Mathematisches Institut

Prof. Dr. Herbert Koch Angkana Rüland Wintersemester 13/14

Analysis I

Übungsblatt Nr.4

Abgabe vor der Vorlesung am 11.11.2013

Aufgabe 13 (Wurzeln)

Beweisen Sie die folgenden Identitäten und Ungleichungen:

- a) Sei $a \in \mathbb{R}$, a > 0. Für $n, m \in \mathbb{Z}$, $n \neq 0$, sei $a^{\frac{m}{n}}$ als $(a^{\frac{1}{n}})^m$ definiert (hierbei ist $a^{\frac{1}{n}}$ die eindeutige positive Lösung der Gleichung $x^n = a$). Zeigen Sie, dass dann für zwei rationale Zahlen $p, q \in \mathbb{Q}$ gilt: $(a^p)^q = a^{pq}$.
- b) Sei $a \in \mathbb{R}$ und a > 1. Dann gilt:

$$a > \sqrt{a} > a^{\frac{1}{3}} > a^{\frac{1}{4}} > a^{\frac{1}{5}} > \dots > 1.$$

c) Seien $a, b, c, d \in \mathbb{R}$ und a, b, c, d > 0. Dann gilt:

$$\frac{a}{\sqrt{b}} + \frac{b}{\sqrt{a}} \ge \sqrt{a} + \sqrt{b} \text{ und } \sqrt{(a+b)(c+d)} \ge \sqrt{ac} + \sqrt{bd}.$$

Aufgabe 14 (Supremum, Infimum, Maximum, Minimum)

In dieser Aufgabe geht es noch einmal um den Umgang mit dem Supremum, Infimum, Maximum und Minimum.

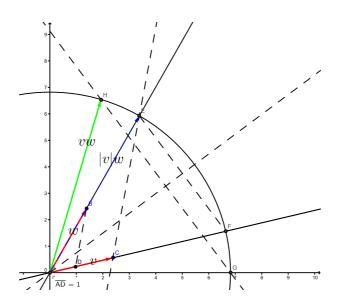
- a) Bestimmen Sie das Supremum und Infimum der Menge $M = \{3^{-m} + \sqrt{n}^{-1} | m, n \in \mathbb{N}^*\}$. Handelt es sich dabei auch um Maxima und Minima?
- b) Seien $A, B \subset \mathbb{R}$ beschränkte Mengen mit $A \cap B \neq \{\}$. Zeigen Sie, dass dann $\sup(A \cup B) = \max\{\sup(A), \sup(B)\}$ und $\sup\{A \cap B\} \leq \min\{\sup(A), \sup(B)\}$.

Zeigen Sie anhand eines Beispiels, dass es Mengen A,B gibt, die die obigen Bedingungen erfüllen, sodass $\sup(A \cap B) < \min\{\sup(A), \sup(B)\}.$

Beweisen Sie Ihre Behauptungen!

Aufgabe 15 (Konstruktion mit Zirkel und Lineal)

In der folgenden Aufgabe geht darum die Multiplikation zweier komplexer Zahlen geometrisch durchzuführen.



- ullet Erläutern Sie anhand der aufgeführten Skizze, wie man mit Zirkel und Lineal (insbesondere ohne Geodreieck) das Produkt zweier komplexer Zahlen $v,w\in\mathbb{C}$ zeichnerisch bestimmen kann. Benutzen Sie dazu elementargeometrische Argumente. Sie dürfen für Ihre Begründungen Schulwissen voraussetzen.
- ullet Beschreiben Sie alle (komplexwertigen) Lösungen zu $x^3=-1$ geometrisch (z.B. durch Angabe von ihrem Betrag und den Winkeln zu den Achsen). Konstruieren Sie mit Zirkel und Lineal diese Lösungen. Sie dürfen dabei voraussetzen, dass x=-1 eine Lösung ist.

Hinweis: Zur Bearbeitung dieser Aufgabe benötigen Sie Inhalte der Vorlesung vom kommenden Donnerstag.

Aufgabe 16 (Cantormenge)

Die Cantormenge wird rekursiv definiert. Sei $A_0:=\bigcup_{k\in\mathbb{Z}}[2k,2k+1]$. Sei $A_n=\left(\frac{1}{3}\right)^nA_0$, $n\in\mathbb{N}$ und $A:=\bigcap_{n=0}^\infty A_n$. Dann definieren wir die Cantormenge als $C:=A\cap[0,1]$.

- a) Skizzieren Sie die Mengen A_0 , A_1 , A_2 sowie $A_0 \cap A_1$, $A_0 \cap A_1 \cap A_2$.
- b) In der Vorlesung wurde eine Abbildung von $f:(\mathbb{N}^*)^{\{0,2\}}\to\mathbb{R}$ durch $\mathrm{f}(\phi)=(0,a_1a_2\dots)_{(3)}$ betrachtet, wobei ϕ aus der Identifikation einer Folge mit Einträgen aus $\{0,2\}$ und der dazugehörigen Abbildung ($\phi(i)=a_i$) bestand. Zeigen Sie, dass diese Abbildung injektiv ist.
- c) In der Vorlesung wurde gezeigt, dass es eine injektive Abbildung von $P(\mathbb{N})$ nach \mathbb{R} gibt. Zeigen Sie, dass dies impliziert, dass \mathbb{R} nicht abzählbar ist, d.h. es keine Bijektion zwischen \mathbb{R} und \mathbb{N} gibt.
- d) *Man kann zeigen, dass die Cantormenge die folgende Charakterisierung besitzt: $C = \{(0, a_1 a_2 \dots)_{(3)} \text{ mit } a_j = 0 \text{ oder } a_j = 2\}$. Verwenden Sie dies und die Binärdarstellung, um zu zeigen, dass es eine Bijektion zwischen C und [0,1] gibt.