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1 Introduction: Strong Compactness

This short section covers a few notions on weak convergence. The goal is not to provide a thorough
presentation of the topic, but merely to give intuition on this notion through a few statements
and examples. Most of the proofs will be ignored, and we refer instead to the standard textbook
[1], which covers more than what is needed to follow these notes.

As the student will probably have understood from the proofs in these notes, compactness is
one of the main tools used to construct solutions of PDEs, and finding compactness properties of a
family (fn) (say of approximate solutions) is the principle challenge of a proof. Said compactness
is usually obtained through uniform bounds: assume there is a Banach space X such that

∥fn∥X ≤ R

for some constant R > 0. Then, if the ball B(0, R) ⊂ X can be compactly embedded in a Banach
(or metric) function space Y , one may extract a limit in Y . There is an extraction ϕ : N−→N
and a f ∈ Y such that

fϕ(n)−→ f in Y.

For example, take X = H1. Then, the Rellich-Kondrachov theorem states that the embedding
H1 ⊂ L2

loc is compact.

Theorem 1 (Rellich-Kondrachov (Theorem 3.16 in [1])). The embedding H1 ⊂ L2
loc is compact.

In other words, any bounded subset A ⊂ H1 is a relatively compact subset of L2
loc.

In the above, the space L2
loc is the space of locally L2 functions on Rd. A measurable function

f : Rd−→R is locally L2 if the function 1Kf is L2 for any compact subset K ⊂ Rd. Note that
the space L2 is not a Banach space. Instead, its topology is defined by a metric:

d(f, g) :=
∞∑
k=1

1

2k
min

{
1, ∥f − g∥L2(Bk)

}
,

where Bk = B(0, k) are balls of increasing radius k ≥ 1 whose union cover the whole space
Rd =

⋃
k Bk. A sequence of functions (fn) converges in L2

loc to f ∈ L2
loc if and only if the

convergence
1Kfn−→1Kf in L2

holds for all compact subset K ⊂ Rd. Examples of L2
loc functions include (say of d = 1) ex,

polynomials, xϵ−1/2, etc.

Example 2. Consider the sequence of functions fn(x) = exp(−(x−n)2) defined on the real line.
It is bounded in H1

loc, and converges locally to zero in L2
loc: for any compact interval I ⊂ R,

exp(−(x− n)2)−→ 0 in L2(I).

However, note that (fn) does not converge to zero in L2(R), because it is of constant norm
∥fn∥L2 = C > 0.
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2 Presenting Weak Convergence

We continue to explore the question of extracting a converging sequence from a bounded sequence
(fn) in a Banach space X. Assume again that X is compactly embedded in a (metric) vector
space Y , so that we have convergence of an extraction

fϕ(n)−→ f in Y.

Several questions emerge. Firstly, what can be said about the limit f? Obviously, it is an element
of Y , but since Y is a larger space than X, we could hope for more. Especially as the sequence
(fn) remains bounded in X, it seems intuitive that the limit f somehow should also be an element
of X. This is generally true.

Let us see how this works on an example. We look again at the situation from the previous
section: let (fn) be a bounded sequence of functions in H1. We know that an extraction converges
in L2

loc,

(1) fϕ(n)−→ f in L2
loc.

In particular, for any smooth and compactly supported ψ ∈ D, we have∫
fϕ(n)(x)ψ(x) dx−→

∫
f(x)ψ(x) dx.

This implies that the limit f satisfies an inequality of the form

sup
∥ψ∥H−1≤1

∣∣∣∣∫ f(x)ψ(x) dx

∣∣∣∣ ≤ lim
n

∥fn∥H1 < +∞,

where in the above H−1 is the dual space of H1 (see the remark immediately below). Since D is
a dense subspace of H−1, this means that f must be an element of H1.

Remark 3. The Sobolev space H1 is a Hilbert space, so the reader may be surprised to see that
the dual space H−1 = (H1)′ is considered to be a different space than H1. This is a subtle but
important point. The space H1 is a Hilbert space for the scalar product

⟨f, g⟩H1 :=

∫ (
fg +∇f · ∇g

)
dx.

The Riesz representation theorem implies that any bounded linear map T ∈ (H1)′ can be repre-
sented by a function g ∈ H1 through the formula T (f) = ⟨g, f⟩H1 . However, the bounded linear
map T also defines a distribution h ∈ D′ through the relation

(2) ∀ψ ∈ D, T (ψ) := ⟨h, ψ⟩D′×D.

If h were a locally integrable function, the bracket above would be equal to T (ψ) =
∫
hψ. The

issue is that h and g are not equal as distributions, since they are not defined by the same formula.
In fact, while g is a H1 function, the distribution T is in general the derivative of a L2 function.
The set of distributions T such that the map (2) is bounded on H1 is called H−1. Both H−1 and
H1 are isometric to the dual space H1 (and so to each other), but they are not identical as spaces
of distributions!

We continue with this example. We have proven that the L2
loc limit f still is a H1 function.

This is more than the simple L2
loc convergence (1) gives by itself, and follows from the fact that (fn)

is a bounded sequence of H1. The next natural question is then whether the sequence converges
to f in some stronger topology than L2

loc. Again, the answer is yes.
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Definition 4. Consider H a Hilbert space and (fn) a sequence of elements of H. We say that
(fn) converges weakly in H to an element f ∈ H if

∀g ∈ H, ⟨fn, g⟩H −→⟨f, g⟩H .

This is noted fn⇀g (in H).

This convergence is called weak, whereas convergence in the norm topology of H is strong.
To provide intuition, let us give a couple of examples.

Example 5. Consider again the sequence fn(x) = exp(−(x−n)2). Then fn⇀ 0 in H1. However,
the sequence (fn) does not converge strongly in H1.

Example 6. Consider the sequence fn(x) = exp(inx) ∈ L2(T), where T = R/2πZ. Then it
follows from the Riemann-Lebesgue theorem that fn⇀ 0 in L2(T). Again, the sequence (fn) does
not converge strongly in L2(T).

The weak topology of H is the coarsest topology of H such that all linear maps T ∈ H ′ are
continuous. The main interest of the weak topology of a Hilbert space H is that is turns H into
a locally compact topological space.

Theorem 7. Let H be a (not necessarily separable) Hilbert space and (fn) a bounded sequence of
elements of H. Then there exists a f ∈ H and an extraction ϕ : N−→N such that

fϕ(n)⇀f in H.

Moreover, the norm of the weak limit is bounded by

∥f∥H ≤ lim
n

∥fn∥H .

Remark 8. The main issue with the notion of weak convergence is that it is poorly suited to
non-linear problems: the function product (f, g) 7→ fg is usually not continuous for the weak
topology. For example, we have seen that e±inx⇀ 0 in L2(T). However, einxe−inx = 1 does not
tend to zero.

3 Weak and Weak-(∗) Convergence

In the analysis of PDEs, it is very frequent to have to deal with Banach spaces that are not
Hilbert. In that case, it is convenient to also define a notion of weak convergence.

Definition 9. Consider a sequence (fn) of elements of a Banach space X and let f ∈ X. We say
that fn converges weakly to f in X and note

fn⇀f in X

if for any bounded linear map g ∈ X ′, we have

⟨g, fn⟩X′×X −→⟨g, f⟩X′×X .

The weak topology of X, sometimes noted σ(X,X ′), is the coarsest topology on X such that
all bounded linear maps are continuous. If X = H is a Hilbert space, then weak convergence
as defined immediately above is identical to the notion of weak convergence from the previous
paragraph.

The weak topology in Banach spaces possesses very nice properties. For instance, a lower semi-
continuous convex function on X (for the norm topology) is also lower semi-continuous for the
weak topology. This fact plays an important role in the optimization theory of convex functionals.
However, it suffers from a fatal flaw: the weak topology is not, for general Banach spaces, locally
compact. The typical example of this bad behavior is L1(Rd).
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Example 10. Consider the sequence of functions fn(x) = 1[0,1](x − n), which is bounded in
L1(R). Let ϕ : N−→N be an extraction. Then (fϕ(n)) does not converge for the weak topology.
To see this, let g ∈ L∞(R) (recall that (L1)′ = L∞) be defined by

g(x) =

{
1 if x ∈ [ϕ(k), ϕ(k) + 1[ when k is even
−1 if x ∈ [ϕ(k), ϕ(k) + 1[ when k is odd.

Then the brackets
⟨g, fϕ(n)⟩L∞×L1 =

∫
g(x)fϕ(n)(x) dx = (−1)n

never converge. Consequently, no extraction of the sequence (fn) converges weakly in L1. Note
that the sequence converges to zero in the weak topology of L2. In other words, the sequence (fn)
has a natural limit f = 0, which is an element of L1, but the weak topology of L1 is too strong
for the sequence to converge to that limit.

Example 11. Let χ ≥ 0 be a smooth function on R that is supported in [−1, 1] such that
∫
χ = 1.

We define the sequence (fn) by
fn(x) = nχ(nx).

Then, for any continuous function ϕ ∈ C0(R), we have the convergence

(3)
∫
fn(x)ϕ(x) dx−→ϕ(0).

Here the situation is different. The natural limit of the sequence (fn) is the Dirac delta δ0, which
is not an element of L1. In a sense, L1 is not “complete” for the weak convergence. This is another
example of bounded sequence which does not have a weak accumulation point in L1 for the weak
convergence.

These two examples show the need for another type of convergence. This will be supplied by
the notion of weak-(∗) convergence.

Definition 12. Let X be a Banach space that is the (topological) dual a Banach space Y , so that
X = Y ′ (we say that Y is the predual of X). We say that a sequence of elements (fn) of X
converges weakly-(∗) to f ∈ X and note

fn
∗
⇀f in X

if for any g ∈ Y we have
⟨fn, g⟩X×Y −→⟨f, g⟩X×Y .

The weak-(∗) topology is sometimes noted σ(X,Y ), and is the topology of bounded linear
maps (elements of Y ′ = X) associated to pointwise convergence. Once again, if X = H is
a Hilbert space, there is no difference with the notion of weak convergence from the previous
paragraph.

The main attribute of the weak-(∗) topology is that it turns X into a locally compact space
(this is the Banach-Alaoglu-Bourbaki theorem, see Theorem 3.16 in [1]). Moreover, if the predual
space Y is separable, then X is sequentially compact for the weak-(∗) convergence.

Theorem 13 (Banach-Alaoglu, Corollary 3.30 in [1]). Consider X a Banach space which has a
separable predual Y . Then any bounded sequence (fn) of elements of X has an accumulation point
for the weak-(∗) convergence: there is an extraction ϕ : N−→N and a f ∈ X such that

fϕ(n)
∗
⇀f in X.

Moreover, the limit satisfies
∥f∥X ≤ lim

n
∥fn∥X .
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Example 14. The space X = L∞(R) has predual L1(R), which is a separable Banach space. In
particular, any bounded sequence of L∞(R) functions has a weak-(∗) accumulation point. For
example, the sequence (fn) from Example 10 converges weakly-(∗) to f = 0.

Example 15. Let us look again at the sequence from Example 11, which is bounded in L1(R).
The issue is that the space L1(R) is not the dual of any Banach space (this is a consequence of the
Krein-Millman and Banach-Alaoglu-Bourbaki theorems), so that the weak-(∗) topology cannot
be defined on L1(R). A way to overcome this issue is to embed L1(R) into the larger space M(R)
of finite measures, which is a Banach space for the total mass norm

∀µ ∈ M(R), ∥µ∥M :=

∫
d|µ|(x).

In particular, L1(R) can be seen as the (closed) subspace of M(R) of finite measures which are
absolutely continuous with respect to the Lebesgue measure. The space M(R) is the dual of the
space C0(R) of continuous functions f that have limit f(x)−→ 0 at x → ±∞. Note that the
space C0(R) is separable, so that any bounded sequence of finite measures should have a weak
accumulation point for the weak-(∗) convergence. In the case of the sequence (fn) from Example
11, the convergence (3) shows that

fn
∗
⇀δ0 in M(R).

Example 16. In the case of Lebesgue spaces Lp(R) for 1 < p < +∞, things are much more
easier. Indeed, these spaces are reflexive, which means that they can be canonically1 identified
with their bi-dual (Lp)′′ = Lp. For reflexive Banach spaces, the weak and weak-(∗) topologies are
the same. Unfortunately, the spaces M(R) and L∞(R) are not reflexive, which makes the notion
of weak-(∗) topology indispensable.

Finally, as a conclusion to this discussion on weak convergence, we emphasize that the sep-
arability assumption for the predual in the Banach-Alaoglu Theorem 13 is absolutely necessary.
Otherwise the the weak-(∗) topology is locally compact, but not sequentially locally compact. In
order to stress this point, we give another series of examples.

Example 17. Consider the space Y = ℓ∞(N) of bounded sequences, which is not separable, and
note X = ℓ∞(N)′ its dual2. We define a sequence of bounded linear maps Tn : ℓ∞(N)−→R by
setting

∀u ∈ ℓ∞(N), Tn(u) := u(n).

Then, the sequence (Tn) converges to T ∈ ℓ∞(N)′ weakly-(∗) if and only if the limit

Tn(u) = u(n)−→T (u)

holds for all u ∈ ℓ∞(N). In other words, the convergence happens if and only if any bounded
sequence (u(n)) has a limit at n→ +∞, which is absurd. This shows that the sequence (Tn) does
not have an accumulation point for the weak-(∗) convergence, although the weak-(∗) topology
σ
(
ℓ∞(N)′, ℓ∞(N)

)
is (topologically) locally compact.

Example 18. We consider the sequence (Tn) from the previous example, but from a different
point of view. Let cℓ(N) be the space of sequences u that are convergent: for any u ∈ cℓ(N), the
limit limn u(n) exists. The space cℓ(N), equipped with the uniform norm ∥ . ∥∞ is a separable

1The adjective canonically means that the canonical embedding Lp −→(Lp)′′ is onto. There are non-reflexive
Banach spaces X that are isomorphic to their bi-dual X ′′, but such that the canonical embedding is not onto.

2The dual space ℓ∞(N) is a very complicated and-non explicit Banach space. It contains the space ℓ1(N) of
summable sequences, by the canonical embedding, but the construction of elements T ∈ ℓ∞(N)′ which are not in
ℓ1(N) requires the axiom of choice. It can be shown that ℓ∞(N)′ is the space of finite measures on the Stone-Cech
compactification βN of the natural numbers.
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Banach space, and the linear maps Tn : cℓ(N)−→R are bounded. The sequence (Tn) converges
weakly-(∗), and the limit T is given by

∀u ∈ cℓ(N), T (u) := lim
n
u(n).

Example 19. Finally, we look at the space ℓ1(N) of summable sequences. It is the dual of
the space c0(N) of sequences u which converge to zero u(n)−→ 0 (equipped with the uniform
norm). Since the space c0(N) is separable, ℓ1(N) is locally sequentially compact for the weak-(∗)
convergence. This is in sharp contrast with the space L1(R), although both spaces are Lebesgue
spaces of integrable functions: the first one for functions N−→R with the counting measure, and
the second one for functions R−→R with the Lebesgue measure.

4 Distributions and Distributional Convergence

In the paragraphs above, we have defined and studied increasingly weaker notions of convergence.
Here, we study one of the weakest topologies: that of distributions. As we will see, the notion of
distribution is not absolutely necessary to study PDEs: in most practical examples, one can find a
suitable weak topology (usually H−k for some k) to work with, and not bother with distributions.
However, distributions are very convenient as a unifying language. One could compare the theory
of distributions to that of categories: in itself, knowing that a given family of objects has a
categorical structure is useless, all the interesting properties are obtained through hard work on
the concrete objects. However, it provides a language in which to express theorems. The modern
formulation of the theory is largely due to Laurent Schwartz.3

The main idea of the theory of distributions is that of duality. As we know, for p > 1, the
Lebesgue space Lp can be identified to the dual Lp′ , since every function f ∈ Lp corresponds to
exactly one bounded linear functional

If :
Lp

′ −→ R
g 7−→

∫
fg.

We may generalize this. Let D := C∞
c be the set of smooth and compactly supported functions.

Then every function f ∈ L1
loc corresponds to exactly one linear functional

(4) If :
D −→ R

ϕ 7−→
∫
fϕ.

However, the continuity properties of this functional are not clear, as we have not defined a
topology on D.

Definition 20. Consider a sequence (ϕn) of D functions. We say that (ϕn) converges to a function
ϕ ∈ D if and only if, for every compact K ⊂ Rd and every k ∈ N,

∥∇kϕn −∇kϕ∥L∞(K) −→
n→∞

0.

This notion of convergence equips D a locally convex (although non-metric) topology.

A distribution is simply a continuous linear functional on D.

Definition 21. We call a distribution any linear functional I : D −→ R such that, for any
compact K ⊂ Rd, there is a k0 ∈ N and a constant C(K, k0) ≥ 0 for which the inequality

∀ϕ ∈ div,∀k ≤ k0, supp(ϕ) ⊂ K ⇒ |I(ϕ)| ≤ C(K, k0)
(
∥ϕ∥L∞(K) + ∥∇k0ϕ∥L∞(K)

)
.

3We refer to the excellent lecture notes [2] of F. Golse (in French) for a solid intriduction to the theory of
distributions.
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The number k0 is called the order of I on K. In particular, any function f ∈ L1
loc uniquely defines

a distribution If of order zero (on any compact K) through (4). The set of all distributions is
noted D′.

The previous definition shows that there is a natural embedding L1
loc ⊂ D′ of locally integrable

functions in the space of distributions. Consequently, it is customary to use a slight abuse of
notation4 and write f ∈ D′ when f ∈ L1

loc. However, distributions can be much more general that
L1
loc functions. We give a few examples.

Example 22. Consider the distribution δ0 : ϕ ∈ D 7−→ ϕ(0) ∈ R. Then δ0 is the Dirac delta, and
is an order zero distribution. More generally, any finite measure µ ∈ M defines a unique order
zero distribution through the formula Iµ(ϕ) =

∫
ϕ dµ. We have the embedding M ⊂ D′.

Example 23. Consider a non-negative distribution, that is a distribution I ∈ D′ such that if
ϕ ∈ D satisfies ϕ ≥ 0, then I(ϕ) ≥ 0. In particular, we have I(∥ϕ∥L∞ − ϕ) ≥ 0 and so

∀ϕ ∈ D,
∣∣I(ϕ)∣∣ ≤ ∥ϕ∥L∞ |I(1)|.

This implies that I defines a non-negative Radon measure on Rd, and, thanks to the embedding
M ⊂ D′ of the previous example, we can identify I with a non-negative measure I ∈ M.

Example 24. Consider the (tensor-valued) distribution ∇mδ0 : ϕ ∈ D 7−→ ∇mϕ(0) ∈ Rd. Then
∇mδ0 ∈ D′ is an order m distribution. In particular, it cannot be identified to any locally
integrable function, or to any (locally finite) measure.

Example 25. Consider the map I : D(R∗
+) −→ R defined by

I(ϕ) :=

∞∑
n=0

ϕ(n)
(
1

n

)
.

This map is well defined because every ϕ ∈ D(R∗
+) is supported away from x = 0. However, I

cannot be extended to a distribution (a map on D′(R)), because it cannot have a finite order on
a compact neighborhood of x = 0.

Example 26. The 1D measurable function f(x) = 1/|x| is not locally integrable, and therefore
does not define a distribution.

Due to the linearity of the definition of D, all linear operations can be performed on distribu-
tions. In addition, it is also possible to define the derivative of a distribution.

Definition 27. Consider a distribution I ∈ D′. We define the derivative ∇I ∈ D′ through the
formula

∀ϕ ∈ D, ∇I(ϕ) := −I(∇ϕ).

In particular, for any Sobolev function f ∈ W 1,1
loc , the distributional derivative ∇If and the weak

derivative (in the sense of Sobolev spaces) ∇f ≡ I∇f are the same, thanks to integration by parts.
In other words,

∀ϕ ∈ D, ∇If (ϕ) = −
∫

∇ϕf dx =

∫
ϕ∇f dx = I∇f (ϕ).

Therefore, the notion of distributional derivative extends that of weak derivative for Sobolev space
functions. Therefore, for any distribution f ∈ D′, we will also note ∇f it’s (distributional)
derivative.

4This is comparable to the abuse of notation that allows us to identify a locally measurable function f : R −→ R
with its class up to measure zero sets f ∈ L2, and with an element of the dual space f ∈ (L2)′.
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This has all kinds of applications. One is that it is always possible to consider the derivative
of a locally integrable function as a distribution, although may possibly not be identified to an
element of L1

loc. Another one, is that it is possible to consider distributional solutions of PDEs.
For example, the function f(t, x) = 1x≤t solves

∂tf + ∂xf = 0 in the sense of D′(R× R).

Likewise, the distribution ∇mδ0 defined earlier is indeed the m-th derivative of the Dirac delta
δ0.

Remark 28. A word of warning: the distributional derivative is distinct of the notion of almost
everywhere derivative, for almost everywhere differentiable functions. For example, the Cantor
“staircase” function is almost everywhere differentiable, and the almost everywhere derivative is
zero, while the distributional derivative is a non-zero and non-negative measure.

As the (topological) dual space of D, the space of distributions also has a notion of convergence,
which we state here.

Definition 29. Consider a sequence of distributions (In). We say that (In) converges to a dis-
tribution I ∈ D′ if and only if

∀ϕ ∈ D, In(ϕ) −→ I(ϕ) as n→ +∞.

In particular, the addition of distributions and the distributional derivative are continuous opera-
tions with respect to distributional convergence.

Distributional convergence has the usual properties of limits. For example, the distributional
limit is unique. In particular, this means that the distributional limit extends all the notions of
weak limits we have seen above: for example, any sequence of bounded functions (fn) that con-
verges weakly-(∗) in L∞ to some f ∈ L∞ also converges in the sense of distributions. Essentially,
distributional convergence is the weakest type of convergence that one can reasonable study in
the immense majority of PDE problems.5

Example 30. Consider fn(x) = einx. Then fn⇀ 0 in L2(T). In particular, we deduce that
fn −→ 0 in D′(T). The continuity of the distributional derivative implies that we also have, for
every k ∈ N, the convergence (in)keinx −→ 0 in D′(R).

Example 31. Note that the pointwise product of functions is not, in general, continuous (or
even well defined) in distributional topology. A classical example is, again fn(x) = einx, which
converges to zero as n → ∞. However, fnfn = 1 does not converge to zero in the sense of
distributions.

Example 32. Another example of bad behavior of a product is the Dirac mass δ0 defined above.
If δ1/n is the distribution defined by δ1/n(ϕ) = ϕ(1/n), then any reasonable definition of the
product should have δ0δ1/n = 0, although continuity would imply that the product tends to δ0.

One of the very convenient properties of distributional convergence is that a limit of distri-
butions, whenever it exists, always is a distribution. This is essentially a variant of the Banach-
Steinhaus theorem.

Proposition 33. Consider a sequence of distributions (In) such that the limit I(ϕ) := limn In(ϕ)
exists for every ϕ ∈ D. Then this limit is a distribution I ∈ D′.

5By choosing an even smaller space of test functions (i.e. a subspace X ⊂ D such as analytic functions on a
neighborhood of some real interval), it is possible to define even larger spaces than D′. This is the idea behind the
theory of hyperfunctions, although the usefulness of such spaces is rather limited for the study of non-linear PDEs,
which usually involve some regularity.
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As a concluding remark, one should note that, although the language of distributions is a
considerable generalization of all usual Sobolev functions (for example elements of H−k), provide
a global framework to most every type of weak convergence used in PDEs, and hence might seem
highly appealing to the student, we must nuance our enthusiasm by two sobering remarks.

Firstly, most non-linear PDEs do not have well-defined solutions unless some level of regularity
is granted. For example, it only makes sense to study the Burgers equation

∂tu+
1

2
∂x(u

2) = 0

for solutions u that have a well-defined square u2. In particular, the equation has no clear meaning
when u /∈ L2

loc. Therefore, the full power of distribution theory cannot be applied here. In fact, the
full generality of distributions (or hyperfunctions) is mostly useful for studying linear equations
with smooth coefficients, with techniques that border on algebra, and are more distant to the
methods of non-linear analysis.

Secondly, most non-linear PDEs or linear PDEs with non-smooth coefficients have non-unique
distributional solutions, but unique smooth (enough) solutions. In other words, any solution that
has interesting properties, usually also has some given regularity, while general distributional
solutions (when they make sense) may have a pathological behavior. For example, the Burgers
equation above has unique smooth solutions for a given initial datum, but an infinite set of weak
irregular solutions (say solutions u ∈ L∞(R×R) in the sense of distributions). But this is a topic
in itself.

5 Summary

Let us summarize the different ideas and types of convergence we have discussed so far.

• In a Hilbert space: any bounded sequence has a weak accumulation point. The weak
topology is very nice. If only all spaces were Hilbert spaces.

• The weak convergence has nice properties, but the weak topology is usually not locally
compact. This creates issues in spaces like L1(R).

• Weak-(∗) convergence: the topology is locally compact, and even locally sequentially
compact if the predual is separable. The typical spaces in which weak-(∗) convergence is
used are L∞(R) and M(R). Bad things happen when the predual is not separable.

• For reflexive spaces the weak and weak-(∗) convergences are the same. For example, in
Lp(R) when 1 < p < +∞. Outside of Hilbert spaces, this is the most agreeable case.
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