

by considering the two cases x ≥ 0 and x < 0 separately). Knowing this, it suffices to show that
|x + y|2 ≤ (|x|+ |y|)2, for afterwards one could take square roots. Let us compute:

|x + y|2 = (x + y)(x + y) = x2 + 2xy + y2 = |x|2 + 2xy + |y|2 ≤ |x|2 + 2|x||y|+ |y|2 = (|x|+ |y|)2.

This proof has the advantage that it sheds immediate light into the cases of equality. More precisely,
|x + y| = |x| + |y| if and only if xy = |x||y| = |xy|. By definition of absolute value, this happens if and
only if xy ≥ 0 i.e. x and y have the same sign.

(b) Without loss of generality, we may assume that |x| ≥ |y| (for if |y| ≥ |x|, then we could just swap the role
of x and y in the inequality). So it suffices to show that |x| − |y| ≤ |x − y|. Write x = (x − y) + y and
observe that |x| = |(x− y) + y|. But |(x− y) + y| ≤ |x− y|+ |y| by the triangle inequality from part (a),
and so we have that |x| ≤ |x− y|+ |y|. Subtracting |y| from both sides of this inequality, we are done.

(c) The first goal is to show that x + 1
x ≥ 2 for every positive real number x > 0. Note that

x +
1

x
≥ 2⇔ x2 + 1

x
≥ 2⇔ x2 + 1 ≥ 2x⇔ x2 − 2x + 1 ≥ 0⇔ (x− 1)2 ≥ 0,

where the last inequality is a trivial consequence of the fact, provided as a hint, that the square of every
real number is nonnegative. This proof also makes transaparent the analysis of the cases of equality.
Namely,

x +
1

x
= 2⇔ (x− 1)2 = 0⇔ x = 1.

(d) We have to show five different strict inequalities, all valid for arbitrary positive real numbers x, y satisfying
x < y.



(i) x < 2
1
x+ 1

y

:

x < y ⇔ x + y < 2y ⇔ x(x + y) < 2xy ⇔ x <
2xy

x + y
⇔ x <

2
1
x + 1

y

.

(ii) 2
1
x+ 1

y

<
√
xy :

0 < (x−y)2 = x2−2xy+y2 ⇔ 4xy < x2+2xy+y2 = (x+y)2 ⇔ 4xy

(x + y)2
< 1⇔

( 2xy

x + y

)2
< xy ⇔ 2

1
x + 1

y

<
√
xy.

(iii)
√
xy < x+y

2 :

0 < (x−y)2 = x2−2xy+y2 ⇔ 4xy < x2+2xy+y2 ⇔ xy <
x2 + 2xy + y2

4
⇔ xy <

(x + y

2

)2
⇔ √xy <

x + y

2
.

(iv) x+y
2 <

√
x2+y2

2 :

0 < (x−y)2 = x2−2xy+y2 ⇔ x2+2xy+y2 < 2x2+2y2 ⇔
(x + y

2

)2
<

x2 + y2

2
⇔ x + y

2
<

√
x2 + y2

2
.

(v)
√

x2+y2

2 < y :

x < y ⇔ x2 < y2 ⇔ x2 + y2 < 2y2 ⇔ x2 + y2

2
< y2 ⇔

√
x2 + y2

2
< y.

Problem 4 (Logic)

(a) Let us set A = Akro, D = Dapi, F = Fipi, G = Gluka, K = Knull, and further set i = ixen, l = lüllen, p =
prameln, u = urzen, w = watzeln. We write “S1 ⇔ S2” if the statements S1 and S2 are equivalent. We use
that for any statements X,Y we have X ⇒ Y ⇔ ¬X ∨Y and de Morgan’s law ¬(X ∧Y )⇔ (¬X)∨ (¬Y ).
We can translate the five first sentences from the problem as follows:

(S1) : K 6= p→ (F = u ∨G = u)⇔ ¬(K 6= p) ∨ (F = u ∨G = u)

⇔ (K = p) ∨ (F = u) ∨ (G = u)

(S2) : K 6= i→ (D 6= l→ G = p)⇔ (K = i) ∨ (D 6= l→ G = p)

⇔ (K = i) ∨ (D = l) ∨ (G = p)

(S3) : A 6= u→ (F = p ∨ F = w)⇔ (A = u) ∨ (F = p) ∨ (F = w)

(S4) : (K 6= i ∧D 6= i)→ G = u⇔ ¬(K 6= i ∧D 6= i) ∨G = u

⇔ (K = i) ∨ (D = i) ∨ (G = u)

(S5) : D 6= w → (K 6= u→ F = l)⇔ D = w ∨ (K 6= u→ F = l)

⇔ (D = w) ∨ (K = u) ∨ (F = l)

Moreover we are given the information that each person did something, and that no two people did the
same thing. This translates into the “action” statements



(S6) A = i ∨A = l ∨A = p ∨A = u ∨A = w,

(S7) D = i ∨D = l ∨D = p ∨D = u ∨D = w,

(S8) F = i ∨ F = l ∨ F = p ∨ F = u ∨ F = w,

(S9) G = i ∨G = l ∨G = p ∨G = u ∨G = w,

(S10) K = i ∨K = l ∨K = p ∨K = u ∨K = w,

together with the “distinguishing” statements

(S11) (A 6= D)∧(A 6= F )∧(A 6= G)∧(A 6= K)∧(D 6= F )∧(D 6= G)∧(D 6= K)∧(F 6= G)∧(F 6= K)∧(G 6= K),

(S12) (i 6= l) ∧ (i 6= p) ∧ (i 6= u) ∧ (i 6= w) ∧ (l 6= p) ∧ (l 6= u) ∧ (l 6= w) ∧ (p 6= u) ∧ (p 6= w) ∧ (u 6= w).

Remark. (Thanks to David Schissler for pointing this out.) In the course of this solution we interpreted
“entweder...oder...” to mean “or” and not necessarily “exclusive or”. The latter interpretation could be
easily implemented, through which (S1) would become

(S1′) [(K = p) ∨ (F = u) ∨ (G = u)] ∧ [(F 6= u) ∨ (G 6= u)],

and so forth. It is straightforward to check that, thanks to the distinguishing statements (S11) and (S12),
this modification would not affect the final solution, and as such we do not pursue this matter further.

(b) A = l, D = w, F = p, G = u, K = i.

(c) We shall first prove A 6= u. We do so by contradiction, thus assuming that A = u. From (S11) we know
that A 6= F and A 6= G, and so substituting u for A we have that F 6= u and G 6= u. From (S1) we can
make a case distinction into the cases (1) K = p, (2) F = u, or (3) G = u. The two latter cases lead to
contradiction, and so K = p holds. Since K 6= G by (S11) and symmetry of 6=, this implies G 6= p. From
(S2) we may then make a case distinction into the cases (1) K = i, (2) D = l, or (3) G = p. The third
case leads to a contradiction as before. The first case also leads to a contradiction since i 6= p from (S12).
It follows that the second case, D = l, must hold. Since K 6= i and D 6= i, a similar case distinction for
(S4) implies that G = u. This however contradicts the assumption A = u since by (S11) A 6= G. It follows
that A 6= u.

From (S3), again by case distinction, it follows that F = p or F = w.

Next we prove F = p. We do so again by contradiction: assume F 6= p. Similarly as before, a case
distinction on (S3) yields a contradiction in the first and third cases and we conclude F = w. Since
D 6= F by (S11), we conclude that D 6= w. From (S5) and (S12) it follows that K = u. But then (S1)
implies that F = u or G = u, a contradiction to F 6= K and G 6= K from (S11). Thus F = p.

It follows that K 6= p and F 6= u, and so G = u from (S1). In particular, K 6= u. Since F = p 6= l, it
follows from (S5) that D = w. Similarly, since D = w 6= l and G = u 6= p, it follows from (S2) than K = i.
So far we have that F = p, G = u, D = w and K = i. The last remaining option, a consequence of (S11)
and (S6), is to set A = l. It is straightforward to check that the solution thus found,

F = p, G = u, D = w, K = i, A = l,

is indeed compatible with all eleven assumptions (S1)− (S11).

Remark. Another way to go about this is as follows. From (S1), . . . , (S5), we can conclude S := (S1) ∧
(S2) ∧ (S3) ∧ (S4) ∧ (S5). From part (a), this is equivalent to

S = [(K = p) ∨ (F = u) ∨ (G = u)]
∧

[(K = i) ∨ (D = l) ∨ (G = p)]
∧

[(A = u) ∨ (F = p) ∨ (F = w)]
∧

∧
[(K = i) ∨ (D = i) ∨ (G = u)]

∧
[(D = w) ∨ (K = u) ∨ (F = l)].

Using De Morgan’s laws repeatedly, we see that S is equivalent to a ∨-combination of 35 = 243 statements
of the form (∗1 = ?1) ∧ (∗2 = ?2) ∧ (∗3 = ?3) ∧ (∗4 = ?4) ∧ (∗5 = ?5) where ∗j ∈ {A,D,F,G,K} and
?k ∈ {i, l, p, u, w} for j, k ∈ {1, 2, 3, 4, 5}. A case-by-case analysis reveals the only two statements which
are compatible with the remaining (S6), . . . , (S11) are

(G = u) ∧ (K = i) ∧ (F = p) ∧ (G = u) ∧ (D = w),

(G = u) ∧ (K = i) ∧ (F = p) ∧ (K = i) ∧ (D = w),

both of which lead to the solution (F = p, G = u, D = w, K = i, A = l) found before.


