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1. Introduction

1.1. Dispersive partial differential equations. Let us consider the following linear PDE:{
∂tu = Lu

u|t=0 = u0,
(1.1)

where u = u(t, x) : R×Rd → F with F = R or C, and L is a skew-adjoint constant coefficient
differential operator in space. More precisely, L takes the form

Lu =
∑
|α|≤k

cα∂
α
xu

with k ∈ N, cα ∈ F, and α = (α1, . . . , αd) ∈ Zd
≥0 ranging over all multi-indices with |α| =

α1 + · · ·+ αd ≤ k, and L satisfies�
Rd

Lu(x)v(x)dx = −
�
Rd

u(x)Lv(x)dx

for all test functions u and v. We may also write L = i · h(D), where

D :=
1

i
∇ =

(1
i
∂x1 , . . . ,

1

i
∂xd

)
and h is the polynomial

h(ξ1, . . . , ξd) =
∑
|α|≤k

i|α|−1cαξ
α1
1 · · · ξαd

d .

One may easily verify (using integration by parts) that L being skew-adjoint is equivalent
to the coefficients of h being real-valued. The polynomial h is referred to as the dispersion
relation of the equation (1.1).

Let us now look at some examples of linear PDEs of the form (1.1). The transport equation
is given by {

∂tu = −v · ∇u

u|t=0 = u0
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for some constant vector v ∈ Rd. The transport equation has the explicit solution u(t, x) =
u0(x − tv) and has the dispersion relation h(ξ) = −v · ξ. Another example is the free
Schrödinger equation: {

i∂tu+∆u = 0

u|t=0 = u0,

where ∆ = ∂2
x1

+ · · ·+∂2
xd

is the Laplacian. The free Schrödinger equation has the dispersion

relation h(ξ) = −|ξ|2. We also have the one-dimensional Airy equation:{
∂tu+ ∂3

xu = 0

u|t=0 = u0.

The Airy equation has the dispersion relation h(ξ) = ξ3.
A powerful tool for solving these PDEs is the Fourier transform:

f̂(ξ) =

�
Rd

f(x)e−2πiξ·xdx.

Let us perform some formal computations. By taking the Fourier transform of (1.1), we have

∂tû(t, ξ) = ih(2πξ)û(t, ξ),

which is an ordinary differential equation (ODE) with the time t as the variable. By solving
this ODE, we obtain

û(t, ξ) = eith(2πξ)û0(ξ). (1.2)

Thus, by applying the Fourier inversion formula, we obtain the solution

u(t, x) =

�
Rd

eith(2πξ)+2πiξ·xû0(ξ)dξ.

By a first order Taylor expansion at a fixed frequency ξ0 ∈ Rd, we have

h(2πξ) ≈ h(2πξ0) + 2π(ξ − ξ0) · ∇h(2πξ0),

so that (by ignoring the constant that is independent of ξ)

u(t, x) ≈
�
Rd

eitξ·∇h(2πξ0)+2πiξ·xû0(ξ)dξ = u0
(
x+ t · ∇h(2πξ0)

)
. (1.3)

From (1.2), we see that if u0 has spatial frequency roughly ξ0 (i.e. û0 is concentrated near
ξ0), then u(t) will have spatial frequency roughly ξ0 for all times. Also, we see that u will
oscillate in time with frequency roughly h(ξ0). From (1.3), we see that u will travel with
velocity roughly ∇h(2πξ0). The quantity ∇h is called the group velocity.

A linear PDE of the form (1.1) is called a dispersive PDE if different frequencies in this
equation tend to propagate at different velocities, thus dispersing the solution over time. In
view of (1.3), the linear PDE (1.1) is a dispersive PDE if the group velocity ∇h(ξ) depends
on ξ. In the three examples above, we see that the free Schrödinger equation and the Airy
equation are dispersive PDEs, whereas the transport equation is not a dispersive PDE.

We may also consider dispersive equations that are second-order in time. An important
example is the wave equation: {

∂2
t u−∆u = 0

(u, ∂tu)|t=0 = (u0, u1).
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By taking the Fourier transform, we obtain

∂2
t û(t, ξ) + 4π2|ξ|2û(t, ξ) = 0,

which is a second-order ODE and has the solution

û(t, ξ) = cos(2πt|ξ|)û0(ξ) +
sin(2πt|ξ|)

2π|ξ|
û1(ξ).

Since

cos(2πt|ξ|) = e2πit|ξ| + e−2πit|ξ|

2
and sin(2πt|ξ|) = e2πit|ξ| − e−2πit|ξ|

2i
,

we can say that the wave equation has the dispersion relation h(ξ) = ±|ξ|. If the dimension

d ≥ 2, we note that ∇h(ξ) = ± ξ
|ξ| , which suggests that the frequency of a wave determines the

direction of propagation, but not the speed. Nevertheless, we still view the wave equation
as a dispersive equation. Here, we note that |∇h(ξ)| = 1, which suggests finite speed of
propagation for wave equations.

1.2. Basics of Lp spaces and Fourier analysis. Let (X,µ) be a measure space. In most
of the situations, we take X = Rd for some d ∈ N and µ to be the standard Lebesgue
measure. For 1 ≤ p < ∞, we recall that Lp(X) = Lp(X,µ) is the space of all complex-valued
measurable functions f on X such that

∥f∥Lp(X) :=

( �
X
|f(x)|pdµ(x)

) 1
p

< ∞.

If p = ∞, then the space L∞(X) = L∞(X,µ) is the space of all measurable functions f on
X that are bounded almost everywhere:

∥f∥L∞(X) := ess sup |f | := inf
{
M > 0 : µ({x ∈ X : |f(x)| > M}) = 0

}
.

Here, ∥ · ∥Lp(X) is a complete norm that makes Lp(X) a Banach space. When p = 2, the

space L2(X) is a Hilbert space with the inner product

⟨f, g⟩L2(X) =

�
X
f(x)g(x)dµ(x).

An important tool that we will use frequently is Hölder’s inequality: for any 1 ≤ p, q, r ≤ ∞
with 1

r = 1
p + 1

q , we have

∥fg∥Lr(X) ≤ ∥f∥Lp(X)∥g∥Lq(X).

Moreover, for any 1 ≤ p ≤ ∞, one may compute the Lp(Rd)-norm of a function via duality:

∥f∥Lp(X) = sup
∥g∥

Lp′ (X)
≤1

∣∣∣∣ �
X
f(x)g(x)dµ(x)

∣∣∣∣,
where 1

p + 1
p′ = 1.

Let (X,µ) and (Y, ν) be two measure spaces. For 1 ≤ q, r ≤ ∞, the space Lq(Y ;Lr(X)) is
defined by the norm

∥f∥Lq
yLr

x(Y×X) :=
∥∥∥f∥Lr

x(X)

∥∥
Lq
y(Y )

.

For 1 ≤ r ≤ q ≤ ∞, we have the following Minkowski’s integral inequality:∥∥∥f∥Lr
x(X)

∥∥
Lq
y(Y )

≤
∥∥∥f∥Lq

y(Y )

∥∥
Lr
x(X)

.
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This norm is often used for space-time functions, where X = Rd for some d ∈ N refers
to the spatial domain and Y = R refers to the temporal domain. If the time variable is
restricted to an interval, say [−T, T ] for some T > 0, we use the abbreviation Lq

TL
r
x(Rd) to

denote Lq
t ([−T, T ];Lr

x(Rd)). We also define the space C(R;Lr(Rd)) as the set of space-time
functions f such that the map

R ∋ t 7→ f(t) ∈ Lr(Rd)

is continuous.
Let us consider Rd with the standard Lebesgue measure. The convolution of two functions

f, g ∈ L1(Rd) is defined by

f ∗ g(x) :=
�
Rd

f(x− y)g(y)dy =

�
Rd

f(y)g(x− y)dy.

An important tool is Young’s convolution inequality: for any 1 ≤ p, q, r ≤ ∞ with 1 + 1
r =

1
p + 1

q , if f ∈ Lp(Rd) and g ∈ Lq(Rd), then f ∗ g exists almost everywhere and

∥f ∗ g∥Lr(Rd) ≤ ∥f∥Lp(Rd)∥g∥Lq(Rd).

We now consider the Fourier transform on Rd. For a multi-index α = (α1, . . . , αd) ∈ Zd
≥0,

we recall the notations xα = xα1
1 · · ·xαd

d and ∂α = ∂α1
x1

· · · ∂αd
xd
. We define the Schwartz class

S(Rd) as the set of smooth functions f ∈ C∞(Rd) such that for any multi-indices α, β,

sup
x∈Rd

|xα∂βf(x)| < ∞.

The space S(Rd) is dense in Lp(Rd) for any 1 ≤ p < ∞. Given f ∈ S(Rd), we define the
Fourier transform of f as

f̂(ξ) :=

�
Rd

f(x)e−2πiξ·xdx.

We also define the inverse Fourier transform of f as

f∨(x) := f̂(−x) =

�
Rd

f(ξ)e2πiξ·xdξ.

Given f, g ∈ S(Rd), we list the following useful properties:

(1) f̂ ∈ S(Rd);

(2) (f̂)∨ = f ;

(3)
�
Rd f̂(x)g(x)dx =

�
Rd f(x)ĝ(x)dx;

(4) (Plancherel’s identity) ∥f∥L2(Rd) = ∥f̂∥L2(Rd) = ∥f∨∥L2(Rd);

(5) (Parseval’s relation)
�
Rd f(x)g(x)dx =

�
Rd f̂(ξ)ĝ(ξ)dξ;

(6) ∥f̂∥L∞(Rd) ≤ ∥f∥L1(Rd) and ∥f∥L∞(Rd) ≤ ∥f̂∥L1(Rd);

(7) (∂αf)∧(ξ) = (2πiξ)αf̂(ξ);

(8) (∂αf̂)∨(x) = (−2πix)αf(x);

(9) With fε(x) := ε−df(ε−1x), f̂ε(ξ) = f̂(εξ);

(10) f̂ ∗ g = f̂ ĝ and f̂g = f̂ ∗ ĝ.
We then define S ′(Rd) as the space of continuous linear functionals on S(Rd), i.e. the

set of linear and continuous maps f : S(Rd) → C. Elements in S ′(Rd) are called tempered
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distributions on Rd. Due to property (3) above, we can define the Fourier transform of a
tempered distribution f ∈ S ′(Rd) as

⟨f̂ , g⟩ = ⟨f, ĝ⟩

for any g ∈ S(Rd).
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[5] M. Vişan, Oberwolfach Seminar: Dispersive Equations. In “Dispersive Equations and Nonlinear Waves”,

Oberwolfach Seminars, 45, Birkhauser/Springer Basel AG, Basel, 2014.


	1. Introduction
	1.1. Dispersive partial differential equations
	1.2. Basics of Lp spaces and Fourier analysis

	References

