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1. Introduction

1.1. Dispersive partial differential equations. Let us consider the following linear PDE:{
∂tu = Lu

u|t=0 = u0,
(1.1)

where u = u(t, x) : R×Rd → F with F = R or C, and L is a skew-adjoint constant coefficient
differential operator in space. More precisely, L takes the form

Lu =
∑
|α|≤k

cα∂
α
xu

with k ∈ N, cα ∈ F, and α = (α1, . . . , αd) ∈ Zd
≥0 ranging over all multi-indices with |α| =

α1 + · · ·+ αd ≤ k, and L satisfies�
Rd

Lu(x)v(x)dx = −
�
Rd

u(x)Lv(x)dx

for all test functions u and v. We may also write L = i · h(D), where

D :=
1

i
∇ =

(1
i
∂x1 , . . . ,

1

i
∂xd

)
and h is the polynomial

h(ξ1, . . . , ξd) =
∑
|α|≤k

i|α|−1cαξ
α1
1 · · · ξαd

d .

1
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One may easily verify (using integration by parts) that L being skew-adjoint is equivalent
to the coefficients of h being real-valued. The polynomial h is referred to as the dispersion
relation of the equation (1.1).

Let us now look at some examples of linear PDEs of the form (1.1). The transport equation
is given by {

∂tu = −v · ∇u

u|t=0 = u0

for some constant vector v ∈ Rd. The transport equation has the explicit solution u(t, x) =
u0(x − tv) and has the dispersion relation h(ξ) = −v · ξ. Another example is the free
Schrödinger equation: {

i∂tu+∆u = 0

u|t=0 = u0,

where ∆ = ∂2
x1

+ · · ·+∂2
xd

is the Laplacian. The free Schrödinger equation has the dispersion

relation h(ξ) = −|ξ|2. We also have the one-dimensional Airy equation:{
∂tu+ ∂3

xu = 0

u|t=0 = u0.

The Airy equation has the dispersion relation h(ξ) = ξ3.
A powerful tool for solving these PDEs is the Fourier transform:

f̂(ξ) =

�
Rd

f(x)e−2πiξ·xdx.

Let us perform some formal computations. By taking the Fourier transform of (1.1), we have

∂tû(t, ξ) = ih(2πξ)û(t, ξ),

which is an ordinary differential equation (ODE) with the time t as the variable. By solving
this ODE, we obtain

û(t, ξ) = eith(2πξ)û0(ξ). (1.2)

Thus, by applying the Fourier inversion formula, we obtain the solution

u(t, x) =

�
Rd

eith(2πξ)+2πiξ·xû0(ξ)dξ.

By a first order Taylor expansion at a fixed frequency ξ0 ∈ Rd, we have

h(2πξ) ≈ h(2πξ0) + 2π(ξ − ξ0) · ∇h(2πξ0),

so that (by ignoring the constant that is independent of ξ)

u(t, x) ≈
�
Rd

eitξ·∇h(2πξ0)+2πiξ·xû0(ξ)dξ = u0
(
x+ t · ∇h(2πξ0)

)
. (1.3)

From (1.2), we see that if u0 has spatial frequency roughly ξ0 (i.e. û0 is concentrated near
ξ0), then u(t) will have spatial frequency roughly ξ0 for all times. Also, we see that u will
oscillate in time with frequency roughly h(ξ0). From (1.3), we see that u will travel with
velocity roughly ∇h(2πξ0). The quantity ∇h is called the group velocity.

A linear PDE of the form (1.1) is called a dispersive PDE if different frequencies in this
equation tend to propagate at different velocities, thus dispersing the solution over time. In
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view of (1.3), the linear PDE (1.1) is a dispersive PDE if the group velocity ∇h(ξ) depends
on ξ. In the three examples above, we see that the free Schrödinger equation and the Airy
equation are dispersive PDEs, whereas the transport equation is not a dispersive PDE.

We may also consider dispersive equations that are second-order in time. An important
example is the wave equation: {

∂2
t u−∆u = 0

(u, ∂tu)|t=0 = (u0, u1).

By taking the Fourier transform, we obtain

∂2
t û(t, ξ) + 4π2|ξ|2û(t, ξ) = 0,

which is a second-order ODE and has the solution

û(t, ξ) = cos(2πt|ξ|)û0(ξ) +
sin(2πt|ξ|)

2π|ξ|
û1(ξ).

Since

cos(2πt|ξ|) = e2πit|ξ| + e−2πit|ξ|

2
and sin(2πt|ξ|) = e2πit|ξ| − e−2πit|ξ|

2i
,

we can say that the wave equation has the dispersion relation h(ξ) = ±|ξ|. If the dimension

d ≥ 2, we note that ∇h(ξ) = ± ξ
|ξ| , which suggests that the frequency of a wave determines the

direction of propagation, but not the speed. Nevertheless, we still view the wave equation
as a dispersive equation. Here, we note that |∇h(ξ)| = 1, which suggests finite speed of
propagation for wave equations.

1.2. Basics of Lp spaces and Fourier analysis. Let (X,µ) be a measure space. In most
of the situations, we take X = Rd for some d ∈ N and µ to be the standard Lebesgue
measure. For 1 ≤ p < ∞, we recall that Lp(X) = Lp(X,µ) is the space of all complex-valued
measurable functions f on X such that

∥f∥Lp(X) :=

( �
X
|f(x)|pdµ(x)

) 1
p

< ∞.

If p = ∞, then the space L∞(X) = L∞(X,µ) is the space of all measurable functions f on
X that are bounded almost everywhere:

∥f∥L∞(X) := ess sup |f | := inf
{
M > 0 : µ({x ∈ X : |f(x)| > M}) = 0

}
.

Here, ∥ · ∥Lp(X) is a complete norm that makes Lp(X) a Banach space. When p = 2, the

space L2(X) is a Hilbert space with the inner product

⟨f, g⟩L2(X) =

�
X
f(x)g(x)dµ(x).

An important tool that we will use frequently is Hölder’s inequality: for any 1 ≤ p, q, r ≤ ∞
with 1

r = 1
p + 1

q , we have

∥fg∥Lr(X) ≤ ∥f∥Lp(X)∥g∥Lq(X).

Moreover, for any 1 ≤ p ≤ ∞, one may compute the Lp(Rd)-norm of a function via duality:

∥f∥Lp(X) = sup
∥g∥

Lp′ (X)
≤1

∣∣∣∣ �
X
f(x)g(x)dµ(x)

∣∣∣∣,
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where 1
p + 1

p′ = 1.

Let (X,µ) and (Y, ν) be two measure spaces. For 1 ≤ q, r ≤ ∞, the space Lq(Y ;Lr(X)) is
defined by the norm

∥f∥Lq
yLr

x(Y×X) :=
∥∥∥f∥Lr

x(X)

∥∥
Lq
y(Y )

.

For 1 ≤ r ≤ q ≤ ∞, we have the following Minkowski’s integral inequality:∥∥∥f∥Lr
x(X)

∥∥
Lq
y(Y )

≤
∥∥∥f∥Lq

y(Y )

∥∥
Lr
x(X)

.

This norm is often used for space-time functions, where X = Rd for some d ∈ N refers
to the spatial domain and Y = R refers to the temporal domain. If the time variable is
restricted to an interval, say [−T, T ] for some T > 0, we use the abbreviation Lq

TL
r
x(Rd) to

denote Lq
t ([−T, T ];Lr

x(Rd)). We also define the space C(R;Lr(Rd)) as the set of space-time
functions f such that the map

R ∋ t 7→ f(t) ∈ Lr(Rd)

is continuous.
Let us consider Rd with the standard Lebesgue measure. The convolution of two functions

f, g ∈ L1(Rd) is defined by

f ∗ g(x) :=
�
Rd

f(x− y)g(y)dy =

�
Rd

f(y)g(x− y)dy.

An important tool is Young’s convolution inequality: for any 1 ≤ p, q, r ≤ ∞ with 1 + 1
r =

1
p + 1

q , if f ∈ Lp(Rd) and g ∈ Lq(Rd), then f ∗ g exists almost everywhere and

∥f ∗ g∥Lr(Rd) ≤ ∥f∥Lp(Rd)∥g∥Lq(Rd).

We now consider the Fourier transform on Rd. For a multi-index α = (α1, . . . , αd) ∈ Zd
≥0,

we recall the notations xα = xα1
1 · · ·xαd

d and ∂α = ∂α1
x1

· · · ∂αd
xd
. We define the Schwartz class

S(Rd) as the set of smooth functions f ∈ C∞(Rd) such that for any multi-indices α, β,

sup
x∈Rd

|xα∂βf(x)| < ∞.

The space S(Rd) is dense in Lp(Rd) for any 1 ≤ p < ∞. Given f ∈ S(Rd), we define the
Fourier transform of f as

f̂(ξ) :=

�
Rd

f(x)e−2πiξ·xdx.

We also define the inverse Fourier transform of f as

f∨(x) := f̂(−x) =

�
Rd

f(ξ)e2πiξ·xdξ.

Given f, g ∈ S(Rd), we list the following useful properties:

(1) f̂ ∈ S(Rd);

(2) (f̂)∨ = f ;

(3)
�
Rd f̂(x)g(x)dx =

�
Rd f(x)ĝ(x)dx;

(4) (Plancherel’s identity) ∥f∥L2(Rd) = ∥f̂∥L2(Rd) = ∥f∨∥L2(Rd);

(5) (Parseval’s relation)
�
Rd f(x)g(x)dx =

�
Rd f̂(ξ)ĝ(ξ)dξ;

(6) ∥f̂∥L∞(Rd) ≤ ∥f∥L1(Rd) and ∥f∥L∞(Rd) ≤ ∥f̂∥L1(Rd);
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(7) (∂αf)∧(ξ) = (2πiξ)αf̂(ξ);

(8) (∂αf̂)∨(x) = (−2πix)αf(x);

(9) With fε(x) := ε−df(ε−1x), f̂ε(ξ) = f̂(εξ);

(10) f̂ ∗ g = f̂ ĝ and f̂g = f̂ ∗ ĝ.
We then define S ′(Rd) as the space of continuous linear functionals on S(Rd), i.e. the

set of linear and continuous maps f : S(Rd) → C. Elements in S ′(Rd) are called tempered
distributions on Rd. Due to property (3) above, we can define the Fourier transform of a
tempered distribution f ∈ S ′(Rd) as

⟨f̂ , g⟩ = ⟨f, ĝ⟩

for any g ∈ S(Rd).

2. Deterministic well-posedness theory

In this section, we focus on deterministic well-posedness theory of dispersive equations.
We will use the following NLS on Rd as the guiding example:

i∂tu+∆u = ±|u|p−1u, (t, x) ∈ R× Rd.

At the end of the section, we will briefly mention the case of NLW on Rd:

∂2
t u−∆u± up = 0, (t, x) ∈ R× Rd.

2.1. Formulations and the L2-based Sobolev spaces. Let us first consider the linear
(free) Schrödinger equation: {

i∂tu+∆u = 0

u|t=0 = u0.

By taking the Fourier transform in the spatial variable x, we obtain{
i∂tû(ξ)− 4π2|ξ|2û(ξ) = 0

û(t, ξ)|t=0 = û0(ξ)
(2.1)

for any ξ ∈ Rd. Note that for a fixed ξ ∈ Rd, (2.1) is an ODE with t as the variable. Thus,
we may solve (2.1) by writing

û(t, ξ) = e−4π2it|ξ|2 û0(ξ). (2.2)

By taking the inverse Fourier transform of (2.2), we have

u(t, x) = F−1
(
e−4π2it|ξ|2 û0(ξ)

)
(x).

The operator

eit∆f := F−1
(
e−4π2it|·|2 f̂(·)

)
is called the linear Schrödinger operator.

Next, we consider the inhomogeneous linear Schrödinger equation:{
i∂tu+∆u = F

u|t=0 = u0



6 R. LIU

for some F = F (t, x). Again, by taking the Fourier transform in the spatial variable x, we
obtain

∂tû(t, ξ) + 4π2i|ξ|2û(t, ξ) = −iF̂ (t, ξ) (2.3)

for any ξ ∈ Rd. Multiplying (2.3) by an integrating factor e4π
2i|ξ|2 , we get

∂t
(
e4π

2it|ξ|2 û(t, ξ)
)
= −ie4π

2it|ξ|2F̂ (t, ξ). (2.4)

Integrating (2.4) from 0 to time t, we obtain

e4π
2it|ξ|2 û(t, ξ)− û0(ξ) = −i

� t

0
e4π

2it′|ξ|2F̂ (t′, ξ)dt′,

which gives

û(t, ξ) = e−4π2it|ξ|2 û0(ξ)− i

� t

0
e−4π2i(t−t′)|ξ|2F̂ (t′, ξ)dt′. (2.5)

By taking the inverse Fourier transform of (2.5), we obtain

u(t) = eit∆u0 − i

� t

0
ei(t−t′)∆F (t′)dt′. (2.6)

We now come back to NLS: {
i∂tu+∆u = ±|u|p−1u

u|t=0 = u0 ∈ Hs(Rd)
(2.7)

with p ∈ 2N+ 1. In view of (2.6), we introduce the following notion of a solution to (2.7).

Definition 2.1. We say that a function u ∈ C(R;X) is a mild solution to NLS (2.7) if u
satisfies the Duhamel formulation:

u(t) = eit∆u0 ∓ i

� t

0
ei(t−t′)∆(|u|p−1u)(t′)dt′, (2.8)

where X is a suitable function space.

We now introduce the function spaces that are suitable for solving NLS (2.7). Let us
introduce the following L2-based Sobolev spaces.

Definition 2.2. Let d ∈ N and s ∈ R. We define Hs(Rd) as the space of tempered distribu-
tions f ∈ S ′(Rd) such that

∥f∥Hs(Rd) :=
∥∥(1 + |ξ|2)

s
2 f̂(ξ)

∥∥
L2
ξ(Rd)

is finite.

Later on, we adopt the notation of the Japanese bracket ⟨ξ⟩ := (1 + |ξ|2)
1
2 . The Hs(Rd)

space is in fact a Hilbert space with the inner product

∥f∥2Hs(Rd) =
〈
⟨·⟩sf̂ , ⟨·⟩sf̂

〉
L2(Rd)

.

Example 1. (i) When s = 0, by Plancherel’s identity, we have

∥f∥H0(Rd) = ∥f̂(ξ)∥L2
ξ(Rd) = ∥f∥L2(Rd).

Thus, H0(Rd) = L2(Rd).
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(ii) When s = 1, since |∇̂f(ξ)| = 2π|ξ||f̂(ξ)|, we have

∥f∥2H1(Rd) = ∥f̂∥2L2
ξ(Rd) +

∥∥|ξ|f̂(ξ)∥∥2
L2
ξ(Rd)

= ∥f∥2L2(Rd) +
1

4π2
∥∇f∥2L2(Rd).

In order words, H1(Rd) is precisely the space of functions f such that f ∈ L2(Rd) and
∇f ∈ L2(Rd).

(iii) For a general s ∈ R, we also write

⟨∇⟩sf = F−1
(
⟨·⟩sf̂(·)

)
.

When s > 0, ⟨∇⟩s means taking the fractional derivative of order s. When s < 0, ⟨∇⟩s can
be viewed as a fractional integration of order −s.

Let us show the following algebra property of the Hs(Rd)-norm with s > d
2 .

Lemma 2.3 (Algebra property of Hs(Rd) with s > d
2). Let d ∈ N and s > d

2 . Then, there

exists C = C(s, d) > 0 such that for any f, g ∈ Hs(Rd), we have

∥fg∥Hs(Rd) ≤ C∥f∥Hs(Rd)∥g∥Hs(Rd).

Notation 2.1. For two quantities A,B > 0, we use the notation

A ≲ B

if A ≤ CB for some constant C > 0 uniform with respect to the set where A and B are
allowed to vary. We also use subscripts such as ≲a to denote dependence on parameters.

Proof of Lemma 2.3. We first recall that

f̂g(ξ) = f̂ ∗ ĝ(ξ) =
�
Rd

f̂(ξ − ξ1)ĝ(ξ1)dξ1.

Also, using the fact that (a+ b)θ ≤ aθ + bθ for θ ∈ (0, 1] and (a+ b)θ ≤ Caθ + Cbθ for θ > 1
for some constant C = C(θ) > 0, we have

⟨ξ⟩s ≲s ⟨ξ − ξ1⟩s + ⟨ξ1⟩s. (2.9)

Thus, we have

∥fg∥Hs(Rd) =
∥∥⟨ξ⟩sf̂g(ξ)∥∥

L2
ξ(Rd)

(2.9) ≲

∥∥∥∥�
Rd

⟨ξ − ξ1⟩s|f̂(ξ − ξ1)||ĝ(ξ1)|dξ1
∥∥∥∥
L2
ξ(Rd)

+

∥∥∥∥�
Rd

|f̂(ξ − ξ1)|⟨ξ1⟩s|ĝ(ξ1)|dξ1
∥∥∥∥
L2
ξ(Rd)

=
∥∥(⟨·⟩s|f̂ |) ∗ |ĝ|∥∥

L2
ξ(Rd)

+
∥∥|f̂ | ∗ (⟨·⟩s|ĝ|)∥∥

L2
ξ(Rd)

(Young’s convolution) ≤ ∥⟨·⟩sf̂∥L2
ξ(Rd)∥ĝ∥L1

ξ(Rd) + ∥f̂∥L1
ξ(Rd)∥⟨·⟩sĝ∥L2

ξ(Rd),

(2.10)
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Furthermore, by the Cauchy-Schwarz inequality, we have

∥f̂∥L1
ξ(Rd) =

�
Rd

⟨ξ⟩−s⟨ξ⟩s|f̂(ξ)|dξ

≤
( �

Rd

1

⟨ξ⟩2s
dξ

) 1
2
( �

Rd

⟨ξ⟩2s|f̂(ξ)|2dξ
) 1

2

= C(s, d)∥f∥Hs(Rd).

(2.11)

Thus, the desired inequality follows from (2.10) and (2.11). □

The following lemma shows why the Hs(Rd) space is important for Schrödinger equations.

Lemma 2.4 (Properties of the linear Schrödinger operator). Let d ∈ N and s ∈ R.

(i) For any t ∈ R, the operator eit∆ is unitary on Hs(Rd):

∥eit∆f∥Hs(Rd) = ∥f∥Hs(Rd).

(ii) For any f ∈ Hs(Rd), the function t 7→ eit∆f lies in C(R;Hs(Rd)).

Proof. (i) Using the definition, we get

∥eit∆f∥Hs(Rd) =

(�
Rd

⟨ξ⟩2s
∣∣e−4π2it|ξ|2 f̂(ξ)

∣∣2dξ) 1
2

=

( �
Rd

⟨ξ⟩2s|f̂(ξ)|2dξ
) 1

2

= ∥f∥Hs(Rd),

which gives the desired property.

(ii) For any t1, t2 ∈ R, we have the semigroup property of the linear Schrödinger operator:

ei(t1+t2)∆ = eit1∆eit2∆.

Fix t ∈ R. By the semigroup property and part (i), we have that for any h ∈ R,

∥ei(t+h)∆f − eit∆f∥2Hs(Rd) = ∥eit∆(eih∆ − 1)f∥2Hs(Rd)

= ∥(eih∆ − 1)f∥2Hs(Rd)

=

�
Rd

⟨ξ⟩2s
∣∣(e−4π2ih|ξ|2 − 1)f̂(ξ)

∣∣2dξ. (2.12)

Since |e−4π2ih|ξ|2 − 1| ≤ 2 and f ∈ Hs(Rd), we can use the dominated convergence theorem
to obtain

lim
h→0

∥ei(t+h)∆f − eit∆f∥Hs(Rd) = 0.

This proves the continuity-in-time property. □
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2.2. Local well-posedness of NLS. Our goal in this subsection is to construct a unique
mild solution to NLS (2.7) in the function space C([−T, T ];Hs(Rd)) with s > d

2 for some
T > 0.

A important tool for proving well-posedness of PDEs is the Banach fixed-point theorem.

Theorem 2.5 (Banach fixed-point theorem). Let (X, d) be a non-empty complete metric
space. Let F : X → X be a contraction mapping: there exists q ∈ [0, 1) such that

d(F (x), F (y)) ≤ qd(x, y)

for all x, y ∈ X. Then, there exists a unique x∗ ∈ X such that F (x∗) = x∗.

Proof. Let x0 ∈ X be arbitrary and we define a sequence {xn}n∈N by xn = F (xn−1). A
simple induction on n gives

d(xn+1, xn) ≤ qnd(x1, x0).

Then, for any m,n ∈ N with m > n, we have

d(xm, xn) ≤
m−1∑
j=n

d(xj+1, xj) ≤ qnd(x1, x0)
m−n−1∑
j=0

qj ≤ qn

1− q
d(x1, x0). (2.13)

Since 0 ≤ q < 1, the inequality (2.13) shows that {xn}n∈N is a Cauchy sequence. Since (X, d)
is a complete metric space, the sequence {xn}n∈N has a limit x∗ in X. The fact that F is a
contraction mapping implies that F is continuous, so that

x∗ = lim
n→∞

xn = lim
n→∞

F (xn−1) = F (x∗),

so that x∗ is a fixed point of F . To show uniqueness, let x∗1, x
∗
2 ∈ X be two fixed points of F .

Then, we have

d(x∗1, x
∗
2) = d(F (x∗1), F (x∗2)) ≤ qd(x∗1, x

∗
2),

which implies that d(x∗1, x
∗
2) = 0 since 0 ≤ q < 1. This finishes the proof of the theorem. □

We are now ready to prove local well-posedness of NLS (2.8) in Hs(Rd) with s > d
2 .

Proposition 2.6 (Local well-posedness of NLS in Hs(Rd) with s > d
2). Let d ∈ N, s > d

2 ,

and p ∈ 2N + 1. Then, for any u0 ∈ Hs(Rd), there exist T = T (s, d, p, ∥u0∥Hs(Rd)) > 0 and

a unique solution u to NLS (2.8) in a closed ball of the space C([−T, T ];Hs(Rd)), and the
solution u ∈ C([−T, T ];Hs(Rd)) depends continuously on u0 ∈ Hs(Rd).

Proof. Fix u0 ∈ Hs(Rd). Let us define

Γu0 [u](t) := eit∆u0 ∓ i

� t

0
ei(t−t′)∆(|u|p−1u)(t′)dt′.

Our goal is to show that there exists a unique u such that

u = Γu0 [u]

in C([−T, T ];Hs(Rd)) for some small T > 0.



10 R. LIU

Let T > 0 be chosen later. We compute that

∥Γu0 [u]∥CTHs
x(Rd) ≤ ∥eit∆u0∥CTHs

x(Rd) +

∥∥∥∥� t

0
ei(t−t′)∆(|u|p−1u)(t′)dt′

∥∥∥∥
CTHs

x(Rd)

(Lm 2.4 & Mink) ≤ ∥u0∥Hs(Rd) +

∥∥∥∥� t

0

∥∥ei(t−t′)∆(|u|p−1u)(t′)
∥∥
Hs

x(Rd)
dt′

∥∥∥∥
Ct([−T,T ])

(Lm 2.4) ≤ ∥u0∥Hs(Rd) +

� T

0
∥|u|p−1u∥CTHs

x(Rd)dt
′

(Lm 2.3) ≤ ∥u0∥Hs(Rd) + CT∥u∥p
CTHs

x(Rd)

(2.14)

for some constant C = C(s, d) > 0. Let R = 2∥u0∥Hs(Rd) and define

BR := {u ∈ C([−T, T ];Hs(Rd)) : ∥u∥CTHs
x(Rd) ≤ R}.

Then, for any u ∈ BR, by choosing T ≤ 1
2CRp−1 , we get

∥Γu0 [u]∥CTHs
x(Rd) ≤

R

2
+ CTRp ≤ R,

which shows that Γu0 maps from BR to BR.
We still need to show that Γu0 is a contraction mapping on BR. Since p ∈ 2N+1, we have

the following telescopic sum:

|u|p−1u− |v|p−1v = (u− v)u · · ·u+ v(u− v) · · ·u+ · · ·+ vv · · · (u− v).

Thus, for any u, v ∈ BR, we use similar steps to obtain

∥Γu0 [u]− Γu0 [v]∥CTHs
x(Rd)

=

∥∥∥∥� t

0
ei(t−t′)∆(|u|p−1u− |v|p−1v)(t′)dt′

∥∥∥∥
CTHs

x(Rd)

(Lm 2.4 & Minkowski) ≤ T∥|u|p−1u− |v|p−1v∥CTHs
x(Rd)

(Lm 2.3) ≤ CT∥u− v∥CTHs
x(Rd)

p−1∑
j=0

∥u∥p−1−j
CTHs

x(Rd)
∥v∥j

CTHs
x(Rd)

(u, v ∈ BR) ≤ C ′TRp−1∥u− v∥CTHs
x(Rd)

(2.15)

for some constant C ′ = C ′(s, d, p) > 0. Then, by choosing T ≤ 1
2C′Rp−1 , we get

∥Γu0 [u]− Γu0 [v]∥CTHs
x(Rd) ≤

1

2
∥u− v∥CTHs

x(Rd).

In summary, by choosing T = min{ 1
2CRp−1 ,

1
2C′Rp−1 }, we obtain a contraction mapping Γu0

from BR to BR. By the Banach fixed-point theorem, there exists a unique u ∈ BR such that
u = Γu0 [u].

It remains to show continuity of the solution with respect to the initial data. Let u be the
solution to NLS (2.8) with initial data u0 ∈ Hs(Rd) and let v be the solution to NLS (2.8)
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with initial data v0 ∈ Hs(Rd). Then, by using Lemma 2.4 (i) and (2.15), we obtain

∥u− v∥CTHs
x(Rd) = ∥Γu0 [u]− Γv0 [v]∥CTHs

x(Rd)

≤ ∥eit∆(u0 − v0)∥CTHs
x(Rd) +

∥∥∥∥� t

0
ei(t−t′)∆(|u|p−1u− |v|p−1v)(t′)dt′

∥∥∥∥
CTHs

x(Rd)

≤ ∥u0 − v0∥Hs(Rd) + C ′TRp−1∥u− v∥CTHs
x(Rd).

Thus, with T ≤ 1
2C′Rp−1 , we absorb the ∥u− v∥CTHs

x
term to the left-hand-side to obtain

∥u− v∥CTHs
x(Rd) ≤ 2∥u0 − v0∥Hs

x(Rd).

This shows the continuity of the solution with respect to the initial data. □

Remark 2.7. (i) In the proof, we omitted checking the continuity of

t 7→ I(t) :=
� t

0
ei(t−t′)∆(|u|p−1u)(t′)dt′.

This is achieved via the following observation:

I(t+ h)− I(t) =
� t+h

0
ei(t+h−t′)∆(|u|p−1u)(t′)dt′ −

� t

0
ei(t−t′)∆(|u|p−1u)(t′)dt′

=

� t+h

t
ei(t+h−t′)∆(|u|p−1u)(t′)dt′ +

� t

0
(ei(t+h−t′)∆ − ei(t−t′)∆)(|u|p−1u)(t′)dt′.

In the first integral, the domain of integration becomes small as |h| gets small. In the second
integral, we have

ei(t+h−t′)∆ − ei(t−t′)∆ = ei(t−t′)∆(eih∆ − 1),

which can be treated in a similar manner as in the proof of Lemma 2.4 (ii). The rest of the
steps are left as an exercise.

(ii) The method of using the Banach fixed-point theorem for solving a PDE is also referred
to as the Picard iteration scheme. Let us follow the proof of the Banach fixed-point theorem
and see what the solution should look like. Let v0 ∈ BR be arbitrarily chosen. We then
define v1 ∈ BR as v1 = Γu0 [v0], which gives

v1(t) = eit∆u0 ∓ i

� t

0
ei(t−t′)∆(|v0|p−1v0)(t

′)dt′.

We then define v2 = Γu0 [v1], which becomes more complicated but we can write out the first
two terms (the linear evolution and the Picard second iterate):

v2(t) = eit∆u0 ∓ i

� t

0
ei(t−t′)∆(|eit′∆u0|p−1eit

′∆u0)(t
′)dt′ + · · · .

As this process moves on, we see that the solution u is given by u =
∑∞

k=1 uk, where uk’s are
iteratively defined by

u1(t) := eit∆u0,

uk(t) := ∓i
∑

k1,...,kp≥1
k1+···+kp=k

� t

0
ei(t−t′)∆

p∏
j=1

ukj (t
′)dt′, k ≥ 2.
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This shows that u is given by a power series in eit∆u0. We say that this form of the solution
u as an analytic solution of NLS (2.8).

In the proof of Proposition 2.6, we only showed uniqueness of the solution to NLS (2.8) in a
closed ball BR. Let us show uniqueness of the solution in the entire space C([−T, T ];Hs(Rd)).
This is also referred to as unconditional uniqueness, which does not rely on any auxiliary sets
or spaces. The argument presented below is often called a continuity argument or a bootstrap
argument.

Proposition 2.8 (Unconditional uniqueness of NLS in Hs(Rd) with s > d
2). The solution u

in Proposition 2.6 is unique in the space C([−T, T ];Hs(Rd)) (with the value of T > 0 possibly
shrinked by a constant factor).

Proof. We only focus on the time interval [0, T ], since the analysis on [−T, 0] is the same.
Let R = 2∥u0∥Hs(Rd). Our goal is to show that, whenever u is a solution to NLS (2.8)

in C([0, T ];Hs(Rd)), we must have ∥u∥C([0,T ];Hs(Rd)) ≤ R. Thus, u ∈ BR, and so we can
conclude from the uniqueness part proved in Proposition 2.6.

We first note that the function t 7→ ∥u∥C([0,t];Hs(Rd)) is uniformly continuous on [0, T ].
Then, there exists ε > 0 such that

∥u∥C([0,ε];Hs(Rd)) ≤ 2R.

By using (2.14), we get

∥u∥C([0,ε];Hs(Rd)) = ∥Γu0 [u]∥C([0,ε];Hs(Rd))

≤ ∥u0∥Hs(Rd) + CT∥u∥p
C([0,ε];Hs(Rd))

≤ R

2
+ 2pCTRp

≤ R

(2.16)

as long as we have 0 < T ≤ 1
2p+1CRp−1 .

Suppose that we now have

∥u∥C([0,t];Hs(Rd)) ≤ R

for some 0 < t < T . Then, by continuity, there exists ε0 > 0 with 0 < t+ ε0 ≤ T such that

∥u∥C([0,t+ε0];Hs(Rd)) ≤ 2R.

By proceeding as in (2.16), we get

∥u∥C([0,t+ε0];Hs(Rd)) ≤ ∥u0∥Hs(Rd) + CT∥u∥p
C([0,t+ε0];Hs(Rd))

≤ R

2
+ 2pCTRp

≤ R

given 0 < T ≤ 1
2p+1CRp−1 . By induction, we conclude that

∥u∥C([0,T ];Hs(Rd)) ≤ R,

as desired. □
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We are interested in establishing local well-posedness for NLS in Hs(Rd) with s ≤ d
2 .

Before that, we need to know how rough we can go (i.e. how low the value of s can be) for
local well-posedness.

Let us define the following homogeneous L2-based Sobolev spaces Ḣs(Rd) via

∥f∥Ḣs(Rd) :=
∥∥|ξ|sf̂(ξ)∥∥

L2
ξ(Rd)

given d ∈ N and s ∈ R. Let u be a solution to the following NLS on Rd:{
i∂tu+∆u = ±|u|p−1u

u|t=0 = u0.
(2.17)

Then, one can easily check that for any λ > 0,

uλ(t, x) := λ
2

p−1u(λ2t, λx)

is a solution to NLS (2.17) with scaled initial data

uλ0(x) = λ
2

p−1u0(λx).

Let us compute the Ḣs(Rd)-norm of uλ0 . Note that for any ξ ∈ Rd, we have

ûλ0(ξ) = λ
2

p−1
−d

û0(λ
−1ξ).

Thus, by using a change of variable, we have

∥uλ0∥Ḣs(Rd) =

(�
Rd

|ξ|2s
∣∣ûλ0(ξ)∣∣2dξ) 1

2

= λ
2

p−1
−d+s+ d

2

( �
Rd

|λ−1ξ|2s
∣∣û0(λ−1ξ)

∣∣2d(λ−1ξ)

) 1
2

= λ
2

p−1
− d

2
+s∥u0∥Ḣs(Rd).

We define

sc :=
d

2
− 2

p− 1
,

which is the index that achieves

∥uλ0∥Ḣsc (Rd) = ∥u0∥Ḣsc (Rd)

for any λ > 0. The index sc is called the scaling-critical Sobolev index and gives the following
three regimes for the Cauchy problem of NLS (2.17) given u0 ∈ Hs(Rd):

• NLS is subcritical (with respect to scaling) if s > sc. In this case, we expect good
behaviors of the equation, such as local well-posedness. Indeed, we have

∥uλ0∥Ḣs(Rd) = λs−sc∥u0∥Ḣs(Rd),

and the solution u on [0, T ] corresponds to the solution uλ on [0, λ−2T ]. As λ gets
smaller, ∥uλ0∥Ḣs(Rd) gets smaller and the time interval [0, λ−2T ] gets larger. This

means that smaller data implies that the solution lives longer, which makes sense
intuitively.
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• NLS is supercritical (with respect to scaling) if s < sc. In this case, we expect bad
behaviors of the equation, such as ill-posedness. Indeed, as λ gets smaller, ∥uλ0∥Ḣs(Rd)

gets larger and the time interval [0, λ−2T ] gets larger. This means that larger data
implies that the solution lives longer, which does not sound reasonable.

• NLS is critical (with respect to scaling) if s = sc. This case corresponds to a delicate
balance between the linear dispersion and the nonlinear concentration. We usually
need more information than the Ḣs(Rd)-norm of initial data.

2.3. Strichartz estimates for Schrödinger equations. An important tool for establish-
ing low regularity local well-posedness of NLS, or dispersive PDEs in general, is the Strichartz
estimates. Let us briefly mention the heuristics. For a fixed time t ∈ R, we have the isometry

∥eit∆f∥Hs(Rd) = ∥f∥Hs(Rd).

This basically tells us that the linear Schrödinger operator eit∆ did nothing at any fixed time
t ∈ R. Nevertheless, we can gain from eit∆ by taking an “average” over t ∈ R.

Before moving on, we first recall the following interpolation theorem.

Theorem 2.9 (Riesz-Thorin interpolation theorem). Let d ∈ N and 1 ≤ p0, p1, q0, q1 ≤ ∞.
Let T be a bounded linear operator on functions on Rd such that

∥T (f)∥Lq0 (Rd) ≤ C0∥f∥Lp0 (Rd),

∥T (f)∥Lq1 (Rd) ≤ C1∥f∥Lp1 (Rd)

for some C0, C1 > 0. Then, for all 0 < θ < 1, we have

∥T (f)∥Lq(Rd) ≤ C1−θ
0 Cθ

1∥f∥Lp(Rd),

where

1

p
=

1− θ

p0
+

θ

p1
and

1

q
=

1− θ

q0
+

θ

q1
.

We now prove the following dispersive estimates.

Lemma 2.10 (Dispersive estimates for Schrödinger equations). Let d ∈ N.
(i) For any t ̸= 0, we have

∥eit∆f∥L∞(Rd) ≤
1

(4π|t|)
d
2

∥f∥L1(Rd). (2.18)

(ii) For any t ̸= 0 and 2 ≤ p ≤ ∞, we have

∥eit∆f∥Lp(Rd) ≲
1

|t|d(
1
2
− 1

p
)
∥f∥Lp′ (Rd), (2.19)

where 1
p + 1

p′ = 1.

Proof. We claim that
�
R
e−ix2

dx =

√
π

i
, (2.20)
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which is called the Fresnel integral. Taking (2.20) as granted, we compute by using a change
of variable that

(e−4π2it|ξ|2)∨(x) =

�
Rd

e−4π2it|ξ|2e2πiξ·xdξ

=
d∏

j=1

(
e

ix2j
4t

�
R
e−4π2it(ξj−

xj
4πt

)2dξj

)

=
d∏

j=1

e
ix2j
4t ·

√
1

4πit

=
1

(4πit)
d
2

e
i|x|2
4t .

Thus, we have

eit∆f =
(
e−4π2it|ξ|2 f̂(ξ)

)∨
= (e−4π2it|ξ|2)∨ ∗ f =

1

(4πit)
d
2

�
Rd

e
i|x−y|2

4t f(y)dy,

so that the desired estimate (2.18) follows directly from this formula.
For (2.19), we first note that the case p = 2 follows from Lemma 2.4 (i) and the case p = ∞

follows from (2.18). For 2 < p < ∞, we let 0 < θ < 1 be such that

1

p
=

θ

∞
+

1− θ

2
⇐⇒ θ = 1− 2

p
.

Thus, since 1
p′ = 1 − 1

p = θ
1 + 1−θ

2 , by using the Riesz-Thorin interpolation theorem with

q0 = 2, p0 = 2, q1 = ∞, and p1 = 1, we obtain

∥eit∆f∥Lp(Rd) ≲
1

|t|
d
2
θ
∥f∥Lp′ (Rd) =

1

|t|d(
1
2
− 1

p
)
∥f∥Lp′ (Rd),

as desired.
We now consider (2.20), which we prove using complex analysis. Let R > 0 be a large

number and let γR be line segment from 0 to Rei
π
4 . Let us consider the line integral

I := lim
R→∞

�
γR

e−z2dz.

On the one hand, by computing the integral directly using the parametrization t 7→ tei
π
4 , we

have

I = ei
π
4

� ∞

0
e−it2dt =

√
i

2

�
R
e−ix2

dx.

On the other hand, since z 7→ e−z2 does not have any poles, by using Cauchy’s theorem, we
have

I = I1 + I2 := lim
R→∞

�
γR,1

e−z2dz + lim
R→∞

�
γR,2

e−z2dz,

where γR,1 is the line segment from 0 to R and γR,2 is the arc (of radius R centered at 0)

from R to Rei
π
4 . For I1, we have

I1 =

� ∞

0
e−x2

dx =

√
π

2
.
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For I2, by using the parametrization θ 7→ Reiθ, we have∣∣∣∣ �
γR,2

e−z2dz

∣∣∣∣ = ∣∣∣∣iR � π
4

0
e−R2(cos(2θ)+i sin(2θ))dθ

∣∣∣∣
≤ R

2

� π
2

0
e−R2 cos θdθ

=
R

2

� π
2

0
e−R2 sin θdθ(sin θ

θ
≥ 2

π

)
≤ R

2

� π
2

0
e−

2
π
R2θdθ ≲

1

R
−→ 0

as R → ∞, so that I2 = 0. Thus, we obtain�
R
e−ix2

dx =
2√
i
I =

2√
i
I1 +

2√
i
I2 =

√
π

i
,

as desired. □

Before stating and proving the Strichartz estimates, we need the following two lemmas.
For any vector spaces A and B, we denote by L(A;B) as the space of linear maps from A

to B. We also denote the dual space A∗ = L(A;C). For any f ∈ A and φ ∈ A∗, we write
⟨φ, f⟩A as the duality pairing between A∗ and A. For an operator T , we denote by Ran(T )
as the range of T .

Lemma 2.11 (T ∗T argument). Let H be a Hilbert space, X a Banach space, and D ⊂ X a
vector space dense in X. Let T ∈ L(D;H) and let T ∗ ∈ L(H;D∗) be its adjoint defined by

⟨T ∗v, f⟩D := ⟨v, Tf⟩H
for any f ∈ D and v ∈ H. Then, the following three statements are equivalent.

(i) For all f ∈ D,

∥Tf∥H ≲ ∥f∥X .

(ii) Ran(T ∗) ⊂ X∗ and for all v ∈ H,

∥T ∗v∥X∗ ≲ ∥v∥H .

(iii) Ran(T ∗T ) ⊂ X∗ and for all f ∈ D,

∥T ∗Tf∥X∗ ≲ ∥f∥X .

If the above conditions are satisfied, then the operators T and T ∗T can be extended to bounded
operators from X to H and from X to X∗, respectively.

Proof. We first show that (i) implies (ii). For any v ∈ H and f ∈ D, we have

|⟨T ∗v, f⟩D| = |⟨v, Tf⟩H | ≤ ∥v∥H∥Tf∥H ≲ ∥v∥H∥f∥X .

By density of D in X and continuity, we see that T ∗v ∈ X∗ and ∥T ∗v∥X∗ ≲ ∥v∥H .
We then show that (ii) implies (i). For any f ∈ D and v ∈ H, we have

|⟨v, Tf⟩H | = |⟨T ∗v, f⟩D| ≤ ∥T ∗v∥X∗∥f∥X ≲ ∥v∥H∥f∥X ,

which gives the desired bound by duality.
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We also see that clearly (i) and (ii) imply (iii), so that (i) or (ii) implies (iii). It remains
to show that (iii) implies (i). For any f ∈ D, we have

⟨Tf, Tf⟩H = ⟨T ∗Tf, f⟩D ≤ ∥T ∗Tf∥X∗∥f∥X ≲ ∥f∥2X ,

which gives the desired bound. □

Lemma 2.12 (Hardy-Littlewood-Sobolev inequality). Let d ∈ N and 1 < p, q, r < ∞ be such
that 1

p + 1
q = 1 + 1

r . Then, we have∥∥∥∥ 1

| · |
d
p

∗ f
∥∥∥∥
Lr(Rd)

≲ ∥f∥Lq(Rd).

Proof. Let N > 0 be chosen later. We write(
1

| · |
d
p

∗ f
)
(x) =

�
{|y−x|≤N}

f(y)

|x− y|
d
p

dy +

�
{|y−x|>N}

f(y)

|x− y|
d
p

dy.

By decomposing into dyadic annuli:

{|y − x| ≤ N} =
∞⋃
j=0

{2−j−1N < |y − x| ≤ 2−jN},

we obtain∣∣∣∣ �
{|y−x|≤N}

f(y)

|x− y|
d
p

dy

∣∣∣∣ ≤ N
d− d

p

∞∑
j=0

2
−j(d− d

p
)
Mf(x) ≲ N

d− d
pMf(x) = N

d
q
− d

rMf(x),

where Mf denotes the Hardy-Littlewood maximal function

Mf(x) := sup
B ball
B∋x

1

|B|

�
B
|f(y)|dy.

Also, by Hölder’s inequality, we have∣∣∣∣�
{|y−x|>N}

f(y)

|x− y|
d
p

dy

∣∣∣∣ ≤ ( �
{|y|>N}

1

|y|
dq′
p

dy

) 1
q′

∥f∥Lq(Rd)

≲ N
d− d

q
− d

p ∥f∥Lq(Rd)

= N− d
r ∥f∥Lq(Rd),

where 1
q′ +

1
q = 1. Thus, we have the pointwise bound(

1

| · |
d
p

∗ f
)
(x) ≲ N

d
q
− d

rMf(x) +N− d
r ∥f∥Lq(Rd).

By optimizing with N = (∥f∥Lq(Rd)/Mf(x))
q
d , taking the Lr-norm in x, and using the bound-

edness of the Hardy-Littlewood maximal operator in Lq(Rd), we obtain∥∥∥∥ 1

| · |
d
p

∗ f
∥∥∥∥
Lr(Rd)

≲ ∥f∥1−
q
r

Lq(Rd)
∥Mf∥

q
r

Lq(Rd)
≲ ∥f∥Lq(Rd),

as desired. □
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Remark 2.13. The Hardy-Littlewood-Sobolev inequality is a stronger inequality than
Young’s convolution inequality, and it can be seen as an “endpoint case” of Young’s con-
volution inequality.

We now use the dispersive estimates in Lemma 2.10 to establish the Strichartz estimates.

Theorem 2.14 (Strichartz estimates for Schrödinger equations). Let d ∈ N. Let 2 ≤ q, r ≤
∞ be such that

2

q
+

d

r
=

d

2
and (q, r, d) ̸= (2,∞, 2).

We call such (q, r) an admissible pair.

(i) We have the following homogeneous Strichartz estimate

∥eit∆f∥Lq
tL

r
x(R×Rd) ≲ ∥f∥L2(Rd).

(ii) We have the following dual homogeneous Strichartz estimate∥∥∥∥�
R
e−it′∆F (t′)dt′

∥∥∥∥
L2(Rd)

≲ ∥F∥
Lq′
t Lr′

x (R×Rd)
.

(iii) For any admissible pairs (q, r) and (q̃, r̃), we have the following inhomogeneous Strichartz
estimate ∥∥∥∥� t

0
ei(t−t′)∆F (t′)dt′

∥∥∥∥
Lq
tL

r
x(R×Rd)

≲ ∥F∥
Lq̃′
t Lr̃′

x (R×Rd)
.

Proof. We only prove the non-endpoint case 2 < q ≤ ∞.
We first consider (i) and (ii). When q = ∞, we must have r = 2, so that (i) and (ii) follow

easily. Let us now focus on the case 2 < q < ∞. For any F ∈ Lq
tL

r
x(R × Rd), we define the

operator T as

TF =

�
R
e−it∆F (t)dt.

For any f ∈ L2(Rd) and F ∈ Lq
tL

r
x(R× Rd), we have

⟨eit∆f, F ⟩L2
tL

2
x(R×Rd) =

�
Rd

�
R
eit∆f(x)F (t, x)dtdx

=

�
Rd

f(x)

�
R
e−it∆F (t, x)dtdx

=

〈
f,

�
R
e−it∆F (t)dt

〉
L2
x(Rd)

,

where we used

⟨eit∆f, g⟩L2
x(Rd) =

�
Rd

e−it|ξ|2 f̂(ξ)ĝ(ξ)dξ =

�
Rd

f̂(ξ)eit|ξ|2 ĝ(ξ)dξ = ⟨f, e−it∆g⟩L2
x(Rd) (2.21)

from Parseval’s relation. This shows that

T ∗f = eit∆f.

Thus,

T ∗TF =

�
R
ei(t−t′)∆F (t′)dt′.
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We now compute that

∥T ∗TF∥Lq
tL

r
x(R×Rd)

(Minkowski) ≤
∥∥∥∥�

R

∥∥ei(t−t′)∆F (t′)
∥∥
Lr
x(Rd)

dt′
∥∥∥∥
Lq
t (R)

(Lm 2.10) ≲

∥∥∥∥�
R

1

|t− t′|d(
1
2
− 1

r
)
∥F (t′)∥Lr′

x (Rd)dt
′
∥∥∥∥
Lq
t (R)

(H-L-S) ≲ ∥F∥
Lq′
t Lr′

x (R×Rd)
.

(2.22)

One can check that the conditions for using the Hardy-Littlewood-Sobolev inequality are
satisfied given

d
(1
2
− 1

r

)
+

1

q′
= 1 +

1

q
⇐⇒ 2

q
+

d

r
=

d

2

and

0 < d
(1
2
− 1

r

)
,
1

q′
,
1

q
< 1 ⇐⇒ 1 < q < ∞ and 2 < r <

2d

d− 2
.

The condition for r is satisfied given 2 < q < ∞. Then, the T ∗T argument gives (i) and (ii).
It remains to prove (iii). From (i) and (ii), we have∥∥∥∥�

R
ei(t−t′)∆F (t′)dt′

∥∥∥∥
Lq
tL

r
x(R×Rd)

=

∥∥∥∥eit∆ �
R
e−it′∆F (t′)dt′

∥∥∥∥
Lq
tL

r
x(R×Rd)

≲

∥∥∥∥�
R
e−it′∆F (t′)dt′

∥∥∥∥
L2
x(Rd)

≲ ∥F∥
Lq̃′
t Lr̃′

x (R×Rd)
.

(2.23)

Using similar steps, for any fixed −∞ ≤ a < b ≤ ∞, we also have∥∥∥∥� b

a
ei(t−t′)∆F (t′)dt′

∥∥∥∥
Lq
tL

r
x(R×Rd)

=

∥∥∥∥�
R
ei(t−t′)∆1(a,b)(t

′)F (t′)dt′
∥∥∥∥
Lq
tL

r
x(R×Rd)

≲ ∥1(a,b)(t′)F (t′)∥
Lq̃′
t′ L

r̃′
x (R×Rd)

≤ ∥F∥
Lq̃′
t Lr̃′

x (R×Rd)
.

(2.24)

We need to insert a time interval depending on t. When (q, r) = (q̃, r̃), we use similar steps
as in (2.22) to obtain∥∥∥∥� t

−∞
ei(t−t′)∆F (t′)dt′

∥∥∥∥
Lq̃
tL

r̃
x(R×Rd)

=

∥∥∥∥�
R
ei(t−t′)∆1(−∞,t](t

′)F (t′)dt′
∥∥∥∥
Lq̃
tL

r̃
x(R×Rd)

≲

∥∥∥∥�
R

1

|t− t′|d(
1
2
− 1

r
)
∥1(−∞,t]F (t′)∥Lr̃′

x (Rd)dt
′
∥∥∥∥
Lq
t (R)

≤ ∥F∥
Lq̃′
t Lr̃′

x (R×Rd)
.

(2.25)
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Then, when (q, r) = (∞, 2), for any fixed t ∈ R, we perform the following computations:∥∥∥∥� t

−∞
ei(t−t′)∆F (t′)dt′

∥∥∥∥2
L2
x(Rd)

=

〈� t

−∞
ei(t−t1)∆F (t1)dt1,

� t

−∞
ei(t−t2)∆F (t2)dt2

〉
L2
x(Rd)

(2.21) =

〈� t

−∞
e−it1∆F (t1)dt1,

� t

−∞
e−it2∆F (t2)dt2

〉
L2
x(Rd)

(2.21) =

� t

−∞

〈
F (t1),

� t

−∞
ei(t1−t2)∆F (t2)dt2

〉
L2
x(Rd)

dt1

(Hölder) ≤
�
R
∥F (t1)∥Lr̃′

x (Rd)

∥∥∥∥� t

−∞
ei(t1−t2)F (t2)dt2

∥∥∥∥
Lr̃
x(Rd)

dt1

(Hölder) ≤ ∥F∥
Lq̃′
t Lr̃′

x (R×Rd)

∥∥∥∥� t

−∞
ei(t1−t2)F (t2)dt2

∥∥∥∥
Lq̃
t1
Lr̃
x(R×Rd)

(2.24) ≲ ∥F∥2
Lq̃′
t Lr̃′

x (R×Rd)
.

This gives ∥∥∥∥� t

−∞
ei(t−t′)∆F (t′)dt′

∥∥∥∥
L∞
t L2

x(R×Rd)

≲ ∥F∥
Lq̃′
t Lr̃′

x (R×Rd)
. (2.26)

To prove (iii), thanks to (2.24), we write 1[0,t] = 1(−∞,t] − 1(−∞,0), so that our goal is to
show ∥∥∥∥� t

−∞
ei(t−t′)∆F (t′)dt′

∥∥∥∥
Lq
tL

r
x(R×Rd)

≲ ∥F∥
Lq̃′
t Lr̃′

x (R×Rd)
. (2.27)

If q ≥ q̃, (2.27) follows from interpolating (2.25) and (2.26). If 2 < q < q̃, we have∥∥∥∥� ∞

t
ei(t−t′)∆F (t′)dt′

∥∥∥∥
Lq
tL

r
x(R×Rd)

(duality) = sup
∥G∥

L
q′
t Lr′

x
≤1

∣∣∣∣ �
R

〈� ∞

t
ei(t−t′)∆F (t′)dt′, G(t)

〉
L2
x(Rd)

dt

∣∣∣∣
((2.21) & Fubini) = sup

∥G∥
L
q′
t Lr′

x
≤1

∣∣∣∣ �
R

〈
F (t′),

� t′

−∞
ei(t

′−t)∆G(t)dt

〉
L2
x(Rd)

dt′
∣∣∣∣

(Hölder) ≤ sup
∥G∥

L
q′
t Lr′

x
≤1

∥F∥
Lq̃′
t Lr̃′

x (R×Rd)

∥∥∥∥� t

−∞
ei(t−t′)∆G(t′)dt′

∥∥∥∥
Lq̃
tL

r̃
x(R×Rd)

((2.27) with q ≥ q̃) ≲ sup
∥G∥

L
q′
t Lr′

x
≤1

∥F∥
Lq̃′
t Lr̃′

x (R×Rd)
∥G∥

Lq′
t Lr′

x (R×Rd)

= ∥F∥
Lq̃′
t Lr̃′

x (R×Rd)
.

This gives (2.27) by writing 1(−∞,t] = 1− 1(t,∞) and using (2.23). □

2.4. More on local well-posedness of NLS. In this subsection, we consider two examples
of local well-posedness of NLS with low regularity.
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Our first example is the 1-d cubic NLS in L2(R):{
i∂tu+ ∂2

xu = ±|u|2u
u|t=0 = u0 ∈ L2(R).

(2.28)

The scaling critical regularity for the 1-d cubic NLS (2.28) is s = −1
2 , and so we expect (2.28)

to be locally well-posed.

Proposition 2.15 (Local well-posedness of cubic NLS in L2(R)). For any u0 ∈ L2(R), there
exists T = T (∥u0∥L2(R)) > 0 such that there exists a unique solution u to NLS (2.28) in

the space C([−T, T ];L2(R))∩L8([−T, T ];L4(R)), and the solution u depends continuously on
u0 ∈ L2(R).

Proof. We note that (q, r) = (8, 4) is an admissible pair for the Strichartz estimates with
d = 1. We construct the solution in the space XT = C([−T, T ];L2(R)) ∩ L8([−T, T ];L4(R))
equipped with the norm

∥u∥XT
= ∥u∥CTL2

x(R) + ∥u∥L8
TL4

x(R).

We define

Γu0 [u](t) := eit∂
2
xu0 ∓ i

� t

0
ei(t−t′)∂2

x(|u|2u)(t′)dt′. (2.29)

By Lemma 2.4 (i) and the homogeneous Strichartz estimate in Proposition 2.14 (i), we have

∥eit∂2
xu0∥XT

= ∥eit∂2
xu0∥CTL2

x(R) + ∥eit∂2
xu0∥L8

TL4
x(R) ≲ ∥u0∥L2(R). (2.30)

By using the inhomogeneous Strichartz estimate in Proposition 2.14 (iii) with (q̃, r̃) = (8, 4)
and Hölder’s inequality in time, we have∥∥∥∥� t

0
ei(t−t′)∂2

x(|u|2u)(t′)dt′
∥∥∥∥
XT

=

∥∥∥∥� t

0
ei(t−t′)∂2

x(|u|2u)(t′)dt′
∥∥∥∥
L∞
T L2

x(R)
+

∥∥∥∥� t

0
ei(t−t′)∂2

x(|u|2u)(t′)dt′
∥∥∥∥
L8
TL4

x(R)

≲
∥∥|u|2u∥∥

L
8
7
T L

4
3
x (R)

≲ T
1
2

∥∥|u|2u∥∥
L

8
3
T L

4
3
x (R)

= T
1
2 ∥u∥3L8

TL4
x(R)

≤ T
1
2 ∥u∥3XT

.

(2.31)

Thus, from (2.30) and (2.31), we get

∥Γu0 [u]∥XT
≲ ∥u0∥L2(R) + T

1
2 ∥u∥3XT

.

Using similar steps, we get the following difference estimate:

∥Γu0 [u]− Γu0 [v]∥XT
≲ T

1
2
(
∥u∥XT

+ ∥v∥XT

)
∥u− v∥XT

.

Thus, by choosing T = T (∥u0∥L2(R)) > 0 sufficiently small, we obtain that Γu0 is a contraction
on a ball in XT , which gives the desired local well-posedness result. □

Our second example is the 2-d cubic NLS in L2(R2):{
i∂tu+∆u = ±|u|2u
u|t=0 = u0 ∈ L2(R2).

(2.32)
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The scaling critical regularity for the 2-d cubic NLS (2.32) is s = 0, and so we are in the
scaling critical case. It turns out that (2.32) is locally well-posed.

Proposition 2.16 (Local well-posedness of cubic NLS in L2(R2)). For any u0 ∈ L2(R2),
there exists T = T (u0) > 0 such that there exists a unique solution u to NLS (2.28) in the
space C([−T, T ];L2(R2)) ∩ L4([−T, T ];L4(R2)), and the solution u depends continuously on
u0 ∈ L2(R).

Proof. We note that (q, r) = (4, 4) is as admissible pair for the Strichartz estimate with
d = 2. We construct the solution in the space XT = C([−T, T ];L2(R)) ∩ L4([−T, T ];L4(R))
equipped with the norm

∥u∥XT
= ∥u∥CTL2

x(R) + ∥u∥L4
TL4

x(R).

Let Γu0 be as in (2.29). If we proceed as in the 1-d case, we get

∥Γu0 [u]∥XT
≤ C∥u0∥L2(R) + C∥u∥3XT

.

Note that there is no power of T in front of ∥u∥3XT
. This argument still works, but only for

small enough initial data.
To cover arbitrary L2(R2)-initial data, we do not apply the Strichartz estimate for the

linear Schrödinger propagator and arrive at

∥Γu0(u)∥L4
TL4

x(R2) ≤ ∥eit∆u0∥L4
TL4

x(R2) + C∥u∥3L4
TL4

x(R2).

Let η > 0 be a small number to be specified later. Then, since u0 ∈ L2(R2), there exists a
small T = T (u0) > 0 such that

∥eit∆u0∥L4
TL4

x(R2) ≤
η

2
.

We define

Bη := {u ∈ L4([−T, T ];L4(R2)); ∥u∥L4
TL4

x(R2) ≤ η}.

Then, for any u ∈ Bη, we have

∥Γu0(u)∥L4
TL4

x(R2) ≤
η

2
+ Cη3 ≤ η

given η > 0 sufficiently small. Also, for any u, v ∈ Bη, we have

∥Γu0(u)− Γu0(v)∥L4
TL4

x(R2) ≤ C ′(∥u∥2L4
TL4

x(R2) + ∥v∥2L4
TL4

x(R2)

)
∥u− v∥L4

TL4
x(R2)

≤ 2C ′η2∥u− v∥L4
TL4

x(R2),

where we may further shrink η so that 2C ′η2 ≤ 1
2 . We then run the contraction argument on

Bη to obtain a unique solution u to (2.32). We also note that u ∈ C([−T, T ];L2(R2)) via

∥u∥CTL2
x(R2) = ∥Γu0 [u]∥CTL2

x(R2) ≲ ∥u0∥L2(R2) + ∥u∥3L4
TL4

x(R2) ≤ ∥u0∥L2(R2) + η3 < ∞.

□

Remark 2.17. For the 2-d cubic NLS, the local existence time T depends on the profile
of the initial data u0 (but not just on ∥u0∥L2(R2) as in the scaling subcritical cases). Such
phenomenon is the critical nature of the problem.
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2.5. Global well-posedness of NLS. In this subsection, we show that in some desired
situations, we can upgrade local-in-time well-posedness result of NLS into a global-in-time
well-posedness result.

For simplicity, let us focus on the positive time line. By iterating the local well-posedness
argument, we are able to extend the solution u to the time interval [0, Tmax), which means that
u ∈ C([0, Tmax);H

s(Rd)). If Tmax = ∞, we obtain a global-in-time solution, which means that
the equation is globally well-posed. If Tmax < ∞, then we must have limt↗Tmax ∥u(t)∥Hs(Rd) =

∞ (otherwise we have a contradiction in view of local well-posedness), which refers to the
finite-time blowup phenomenon.

Let us focus on good behaviors of the solution, i.e. when we are able to obtain global-in-
time solutions. In the local well-posedness result we have already seen (except for the scaling

critical case), the local existence time T > 0 depends proportionally on ∥u0∥−θ
Hs(Rd)

for some

θ > 0. Thus, if we can provide an upper bound for ∥u(t)∥Hs(Rd) for all t ∈ R, we are able to
iterate the local well-posedness argument and obtain a global-in-time solution. The idea is
illustrated in the following figure:

For NLS, one can use conservation laws to obtain upper bounds for ∥u(t)∥Hs(Rd). There
are two particularly useful conservation laws for NLS:

{
i∂tu+∆u = ±|u|p−1u

u|t=0 = u0.
(2.33)

One is the conservation of mass:

M [u](t) =

�
Rd

|u(t, x)|2dx.

The other one is the conservation of energy (or Hamiltonian):

E[u](t) =
1

2

�
Rd

|∇u(t, x)|2dx± 1

p+ 1

�
Rd

|u(t, x)|p+1dx.

By conservation, we mean M [u](t) = M [u](0) and E[u](t) = E[u](0) for any t ∈ R, provided
that all quantities are well-defined and finite. Let us assume that u is a smooth solution to
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(2.33). Then, by using the equation with an integration by parts, we get

d

dt
M [u](t) =

d

dt

�
Rd

|u(t, x)|2dx

= 2Re

�
Rd

∂tu(t, x)u(t, x)dx

= 2Re i

�
Rd

∆u(t, x)u(t, x)dx∓ 2Re i

�
Rd

|u(t, x)|p+1dx

= −2Re i

�
Rd

|∇u(t, x)|2dx

= 0,

(2.34)

which shows the conservation of mass. Similarly, one can also verity the conservation of
energy.

However, the computation in (2.34) is only formal, since at the moment our solution
constructed using the Banach-fixed point theorem is only in the sense of the Duhamel formu-
lation. To show conservation of mass and energy for general solutions (as opposed to smooth
solutions), some extra work is needed.

Let us first mention the following product lemma, whose proof can be found in [4,
Lemma A.8].

Lemma 2.18 (Product lemma). Let d ∈ N and s ≥ 0. Then, we have

∥fg∥Hs(Rd) ≲s,d ∥f∥Hs(Rd)∥g∥L∞(Rd) + ∥f∥L∞(Rd)∥g∥Hs(Rd).

Let us now show an important property called the persistence of regularity. Namely, under
certain conditions, if the initial data lies in some higher order Sobolev space, then the solution
remains bounded in the same Sobolev space.

Proposition 2.19 (Persistence of regularity). Let d ∈ N, s ≥ 0, T > 0, and u be a solution
to (2.33) with u0 ∈ Hs(Rd). If u ∈ Lp−1([−T, T ];L∞(Rd)), then u ∈ C([−T, T ];Hs(Rd)).

Proof. From the Duhamel formulation, we have

u(t) = eit∆u0 ∓ i

� t

0
ei(t−t′)∆(|u|p−1u)(t′)dt′.

Then, for any t ∈ [−T, T ], we have

∥u(t)∥Hs(Rd) ≤ ∥u0∥Hs(Rd) +

� t

0

∥∥(|u|p−1u)(t′)
∥∥
Hs(Rd)

dt′

(Lm 2.18) ≤ ∥u0∥Hs(Rd) + Cs,d

� t

0
∥u(t′)∥p−1

L∞(Rd)
∥u(t′)∥Hs(Rd)dt

′.

Thus, by Grönwall’s inequality, we get

∥u(t)∥Hs(Rd) ≤ ∥u0∥Hs(Rd) exp
(
Cs,d∥u∥p−1

Lp−1
T L∞

x (Rd)

)
.

Together with the continuity of u in time, this bound gives the desired property. □

Let us mention another very useful tool in the study of PDEs.
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Lemma 2.20 (Sobolev’s inequality). Let d ∈ N.
(i) If 2 < p < ∞ and s > 0 satisfy

s

d
≥ 1

2
− 1

p
,

then we have

∥f∥Lp(Rd) ≲s,d,p ∥f∥Hs(Rd).

(ii) If s > 0 satisfies

s

d
>

1

2
,

then we have

∥f∥L∞(Rd) ≲s,d ∥f∥Hs(Rd).

Proof. We only prove the inequality with s
d > 1

2−
1
p . We have the following Hausdorff-Young’s

inequality:

∥f∥Lp(Rd) ≤ ∥f̂∥Lp′ (Rd)

with 1
p + 1

p′ = 1, which follows from interpolating

∥f∥L∞(Rd) ≤ ∥f̂∥L1(Rd) and ∥f∥L2(Rd) = ∥f̂∥L2(Rd).

Thus, by Hölder’s inequality, we get

∥f̂∥Lp′ (Rd) ≤ ∥⟨·⟩sf̂∥L2(Rd)∥⟨·⟩−s∥
L

2p′
2−p′ (Rd)

≲ ∥f∥Hs(Rd),

where we used the fact that

2sp′

2− p′
=

s
1
2 − 1

p

> d.

This finishes the proof. □

Remark 2.21. Here is a more general version of Sobolev’s inequality. For a proof, we refer
the interested readers to [2, Theorem 1.3.5]. Let d ∈ N, 1 < p ≤ q < ∞, and s > 0 be such
that s

d ≥ 1
p − 1

q . Then, we have

∥f∥Lq(Rd) ≲s,d,p,q ∥⟨∇⟩sf∥Lp(Rd).

If q = ∞ and s
d > 1

p , then

∥f∥L∞(Rd) ≲s,d,p ∥⟨∇⟩sf∥Lp(Rd).

The heuristic for Sobolev’s ienquality is that we can trade regularity s for higher integrability.

Let us now consider the 1-d cubic NLS in H1(R):{
i∂tu+∆u = |u|2u
u|t=0 = u0 ∈ H1(R).

(2.35)

The equation is known to be locally well-posed from the regime s > d
2 .

Proposition 2.22 (Conservation of mass and energy). Let u be the local-in-time solution to
(2.35) with u0 ∈ H1(R) in C([−T, T ];H1(R)) for some T > 0. Then, M [u](t) = M [u](0) and
E[u](t) = E[u](0) for all t ∈ [−T, T ].
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Proof. Let us first consider smooth initial data u0 ∈ H∞(R) =
⋂

s∈RHs(R). Our goal is
to show that u satisfies (2.35) in the classical sense. By Hölder’s inequality and Sobolev’s
inequality, we know that

∥u∥L2
TL∞

x (R) ≲ ∥u∥CTH1
x(R) < ∞.

Thus, by the persistence of regularity, we know that

∥u∥CTHs
x(R) < ∞

for any s ≥ 0. From the Duhamel formulation, we note that

u(t, x) =

�
R
e−4π2it|ξ|2 û0(ξ)e

2πiξ·xdξ

− i

� t

0

�
R
e−4π2i(t−t′)|ξ|2(|u|2u)∧(t′, ξ)e2πiξ·xdξdt′.

(2.36)

In order to take the time derivative of (2.36), we need to justify the switching of ∂t with
�
R dξ,

which can be done by using the Lebesgue dominated convergence theorem after checking that

�
R
|ξ|2|û0(ξ)|dξ ≤

( �
R

|ξ|4

⟨ξ⟩6
dξ

) 1
2
(�

R
⟨ξ⟩6|û0(ξ)|2

) 1
2

≲ ∥u0∥H3(R) < ∞

and �
Rd

|ξ|2
∣∣(|u|2u)∧(t, ξ)∣∣dξ ≲

∥∥|u|2u∥∥
CTH3

x(R)
≲ ∥u∥3CTH3

x(R)
< ∞,

where we used the Cauchy-Schwarz inequalities and the algebraic property of Hs(Rd) with

s > d
2 . Similarly, one can justify the switching of ∂2

x with
�
R dξ and

� t
0 dt

′. One can then
compute that

∂tu(t, x) = −4π2i|ξ|2
�
Rd

e−4π2it|ξ|2 û0(ξ)e
2πiξ·xdξ

− i

�
R
(|u|p−1u)∧(t, ξ)e2πiξ·xdξ

− 4π2|ξ|2
� t

0

�
R
e−4π2i(t−t′)|ξ|2(|u|p−1u)∧(t′, ξ)e2πiξ·xdξdt′

= i∂2
xu(t, x)− i(|u|2u)(t, x).

We also check that

M [u](t) = ∥u(t)∥2L2(R) ≤ ∥u(t)∥2H1(R) < ∞

and

E[u](t) =
1

2
∥∇u(t)∥2L2(R2) +

1

4
∥u(t)∥4L4(R) ≲ ∥u(t)∥2H1(R) + ∥u(t)∥4H1(R) < ∞

for any t ∈ [−T, T ], where we used Sobolev’s inequality in the last step. Thus, we can
perform the computation in (2.34) and get M [u](t) = M [u](0) and E[u](t) = E[u](0) for all
t ∈ [−T, T ]

We now consider rough initial data u0 ∈ H1(R). We take a sequence of smooth functions
{u0,n}n∈N ⊂ H∞(R) such that u0,n → u0 in H1(R). Let un be the local-in-time solution to
(2.33) with initial data u0,n. Then, by the continuity of the solution map with respect to the
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initial data, we have un → u in C([−T, T ];H1(R)) for some T > 0. Thus, for any t ∈ [−T, T ],
we have

M [u](t) = lim
n→∞

M [un](t) = lim
n→∞

M [un](0) = M [u](0)

and

E[u](t) = lim
n→∞

E[un](t) = lim
n→∞

E[un](0) = E[u](0),

as desired. □
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