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1. INTRODUCTION

1.1. Dispersive partial differential equations. Let us consider the following linear PDE:

{&tu:Lu (1)

uli=o = uo,

where u = u(t,z) : Rx R? - F with F = R or C, and L is a skew-adjoint constant coefficient
differential operator in space. More precisely, L takes the form

Lu = Z caOyu
lor| <k
with k € N, ¢, € F, and o = (ay,...,qq) € Zéo ranging over all multi-indices with |a| =

a1+ -+ ag < k, and L satisfies

/]Rd Lu(z)v(x)dx = — /]Rd u(x)Lv(x)dx

for all test functions u and v. We may also write L = i - h(D), where

1 1 1
D = Tv == <f8wl,...,f8xd)
i i i
and h is the polynomial
h‘(é.la e 7€d) = Z ilal_lcag?l e fgd
lor| <k
One may easily verify (using integration by parts) that L being skew-adjoint is equivalent
to the coefficients of h being real-valued. The polynomial & is referred to as the dispersion
relation of the equation (1.1)).
Let us now look at some examples of linear PDEs of the form (|1.1)). The transport equation
is given by
Ou=—v-Vu
ult=0 = uo
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for some constant vector v € R?. The transport equation has the explicit solution u(t,x) =
ug(z — tv) and has the dispersion relation h(§) = —v - §. Another example is the free
Schrodinger equation:

10u+ Au =0
{ ul=0 = uo,
where A = 831 o 02 , 1s the Laplacian. The free Schrédinger equation has the dispersion
relation h(¢) = —[£|?. We also have the one-dimensional Airy equation:
Opu + O2u = 0
{ Ul¢=0 = uo.

The Airy equation has the dispersion relation h(¢) = &£3.
A powerful tool for solving these PDEs is the Fourier transform:

F&) = [ fl@)e ™ " da.
Rd
Let us perform some formal computations. By taking the Fourier transform of (|L.1f), we have

which is an ordinary differential equation (ODE) with the time ¢ as the variable. By solving
this ODE, we obtain

a(t, &) = e, (¢). (1.2)

Thus, by applying the Fourier inversion formula, we obtain the solution
u(t,x) _ / eith(?ﬂg)ﬂmf'x%(f)d{.
Rd

By a first order Taylor expansion at a fixed frequency & € R?, we have
h(2m§) ~ h(2m&o) + 27 (€ — &o) - VA(27Eo),
so that (by ignoring the constant that is independent of &)

u(t,x) ~ /]Rd e/ EVh@nto) F2miCeq, (£)d¢ = ug(z +t - VR(27Ep)). (1.3)

From , we see that if ug has spatial frequency roughly &y (i.e. ug is concentrated near
&), then u(t) will have spatial frequency roughly &y for all times. Also, we see that u will
oscillate in time with frequency roughly h(&p). From , we see that u will travel with
velocity roughly VA (271y). The quantity Vh is called the group velocity.

A linear PDE of the form is called a dispersive PDE if different frequencies in this
equation tend to propagate at different velocities, thus dispersing the solution over time. In
view of , the linear PDE ({1.1)) is a dispersive PDE if the group velocity Vh(&) depends
on £. In the three examples above, we see that the free Schrédinger equation and the Airy
equation are dispersive PDEs, whereas the transport equation is not a dispersive PDE.

We may also consider dispersive equations that are second-order in time. An important
example is the wave equation:

{afu—Au:O

(u, Opu)|t=0 = (up,u1).
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By taking the Fourier transform, we obtain
o7u(t, ) + 4n*lgf*a(t, €) = 0,

which is a second-order ODE and has the solution

_ - in(2rt/€])
a(t, ) = cos(mtle)n(€) + 22D G (6)
2r[¢]
Since
2mit|€| —2mit|€| 2mit|g] _ —2mit|€]
cos(2rt|é]) = 1€ and  sin(2rt[¢]) = & ¢

2 2i ’
we can say that the wave equation has the dispersion relation h(§) = +|¢|. If the dimension
d > 2, we note that Vh(§) = |§|,
direction of propagation, but not the speed. Nevertheless, we still view the wave equation
as a dispersive equation. Here, we note that |Vh({)| = 1, which suggests finite speed of
propagation for wave equations.

which suggests that the frequency of a wave determines the

1.2. Basics of LP spaces and Fourier analysis. Let (X, 1) be a measure space. In most
of the situations, we take X = R? for some d € N and p to be the standard Lebesgue
measure. For 1 < p < oo, we recall that LP(X) = LP(X, u) is the space of all complex-valued
measurable functions f on X such that

£l e (x) : (/ |f(z)[Pdp(x > < 0.

If p = oo, then the space L>°(X) = L*°(X, ) is the space of all measurable functions f on
X that are bounded almost everywhere:

Hf”Loo(X) := esssup | f] ::inf{M >0:u({re X |f(x)]>M}) :O}.

Here, || - [[zr(x) is a complete norm that makes LP(X) a Banach space. When p = 2, the
space L?(X) is a Hilbert space with the inner product

= /X f(@)g(@)du(a).

An important tool that we will use frequently is Holder’s inequality: for any 1 < p,q,r < 00
with % = % + %, we have

1f9llrxy < [1fllzecxllgll acx)

Moreover, for any 1 < p < oo, one may compute the LP (]Rd)—norrn of a function via duality:

1w = / fa ()],
where % + z% =1.

Hgll Lo () S
Let (X, p) and (Y, v) be two measure spaces. For 1 < ¢,r < oo, the space LI(Y; L" (X)) is
defined by the norm

<1

1Al zszrvxx) = HHf”Lg(X)HLg(y)~
For 1 <r < ¢ < oo, we have the following Minkowski’s integral inequality:

H”f”L;(X)HLg(Y) < 1Al g v |

Ly(X)
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This norm is often used for space-time functions, where X = R? for some d € N refers
to the spatial domain and Y = R refers to the temporal domain. If the time variable is
restricted to an interval, say [T, 7] for some T > 0, we use the abbreviation L%L;(]Rd) to
denote L{([~T,T); L%(R%)). We also define the space C(R; L"(R?)) as the set of space-time
functions f such that the map

R >t f(t) € L"(RY)

is continuous.
Let us consider R? with the standard Lebesgue measure. The convolution of two functions
f,g € LY(R?) is defined by

= [ e =iy = [ gl -

An important tool is Young’s convolution inequality: for any 1 < p,q,r < oo with 1 + % =
% + %, if f € LP(R?) and g € LY(R?), then f * g exists almost everywhere and

1f * gl r ey < Ifll ey 19| a(ray-

We now consider the Fourier transform on R?. For a multi-index o = (a1,...,aq) € Z%m
we recall the notations 2 = z{" ---27* and 0% = 99! - - - 99¢. We define the Schwartz class
S(R?) as the set of smooth functions f € C*°(R?) such that for any multi-indices a, 3,

sup |229° f(z)| < oo.
z€RM

The space S(R?) is dense in LP(RY) for any 1 < p < oo. Given f € S(RY), we define the
Fourier transform of f as

1= | f@)e ™ dg,

We also define the inverse Fourier transform of f as

~

f@)=flmo) = | O de.

Given f,g € S(R?), we list the following useful properties:

~

(D 7 S

(2) ()Y -

(3) fRd (z)dz = [pa f(x)g(x)dx; R

(4) (P1 anCheTel s identity) ||f”L2(Rd Hf”L?(]Ri) = 1Yl L2 (ray;
(5) (Parseval’s relation) [pq f(z)g(x)dx = [pa f(€)g()dE;

6) [1f1l 1 ®dy < [ fll (RY) and || f| oo ey < 11l 1 (R)

(7) (2*F)NE) = (2mi&)*F(£);

®) @) (@) = (-2min) f);

(9) With fe(z) =" "f(e"'w), (&) = [ (£8);

(10) f+g=fgand fg=f*3.

We then define &’(R?) as the space of continuous linear functionals on S(RY), i.e. the
set of linear and continuous maps f : S(R?) — C. Elements in S'(R?) are called tempered
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distributions on R%. Due to property (3) above, we can define the Fourier transform of a
tempered distribution f € S'(RY) as

(f.9) = (£,
for any g € S(RY).
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