V5B8 — Selected Topics in Analysis
The vector field method and quasilinear wave equations
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1 Introduction

In this course, we would like to study the lifespans of solutions to some special types of
quasilinear wave equations with small, smooth and localized initial data.

Lifespan: Given some initial data at ¢ = 0, what is the supremum of all 7' > 0, such that a
solution to a certain wave equation with the given data exists for 0 <t <7T7?

Quasilinear wave equations (studied in this course): Consider

Ou = (=07 + Ay)u = Fu,u/, u") in ]Rfrd = (0,00) x R%

Here u/,u” denote the first and second derivatives of u, respectively. An equation of this form
is a nonlinear wave equation. If F = 0, then we get a linear wave equation. If F = F(u,u’)
(independent of u”), then we get a semilinear wave equation. If F = ¢(u,u’) - v’ + f(u,v), then
we get a quasilinear wave equation.

Small, smooth and localized initial data: initial data in C°(R?) of size ¢ < 1.

Here are some examples. Unless specified otherwise, all the unknown functions in this note are
R-valued.

Example 1.1. Linear wave equation (with constant coefficients).
Ou = —ﬁfu +Azu=0 in ]lez)’;
(u, Oput) [i—0 = (u°,ul) € C(R3).
Fact. We have a global existence result. That is,
V(u®,u') € C°(R?), 3! a global solution u € C*(RY™) to to the Cauchy problem (@) (1.2)
Example 1.2. Semilinear wave equations.

Ou = (Opu)? in ]ng;

(1.3)
(u, ) |i=o = (eu’, eu') € C°(R3).
Ou = (Opu)? — |V pul? in RY™;

(1.4)

(u, Opu)|i=0 = (eu’,eul) € C°(R?).

Here (u°, u!) is an arbitrary pair of functions in C°(R?) (which are independent of ), and € € (0, 1)
is a sufficiently small constant depending on (u®, u').

Question 1. Does there exist a global solution in R}™ to (@)7

Answer. No. It is even worse. In fact, any nontrivial solution to (@) blows up in finite time.
This result was proved by Fritz John [Joh81,Joh85]. In general, the best result is an almost global
ezistence result:

V(ul,ul) € C*(R3), Fegp € (0,1), Vee (0,60), I a C™ solution to ([L.3) for ¢ € [0, exp(c/e)].
(1.5)
Here ¢y and ¢ are two small constants depending on the data.
Question 2. Does there exist a global solution in Rif?’ to (IL.4)7



Answer. Yes. We have

V(ul,ul) € C°(R3), 3ep € (0,1), Ve € (0,60), 3 a global C* solution to (Q) in RLT3.
(1.6)
We sometimes call it a small data global existence result. This result was proved by Klainerman
[Kla85, Kla84] and Christodoulou [Chr86].

Example 1.3. Quasilinear wave equations.

Ou = dyud?u in Rfr?);
(1.7)
(u, Opu)|i=0 = (eu®,eul) € C°(R?).

Ou = 8tu8t2u — V,u- V0 in ]Rf'?’;
(1.8)
(u, ) |1=o = (eu’, eu') € C°(R3).
Here (u°, u!) is an arbitrary pair of functions in C°(R?) (which are independent of ¢), and € € (0, 1)
is a sufficiently small constant depending on (u®, u').
Question. Does there exist a global solution in R1™ to (@) or (@)7
Answer. No for (@), and yes for (@) The results here are almost the same as those for (@)
and ([L.4). The only difference is that we need an extra condition on the sign of a certain integral
in the blowup result for (@)

’In this course, we seek to prove all the results listed above except the finite time blowup. ‘

Remark. Some remarks.
1) Why are the results different?

In fact, (Q) and (@) satisfy the null condition. Klainerman [Kla85,Kla84] and Christodoulou
[Chr86] proved that the null condition is sufficient for the small data global existence. If time
permitted, I would also introduce Hormander’s asymptotic equations (introduced by Héormander
[H97, H87,H91]) which are closely related to this question.

2) Why do we consider C2° data of size ¢ < 17

C2°: We will use the energy method which requires us to use integration by parts. Of course,
C¢* is usually too strong and not necessary.

Size e: We hope to view the nonlinear wave equations studied in this course as perturbations
of Ou = 0, so that solutions to those NLW behave as a linear solution as t — co. Extreme and
bad case: Ou = uAu, u =~ 2 = closer to Laplace’s equation A; ;u ~ 0 instead of Cu = 0.

3) Motivation. Why are we interested in the lifespan problem with small, smooth and localized
data?

e The Einstein vacuum equations in the wave coordinates become a system of quasilinear
wave equations (with R**“-valued unknowns). In this case, the lifespan problem is closely
related to the global stability problem. See Lindblad-Rodnianski [LR03, LRO5].

e The 3D compressible Euler equations can be written as a system of quasilinear wave equa-
tions (with R*4-valued unknowns) coupled to some transport equations. In this case,
the lifespan problem is closely related to the shock formation. See Speck [Spel9], Luk-
Speck [LS2(], Christodoulou-Miao [CM14], etc.



2 The linear wave equation

Let us first have a review on the linear wave equation in three space dimensions:

Ou = —6t2u +Azu=0 in R}f?’;
(2.1)
(u, Opu)|i=0 = (u®,u') € C°(R3).
Notation. Let us explain some notations used in (@)
1) Rffg := (0,00) x R3. A point in R}jg is denoted by (z4)2_y = (t,z) = (t, 21,72, x3) where

t € (0,00) and = € R3. Sometimes we also write x¢ = t.

2) 0 =-02+A, = -0+ Z?:l 8]2 is the usual d’Alembertian in R'*3. We can also write

0 =m*? 0a0p, where we use Jy = 0y, the Einstein summation convention (so the sum is taken
over all o, 8 € {0,1,2,3}) and the Minkowski metric (m®?) = (m,s) = diag(—1,1,1,1) € R4,

3) C(R?) denotes the set of all C* R-valued functions f in R? which are also compactly sup-
ported. In this note, “C* functions” is the same as “smooth functions”.

Now we discuss the following four topics related to (@) existence, uniqueness, pointwise decays
and energy conservation.
2.1 Existence of a global smooth solution

Proposition 2.1. For each r € R and x € R?, we set

1
Arh(z) = o /§2 h(z 4+ rw) dS,.
Then
u(t, z) = 0y (tAgug) + tAgu' (2.2)
is a solution to (@) which belongs to C=°(RY™). The formula (@) is called Kirchoff’s formula.

“Proof”. Tt is easy to show that the function u defined by (@) is indeed a solution to (@) and
that u € C=(RL™). Instead, T would like to explain how to derive (R.2).

I. Spherical mean. Suppose that u € C?(R}*?) is a solution to (@) For each » € R and
(t,z) € RIF?, we set

1
Ur;t,z) = Apu(t,-) = o /S2 u(t,x + rw) dS,.

Then,
1
U, = — w - Vyu(t,x + rw) dS,

47 S2

- Azu(t,z +ry) dy (divergence’s theroem)
4T JB(0,1)

1

= zAx/ u(t, z) dz (substitute z = x + ry),

4r B(z,r)
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1
0. (r?U,) = EAQC ot )u(t,z) s, = yp

2

471'

Axu(t r+rw)dS, (substitute z =z +ry)

82 (t,x + rw) dS, = r2Uy (u solves u = 0).

As a result, we have
Uy = r20,(r*U,) = 27Uy + Upp = (rU)ge = 2U, + 17Uy = (rU),r
As a result, v = rU is a solution to the linear wave equation in one space dimension:
Vit = Upys (t,r) € Rl'H; (v,v)|t=0 = (rU(r;0,2),rU(r;0,2)) = (rAruo, TAT’LLI)(J/‘).

Solving this equation (left as an exercise), we obtain

r+t
o(t,r) = %[(r + 1) A’ (x) 4+ (r — ) Al ()] + % /t pA,ut () dp.

Note that A,h is defined for all r € R and that A.h = A_,.h. Thus, we have

u(t,x) = lim U(r t,x)

r—0

r—0

1 t+r
= lim (2 [(t + 1) Appul () — (8 — 1) Ay_u®(2)] + 27‘/ pAyut (z) dp>
t—r
(pA, is an odd function of p)

= Oy (tAu®) + tAwul.

I1. Fourier transform. Recall that the Fourier transform of a function in R? is defined by

Fw(&) =w(§) = /Rd w(x)e ™ de.

We then have

1) The map F : S(R?) — S(R?) is a bijective map. Here S(RY) denotes the space of Schwartz
functions.

2) The inverse F~1 : S(R?) — S(R?) of F is given by the Fourier inversion formula
F ' h(z) = (2m)~¢ / h(€)e™ de.
Rd

3) F(0jw)(§) = i&w(§), so F(Aw)(§) = —[&[*D().
4) For any w,v € S(RY), we have F(w * v) = @wv. Here # is the convolution.

The proofs of these facts can be found in any standard textbook of Fourier analysis.
Assume that u(t,-) € S(R?) for each ¢ > 0. By taking the Fourier transform (with respect to x
but not t), we obtain from the wave equation that

g7a(t,€) = F(Au)(t,€) = —|¢]*a(t, €).



This is an ODE for (¢, ) with initial data (@, 0;0)|i=0 = (u°,@'). Solve this ODE and we obtain

sintl¢) .,
e (23)

We now need to show that (@) implies (@) Note that (the computation is left as an exercise)

R (4]
éﬁ T

a(t, ) = cos(tg))a" () +

Thus,

sm(t| t _ tf ,\1 / / —iw-tE— { 1
v w- dS _ - 1T d dS
’é‘ 471' S € 47T S2 JR3 ( ) v

2
t
/ / e~ Wyl ( w) dydS,, = / Zy&/ y — tw) dS,dy
47T S2 JR3 R3 S2
t
= F(—

Méﬂ (- = tw) dSu)(€) = F(tAn')(©):

It follows that

sin(¢[€])

a() — A tUO
€ ) = F(O(tAwu))

cos(t[¢])a° (€)ax(

and therefore

sin(t[¢])
€l

u(t, ) = F~(cos(t|e))al(€) + G (€)) = 0, (tAu®) + tAnu.

O]

Remark 2.1.1. In this proposition we assume v, u* € C°, but it is obvious that these assumptions
are too strong and not necessary. In general, if k: > 2 is an integer, if (u®,u') € C*1 x CK(R3),
then () gives a global C* solution to (R.1)).

Using the Fourier transform, we can relax the assumptions on the initial data even further. For
example, if u%, u! € L2(R3), then the formula (R.3) is well defined, so we still obtain a solution (not
necessarily a C? solution but a solution in some weak sense).

Remark 2.1.2. The formula (@) is closely related to the Fourier multiplier. That is, given a
function m = m(¢) € L>®(R?), we can define a bounded linear operator m(D) : L*(RY) — L?(RY)
(here L? can be replaced with any L2-based Sobolev space H®, H*) by

m(D)f(x) == F~(m()f(-))(@).

This definition is motivated by the case when m is a polynomial of £ (in which case m(D) is a
linear differential operator since D = V/i). Now (R.3) implies that

sin(¢|D|) 4

u(t) = cos(t|D))u’ + D]

(2.4)

You might check Appendix A in [Tao06] if you are interested in this topic.



2.2 Uniqueness

Proposition 2.2. If u and @ are two C*(RY}™) solutions to (@) with the same data, then u = 1.

Proof. We have already proved this proposition_in “I. Spherical mean” in the derivation of (@)
There we showed that a C?(RL™) solution to (2.1) must satisfy (@) O

Remark 2.2.1. Combining Proposition @ and @, we conclude that there exists a unique
C>=(RL™) solution to (@) and that this unique solution is given by (@)

In the rest of this section, when we say “the solution to (R.1))”, we always mean this unique
C>=(RL™) solution defined by(@).

2.3 Pointwise decays

Before we state the results in this subsection, we first introduce a useful notation.

Notation. In this note, we use C' to denote universal positive constants. We write A < B, B 2 A
or A= 0(B) if |A| < CB for some C > 0. We write A~ Bif A< Band B <A We use Cy, Sy
or 2, if we want to emphasize that the constant depends on a parameter v.

Let us rewrite Kirchoff’s formula (@) for each (t,z) € R}ﬁg,
1
u(t,z) = 4/ Oz + tw) + tw - V' (z + tw) + tu' (x + tw) dS,. (2.5)
T Js2

Since (u®, u') € C°, there exists R > 0 such that u® = u! = 0 whenever |z| > R. So the integrand
in (R.5) is nonzero only if |z + tw| < R.
It follows that

1) Suppose ||z| —t| > R. In this case |z + tw| > ||z| — t| > R, so the integrand in (@) is zero
everywhere on S%. Thus, u = 0.

2) Suppose ||z| — t| < R and ¢ > 2. Using substitution y = = + tw, we write (@) as

u(t,x) = O (y) + (y — ) - VO (y) + tu' (y) dS,

W OB(z,t)
and (since supp(u®,u') C B(0, R))
< g [ @)+ )] 4L
< t7%|0B(x, t) N B(0, k)| (H“OHLOO R3) +1( HVUOHLOO ®3) T HUIHLOO R3))>

Here |0B(x,t)NB(0, R)| is the surface area of a spherical cap with both height and width < 2R,
so |0B(x,t) N B(0, R)| < R? and

u(t, )| S t2R*(1+1) (H“OHLOO Rr3) T V]| e ®3) T ] oo R3)>

r(1+1)” (H“OHLOO R3) T Ve[ ®3) T [P ]R3)>



3) Suppose t < 2. By (@), we have

1
lu(t,z)| < 477/ [u®(z + tw)| + [tw||Vu® (z + tw)| + tju' (z + tw)] dS,,
S2

Sl oo sy + IV oo sy + [l e )

Sl oo sy + [V | pooesy + 10 | oo sy -

In summary, we obtain the following proposition.

Proposition 2.3. Let u be the solution to (@) Suppose that there exists R > 0 such that
u® = u' = 0 whenever |x| > R. Then,

a) We have u(t,z) = 0 whenever ||x| — t| > R.
b) If we write (s) := V1+ s> ~ 1+ |s|, then |u(t,z)| S0 (£)7" for each (t,z) € R,

Remark 2.3.1. Part a) of this proposition is a corollary of the strong Huygens’ principle which
states that the value of u at (¢,z) is determined by the initial data on the sphere 0B(x,t) at time
0. In fact, the strong Huygens’ principle holds for in each odd space dimension d > 3.

If we consider the linear wave equation in an even space dimension, then the best result is the
weak Huygens’ principle or the finite speed of propagation. Here we simply replace “the sphere
0B(z,t)” with “the ball B(z,t)” in the statement above.

In contrast, for the linear heat equation or the linear Schérdinger equation, we have the infinite
speed of propagation.

For a nonlinear problem, the best result we expect is the finite speed of propagation, even if
d =3 or d is an odd integer.

2.4 Energy conservation

Proposition 2.4. Suppose that u is the solution to (@) Define the energy

3
1
E(t) = 2/]1&3 S Gault,0)? o, t>0.
a=0

Then, E(t) = E(0) for all t > 0.

Proof. We have
dE(t):/ iu m d;v:/ ututt+iu-u- dz
dt R3 =5 o R3 = 77t

3
= / Uplhyp — Zujjut dx (Integrations by parts and finite speed of propagation)
R3 ,
7=1

= / —uOu dox = 0.
R3



2.5 Other space dimensions

In this note, we focus on the case when the space dimension is 3. However, most results above are
still valid for general space dimensions. Let us state these results without proofs.
Consider the linear wave equation (@) in Rffd with Cg° data.

(A) Existence. There exists a global smooth solution to (@) We can write down an explicit
formula for each fixed d, but I prefer not to do so here for simplicity. See Section 2.4 in [Eval(]
or Section I.1 in [Sog0§].

However, the formula (@) derived from the Fourier transform holds in all space dimensions.
(B) Uniqueness. Nothing is changed.

(C) Pointwise decays. If d > 3is odd, we have the strong Huygens’ principle and v = O((t)~(¢=1/2),
If d > 2 is even, we have the weak Huygens’ principle and v = O(((t)(|z| — t))~(¢=D/2), If
d =1, then we still have v = O(1) but the strong Huygens’ principle does not hold.

Reason: For odd d > 3, there is an integral on the sphere S¥~!. For even d > 2, there is an
integral in the ball B(0,1).

(D) Energy conservation. Nothing is changed.

2.6 Difficulty in a nonlinear problem

In the previous subsections, we make use of Kirchoft’s formula to prove most properties of the
solution to (@) In a nonlinear problem (e.g. Ju = u? — |V, u|?), we no longer have an explicit
formula for a solution. How do we prove existence, uniqueness, pointwise decays and energy esti-
mates without the help of Kirchoff’s formula? That is what we would like to know in the future
classes.

3 Energy estimate

In the previous section, we have proved that a solution to (@) satisfies the energy conservation

law. In this section, we extend it to a general case.

Proposition 3.1 (Energy estimate). Let u € C%([0,T] x RY) vanish for large |z| and satisfy
g°P(t, )0 Opult, x) = F(t,z), V(t,z) € [0,T) x RY. (3.1)

Suppose that g®? = g5 and that

d
S et a)] <

anB:O

Here 18 = g®f — m®8 (mF) = diag(—1,1,...,1) € R@+Dx(d+1),
Then, for each t € [0,T), we have

. Y(t,z) € 0,T) x RY. (3.2)

N =

4|2 ey (||u’(o,.)HL2(Rd)+/Ot||F(T, M2 d7‘)exp(2/0t Ed: Haagm(T, )H dr).

,8,7=0 Lo
(3.3)
Here |u'|? = Zizo |0pu|?.

10



Proof. Denote the left hand side of (@) as Ogu. Our goal is to write

d
wlgu = Z 0i(...) +  O(...) + remainders

i=1 divergence in RY, TBP  included in energy contains no second derviatives of u

We have

wOgu = utgaﬂaaﬁgu = ﬁa(utgaﬁug) —utago‘ﬁulg — ut(ﬁagaﬁ)ug,
S—— S——

good terms remainders

B

—utagaﬁu[g = Ot(—uago‘ﬁug) + ua(&ggaﬁ)u[g +uag*up:.

good terms remainders

Since ¢*? = ¢P*, we have uagaﬁugt = uagﬁaum = —LHS, so

1
_utcxga/juﬁ = 5(8t(_uaga,8uﬁ) + Ua(atga/B)uﬁ)'

good terms remainders

Combining all the computations above, we have

1 1
wOgu = Oa(utgo‘ﬁu/j) + iat(—uagaﬁug) — ut(ﬁago‘ﬁﬁm + iua(atgo‘ﬁ)ug.

Set (we add a negative sign to make eg > 0)
1 - 1
eolt, ) = —(g"urug — 59°%uaug);  ej(t, ) = —g"Pupug; R = (909" )urug — 5(01g°"Juup.
We thus have
d
—ugu = Oreg + Z dje; + R.
j=1
Integrate this identity, and we have
d
/ —wgu dor = / Oreg + Zajej + R dx = ﬁt/ eo(t,z) dx +/ R dx. (3.4)
R R = R? R?
To finish our proof, we need to estimate eg and R. Note that

1 1 1 g
R = (0,9 — iatgoo)ug + (0ag™ — Qatgoj - §atg]0)utuj (0rg" Juju;

1
2
. 1 . 1 »
= (0;¢"° + §8tg00)u§ + (897 Yugu; — 5(8tgzj)uiu]'.

Here the sum is taken over all 7,7 = 1,...,d. It is then clear that

. 1 | g
1Bl < WP 103971 + 510" 1+ 3 1011+ 3 3 _10g”]) < /%199l (no 9.9 appear twice)
J

0, 0]

11



where [u/|? = ZZ:O |0qu|? and |0g| = Zi,ﬁ,«,zo |009”7|. To estimate eg, we note that

Here
Q= (—r"+ %TOO)U? + (=% 4 %roj + %Tjo)utuj + %rijuiuj _ _%TOOU? n %rijuiuj
and thus

d
QI<y S 1W< g by B

017520

NG

As a result, we have 1|u/|> < eg < 2|v/|2. In summary, by (@) we have

at/ eolt, ) da::/ —utF—Rdxg/ | F| + 10gl P dxg/ (20| F| + 49gle0) ¢, ) da.
Rd R4 R4 R4

If we set E(t) = [ga €o(t, ) dz, then by Holder’s inequality,

d
E® = 2E()'2||F(t)]| f2may + 4 109(8)l| oo (ay E(2),
d

%E(lt)l/2 < IF)|l g2may + 2 109(E) || oo ey E(#)/2.

We thus have

i (B0 o2 [ 1000)qeey an))

t
< [ F ()] 2 gy exp(~2 /0 109(r) | e ey dr) < IF )| 2 -

As a result, we have

t t
E(t)2 exp(—2 / 109() | o gty d7) < B(O)Y2 + / 1) gy

and therefore

4Ol ey < 20D < B2 + [ 1P@agaay d)exp@ [ 1000 sy a7

t t
< VB0 O oy + | VPO llpay ) esp(2 [ 100 sy 7).
]

Remark 3.1.1. This proof is an example of the “multiplier method”. In general, for a vector field
X, we write Xullju = divergence + remainder and derive some estimates. We can even add a
weight (i.e. compute Xugu - w). This method will appear again in the future notes.

It turns out that the proof of the energy estimate can be used to prove a finite speed of
propagation result.

12



Proposition 3.2 (Finite speed of propagation). Let u be a C? solution to Ou = F(u,u’,u") in the
backward light cone through (to,xo):

AL ={(t,x) € [0,t)) x R : |z — x| < tg — t}. (3.5)

(to,xo0)
Assume that F(0,0,u”) = 0. If u = dyu = 0 whenever t = 0 and |x — x| < to, then u = 0 in

A(to,zo)'

Proof. Let ¢ = ¢(s,z) be a C! function defined for s € [0,%g) and = € RY with |z — zg| < to. At
this moment we do not give an explicit formula for ¢, but we assume that

a) ¢(0,z) =0 and lims_4, ¢(s,x) = tg — |z — zo|-
b) s~ ¢(s,x) is nondecreasing for each fixed x.

c) There exists a nondecreasing function 6 defined on [0,%p), such that for each 0 < sy < tg, we

have
|Vid(s,x)] < 0(sp) <1, whenever s € [0, sp] and |z — x| < to. (3.6)

Set

Ry ={(t,z): 0<t<¢(s,2), |x—x0| <to.},
As={(t,z): t =o¢(s,2), |x—x0| < to.}.

Then, we have

Agoo) = U Re  OR=AU{t=0, [z — x| <to}.
s€[0,t0)

Vv
where u = us =0

Since the outward unit normal at (¢(s,z),z) € Ag is (1, —=Vz0)/v/1 + |Vz¢|?, so by the divergence
theorem, we have

d
1
/ uF dtdx = / wOu dtde = /R —§8t\u’]2 + Zaj(ujut) dtdz
Tl S S _]=1

from the proof of the energy estimate with g =m

1 d s
= e T R YR TR 17 R —
[ 5 X eyu) e
dS

L po_dS
< [T e

To get the last estimate, we notice that

d
1 1
| Gl < Ve Voullu] < 1Vadl [ Vaullul < 5926l Vaul? + luf?) = 5 Vaollu'
j=1

13



Meanwhile, since F'(0,0,u”) = 0, we have |F(u, v, u")| < |u|+ |u/| (since u, v, v” remains bounded
in the closure of A(t . )) and thus

wF > —|uF| > =Clug| (Jul + [']) > =C(|Jul® + [u']*).

By the Minkowski inequality

@(s,x) P(s,x) t
/ lu(t,z)|? dt = / |/ dru(r, ) dr|? dt (u(0,2) =0)
0 0 0

B
= 0 u (7—7 .’E)‘ d7—7
0

we have

/uthtd:L'> C/ (| |* + |u|?) dtdx > Ct0+1/ |u/|? dtdx

= —C(t2+1) / / % ggad
s/ |v$¢‘2

The last identity comes from the following lemma (which is Theorem 6 in Appendix C.4, [Eval(]).

Lemma 3.3. Consider a family of smooth bounded regions U(1) C R? depending on T € R smoothly.
Write v for the velocity of the moving boundary OU (1) and v for the outward pointing unit normal.
If f = f(z,7) is a smooth function, then

dr Ju(r) U (7) U(r)

In this proof, |u'|* does not depend on s, so there is only one integral on Ay. Morever, v =

(1, =Va0)/ 1+ [Vao]? andv— v (0(5, w) ) (¢1,0).
12
In summary, if we set (s fA v/ 1+|V TN for each 0 < s < s9 < tg we have

/‘2

1 S

S 0(s0))I(5) < - / wF dtdz < C(£ + 1) / sup 10,0(t,)| - 1(5) d
0 te([0,sq

lx—zg|<tq

S

We can prove that I(s) =0 for all 0 < s < sy < ty by applying Gronwall’s inequality.

Lemma 3.4 (Gronwall’s inequality). Suppose that A, E,r are bounded nonnegative functions on
[0,T] and that E is increasing there. If

A(t) < E(t) +/tr(s)A(s) ds, tel[0,T],
0

it follows that

A(t) < E(t) exp( /0 "H(s) ds). (3.7)

14



Proof. 1t suffices to prove this inequality at t = T, in which case we can replace E(t) with E := E(T)
in the assumption. If we set

t
B(t)=FE +/0 r(s)A(s) ds,

then
B'(t) = r(t)At) < r(t)B(t)
Thus,
Oy (B(t) exp(—/O r(s) ds)) <0
and thus
T
B(T) exp(—/o r(s) ds)) < B(0) = E.

This ends the proof. O

Thus

v =0in U U A = U R, = A(_to,ro)'

soE[O,tg) 56[0780} SoE[O,to)

It follows from u = 0 whenever ¢ = 0 and |z — xg| < tp that w =0 in A(tO 20)"
Finally, we give an explicit formula for ¢. We can set

6(s,2) = to — ((to — )2 — t52(s* — 2s)|a — z0[?) 2.

We can check (left as an exercise) that the assumptions a)-c) listed at the beginning of this proof
hold for this ¢.
O

Remark 3.4.1. Gronwall’s inequality (@) is an important tool in the proof of the (almost) global
existence results in this course.

An obvious corollary of Proposition @ is as follows.

Corollary 3.5. Let u be a C? solution to Ou = F(u,u’,u") in [0, T)xR?. Assume that F(0,0,u") =
0. If u= 0u =0 whenever t =0 and |x| > R, then u =0 whenever t € [0,T) and |x| >t + R.

By sending R — 0 and using the continuity, we also get the uniqueness result in the previous
section.

15



4 Local existence and blowup criteria

In order to prove a global existence result, we need to apply a local existence result.
Consider the Cauchy problem

9% (u, u")000u = F(u,u’) in ]Rfrd;
(4.1)
(u, Opu) |¢=0 = (uo, ul).

In this section, we consider general space dimension d > 1. Moreover, we assume that ¢*%, F' are
given C'* functions with all derivatives O(1), such that F'(0,0) = 0 and

3
D> g™ = m*P < 1/2. (4.2)
a,B=0

In the following local existence result, we assume that our initial data belong to some L?-based
Sobolev space. Here is the definition.

Definition 4.1. Fix s € R. The Sobolev space H*(R%) consists of u € S'(R?) such that u € L? (R?)

loc
and

sy = | (€I d < oo, (4.3)

Here we recall that S’(R?) is the space of tempered distributions, i.e. bounded (or equivalently,
continuous) linear functionals of S(R?). If you have never seen S'(R%) before, you can simply view
H*(R%) as the closure of S(R?) in some larger space under the H* norm.

By Plancherel’s theorem, if v € H*(R?), then using the Fourier multiplier, we can write

s ay = (2m)72 (D) ull 2 g - (4.4)

Moreover, since F(9;u) = i€;u and since (€)% ~ 1+ Z?Zl 5]2, we have

d
(D)ull p2(may ~a l[ull p2gmay + D 1950l 1 gay
j=1

Thus, if s is a nonnegative integer, then
HUHHS(]RCI) ~s,d Z ||8au||L2(]Rd)' (4.5)
la|<s
We can now state the local existence theorem.

Theorem 4.2 (Local existence, Theorem 6.4.11 in [H97]). Let s > (d + 2)/2 be an integer. If
(u®,ul) € H5F x H3(R?), then there exists T > 0, depending on the norm of the initial data, such
that the Cauchy problem (U.1)) has a unique solution

we L°HT nCO H([0,T] x RY). (4.6)
Here C%! denotes the space of Lipschitz continuous function, so u; € H®. It follows that u €
C%([0,T] x R%).
Moreover, if Ty is the supremum over all such times T, then either T, = oo or
Z |0%u| ¢ L=([0,T%) x RY). (4.7)
lal<2
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Remark 4.2.1. The second half of this theorem is a blowup criterion. It tells us what happens if
there is a finite time blowup. Obviously, we need to use this criterion if we hope to prove global
existence.

In this note, I prefer not to give a complete proof of Theorem Y.2. For simplicity, I plan to
follow the proof in [Sog08] which gives a weaker version of Theorem {.2.

Theorem 4.3 (Local existence, Theorem 1.4.1 in [Sog08]). Let s > (d + 2) be an integer. If
(u®,ul) € H5F! x H(R?), then there exists T > 0, depending on the norm of the initial data, such
that the Cauchy problem (@) has a unique solution satisfying

> 0%l p2gpay <00, VEE[0,T].

(4.8)
|| <s+1
Moreover, if Ty is the supremum over all such times T, then either T, = oo or
ST Jooul ¢ L2(0.T.) x RY. (49)

o <(s+3)/2

In this note, we are mainly concerned with Cauchy problems with C2° data. Thus, we prefer
to use the following theorem.

Theorem 4.4 (Theorem 1.4.2 in [Sog08]). If (u°,u') € C°(R?), then there exists T > 0 such that
(@) has a solution u € C*=([0,T] x RY). If T, is the supremum over all such times T, then either
T, =00 or

S° 10%u] ¢ ([0, T) x RY). (4.10)
|| <(d+6)/2

4.1 Existence and uniqueness for linear equations

The proof of Theorem @ is based on local existence of a linear problem. Set a linear differential
operator L by

Lu = go‘ﬁ(t, x)0005u + b (t, 2)0au + a(t, z)u. (4.11)

Here we assume that ¢**,b*, a are all given C'*° functions with uniform bounds on each derivative
if (t,x) € [0,T] x RL. Moreover, we assume that

3
ST 1% (ta) —mP < 1/2, i [0,T] x RY.
a,=0

We now set L* as the L?(R'*%)-adjoint of L. In other words, given v € C2°(R'*%), we expect

(Lu, v) p2gita) (= Lu - v dtdz) = (u, L*v) p2(g1+d).
(R1+4) (R1+4)

R1+d

Using integration by parts, we can see that
L*v = 0,05(9*v) — 9, (b%v) + av. (4.12)

Here () is written in divergence form, and we can write it in non-divergence form (so L* has
the same form as L does with different b* and a).
We can now state the main theorem for this subsection.
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Theorem 4.5. Let s € R. Then, for each (u°,u') € H**! x H*(R?) and F € L'*H*([0,T] x R%),
there is a unique
we CHP N O HS([0,T] x RY) (4.13)
solving
Lu=F  in(0,T) x R%
(4.14)
(u, Oy |i—o = (u, ub).

In this theorem, when we say u solves (), we mean that u is a weak solution to (4.14) in
the following sense: for each 1) € C°((—o0,T) x R?), we have

/ YF dtde = / L*u dtdx — / ¥(0,2)9%(0, z)ut () dz
[0,T] xR [0,T] xR Rd

d
+ /R | 0rlg”) 0+ 27 05(09”) | (0,2)°(w) dar

J=1

(4.15)

One can derive this formula assuming that u € C? solves () pointwisely by applying integration
by parts.
We start our proof with the following estimate.

Theorem 4.6. Let s ¢ R, T € (0,00) and assume L is as above. If
we CH PN O H*([0,T] x RY),
and if
Lu € L*H*([0, T] x R%),
then fort € (0,7) we have
S 10l Mgy Soir 32 1070(0, ) ey + / ILu(r Mgy dm (116)
o] <1 la<1

Proof. We start with the case s = 0. Since the coefficients of L are bounded, we have

|

By the energy estimate (@) in Proposition @, we have

g 0adpu(t)|| , < Iu(®)l g2 +C Y 10" ut)] 2

la|<1

t
[/ @®)]] > < HU’(O)HLer/O(IILu Mgz + Y 10%u(7)llz2) dr | exp(CT).

lo|<1

By the fundamental theorem of calculus, we have

lu@)ls < Ju(O)]2 + /0 I ()|],2 dr
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In summary, if we set A(t) = >_, < [[0%u(t)|/12, then we have

A(t) < Cs1(A(0) +/0 Lu(r) dr +/0 A(T) dr).

By Gronwall’s inequality ((@)), we conclude () with s = 0.
For general s € R, we apply () with s =0 to (D)%u (recall that (D)?® is a Fourier multiplier

defined in Remark ). We thus have

> WO bl S 3 100w+ [ LD u e d

o] <1 o<1

Since we can commute 0% and (D)®, by (@) we have

> 0Dy u®)ll g2 ~ Y I10%u(t)ll s

laf<1 laf<1

Moreover, we have

LD u(T)l[ 2 S (D) Laa(7) | 2 + [[[L; (D) Julm)l g2 S WLl s + L, (D) Ju(7) | 2 -

00 —

By replacing L with |g°| 7! L, we assume without loss of generality that g —1. In this case, we

claim that for each s € R,

L (DY a2 Ss D 10%ul)llgge -

laf<1

If this claim holds, then we finish the proof by applying Gronwall’s inequality.

The proof of this claim follows from the boundedness of pseudodifferential operators. For
simplicity, I will not prove this result in this note. Instead, let us consider the simplest case when
5 is a positive even number. In this case, (D)* = (I — A)*/? is a linear differential operator of order
s. In this case, the commutator [L, (D)?] is a linear differential operator of order s 4+ 1 with O(1)
coefficients, and we notice that there is at most one t-derivative because ¢°° = —1. As a result,

LD el s Y. |oroiu)| L 5 3 1%l
\almﬁgus lo|<1

Note that in the last step we use (@) O

We can now prove a local existence result for ()

Proof of Theorem @ We first prove the uniqueness part. If v and u are two solutions to (4.14)
with the same initial data, then w := u — @ solves Lw = 0 and (w, w;)|;—o = 0. By applying (¢.16)
to w, we conclude that w = 0.

Now we prove the existence part. We start with the zero data case (u’,u! = 0). For each
Y € CP((—o00,T) x RY), by applying () to ¢ with ¢ replaced by T — t and L replaced by L*,
we have for each t € [0, 7]

WOl e < 16O sr-er + [ D yer S / 1L e dr
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Here we recall that ¢ = 0 near t = T. We have

T

T
|<F,?/)>L2(R1++d)| 5/0 [(FS ) L2 (ray | dt§/0 IE@®) | o 00| s dt
T /T
SJ/O /0 IE @l s 1L ()| o1 drdt

T
<Pl e /0 VL (0) o s .

Note that if u is a weak solution to () with zero data, then we should have (u, L*@/J)LQ(RH% =
+
(F, ¢>L2(R1+d). The proof above shows that if we set W(v) := (F,v), then W is a bounded linear
+

functional of {L*1) : ¢ € CX°((—o00,T) x R} ¢ L*H=*71([0,T] x RY). So by the Hahn-Banach
theorem, we can extend W to a bounded linear functional of L' H=*=1([0, T] x R?) with the same
norm. And since the dual of L'H—571 is L H*%1, we obtain

we LP°HSTL([0,T] x RY), such that W (v) = (u,v).

Since (u, L*1) = W(L*y) = (F. 1), we conclude that u is a weak solution to () with zero data.
Next we need to show () First we assume that F' € C°([0,7T] x R%). Since C° C L'H*

for each s € R and since the initial data are zero, the weak solution from the previous paragraph
belongs to L HN ([0, T] x RY) for each N € Z. We fix a large integer N > 2 whose value will be
chosen later, and we claim that in this case

uwe CHN 1N HN2([0,T] x RY).
To see this, we notice that v = u; solves
d d )
g% + 2Zg]0vj + 0% = — Z g Fugp — Z Vuj —au+ F.
=1 Gik>1 j=1

The right hand side belongs to L®HN~1([0,7] x RY) because of (@) and Leibniz’s rule; the
proof is left as an exercise. Without loss of generality, we assume that ¢%°C = —1. We claim that
ug =v € L°HN71([0,T] x R?%). In fact, for each |a| < N — 1, we have

% ||6§‘v(t)”%2 = 2/3?1)35‘1& dr = 2/8?1)3?(29j06jv + % 4+ Q) dx
<2 [ g 0, ((op0P) do+C [lopopQl+ Y [0u]) do
1B1<la

< Ol o grv—1 - 0Ol g1 + C o) -1

Here Q = —(— 3, 1>1 g Ry, — Z‘;:l Vu; —au+ F) € L°HN71([0,T] x R?). To get the last step,
we note that (using integration by parts and the density of C° in HY)

/gjoaj[(aﬁv)Q] da = /3j[gj°(3§v)2] da — /(5jgj0)(3§v)2 dz < C o(t)llzgn-1 -
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As a result, we have

d
a3 10 @llgv—1 < CllQl oo grv—1 + C o)l v

and thus ||v(t)|| yy-1 S1 ||Q]] 0o yv—1 by Gronwall’s inequality. This finishes the proof of the claim.
Using the equation Lu = F again, we obtain uy = g-Vyu'+b-u'+au—F € L°HN=2([0,T] x R%).
In summary, we have

we CHN PN HY2([0, 7] x RY).

We now choose N > s+ 2 and thus obtain ()

For general F' € L'H*([0,T] x RY), we choose a sequence of I}, in C>°([0,T] x R?) such that
Fp, — F in L'H®. For each F,, we have obtain a unique u,, € CH**' N C'H*([0,T] x R%) such
that Lu,, = F, and (un,, Opum)|t=0 = 0. By applying (@) t0 Uy, — Uy, We obtain

T
sup (|| (wm — wn) ()]l s + || (wm — ) () || ) S / [(Fm — Fo) ()|l s d7 — 0, m,n — oo.
te[0,7) 0

So, {un} is a Cauchy sequence in CH**' N C1H*([0,T] x R?), so it has a limit u in CH**!' N
CYH*([0,T] x R?%). Tt is easy to check that u is the solution to () with zero data.

To solve the equation with general Cauchy data, we first assume that the initial data belong
to C2°. We then set ug(t,z) = u’(x) + tul(z). If v solves Lv = F — Lug with zero data, then
u = v+ ug solves () with data (u°,u'). Here we need to assume that the initial data belong to
C2° because we need Lug € L'H®. For general data (u’,u') € H**! x H® we use a sequence of
C2° data to approximate it and apply (@) The proof here is very similar to that in the previous
paragraph. ]

4.2 Local existence for quasilinear equations

We now return to the proof of Theorem @
4.2.1 Uniqueness
Suppose that u and w solve (@) with the same data and that
u,u € LH T n O HS([0,T] x RY).
Then, we obtain
9% (u, 1) 005 (u — W) = (¢*P (W, 0') — g* (u,u'))Budpti + F(u,u') — F (T, ).

We hope to apply the energy estimate (@) to u — u, so we need to estimate the L? norm of the
right hand side at time ¢. It is easy to see that

(97 (5, ) — g (u, u/))DaDt + F(u,u') = F(w, @) £ Y 0%(w— )| - (1+[a"]).
|a|<1
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Then, by the energy estimate (@) and the fundamental theorem of calculus

lw®)lzz S [[w(0)]l 2 +/D 1Opw(T)| 2 dr, (4.17)

we conclude that

Yoo —a) )2 S D 10%(u—@)(0)le +/0 D 0% = @) () gz - (L + (7" (7| o) 7

jal<1 jal<1 o<1
- /0 S 0% — @)z - (1 + 7)) dr-
|| <1

The second estimate holds because u and u have equal initial data. By the Sobolev embedding, we
also have

1l ey S D 10%f 2wy -

lal<|[42]

Here we remind our readers that L%J is the smallest integer larger than d/2. Since s > d +2 >
2+ L%J, we have

@Ol D0 10 TDge < [l o presn
o <2+| 4£2 |

It follows that

t
D 0% =) (1)l 2 S/O o 0% =) () lpe - (A [[@"|| oo o) dry tE€0,T].

o<1 lo|<1

By Gronwall’s inequality (@), we conclude that v = @ in [0,7] x R?.

The argument in the uniqueness proof will also be used in the existence proof below. There we
also need to apply the energy estimate (B.3) and the estimate (@) to control the H**! norm of
the solution.

4.2.2 Existence

We now prove the existence part. We assume that u°, u' € C° for simplicity. For general data, we
can use an approximation argument which is similar to that used in the proof of Theorem H{.5; we
skip the details in this note. To construct a solution, we use the method of Picard iteration. Set
u_1 = 0 and define u,, for m > 0 inductively by

gaﬁ(umflv u;n—l)aaaﬁum = F(um*h u;n—l)a
(4.18)

(U, Ot |1=0 = (u®, ul).

Since u,,—1 is known before we solve (), the equation () is a linear Cauchy problem for u,,.
Here we hope to prove that
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a) The solution u,, to () exists and belongs to C2°([0, T] x R?) (in both ¢, z). Here T is a fixed
number independent of m to be chosen later in b).

b) There exists a sufficiently small time 7" > 0 and a sufficiently large constant A > 1, both
independent of m, such that

Ap(t) = Y [[0%um(t)]|l, < A<oo,  tel0,T].

(4.19)
|a|<s+1

Here we remind our readers that A,,(t) is not equivalent to the H**! norm of wu,,(t), because
we allow time derivatives in ()

¢) We have
Con(t) = [Jum(t) = wm—1() |2 + [Jun, (8) = up 1 (B)]] o S 27 (4.20)

We will prove a)-c) by induction. If m = —1, there is nothing to prove. Now we fix m > 0 and
suppose a)-c) above hold with m replaced by m — 1.

Let us first prove part a). By the induction hypotheses, we have u,,_1 € C>([0,T] x RY),
so ¢*(um—1,ul, 1) and F(um—1,u,, ;) are C° with uniform bounds on each derivative. Since
F(0,0) = 0, we also have F(uy,_1,u,, ;) € C([0,T] x R%). Thus, we can apply Theorem @ to
obtain a unique solution

um € [ (CH*T' N C H*)((0,T) x RY) € C}C([0,T] x RY)
s>0

to ( . Here we use the Sobolev embedding (5o H; C C3°. To show u,, € C75, we use ()
(or () below) to lower the order of time derivatives. For example, we have

3t2um = (—goo)fl(g** -OVgum — F).

It follows that 9?u,, € C°. We continue this process and conclude that u,, € Cra- Since upy—1 €
C2°, we can choose some R = R,;,—1 > 0 such that u,,—1; = 0 whenever ¢ € [0,7] and |z| > R. In
other words, we have

9°9(0,0)0005um = 0, whenever |z| > R; U = Oy, = 0, whenever ¢t =0, |z| > R.

If x € C*°(R) is a function such that x|(_so rt1) = 0 and x|(r42,00) = 1, then w := x(|z|)uy, is a
solution to g*#(0,0)0,0sw = 0 with zero initial data. With the help of the energy estimate (B.3),
we conclude that u = 0 whenever |z| > R+ 2. Thus, u,, € C>(]0,7] x R%).

Next we prove part b). For each [ < s, we have

gaﬁ(umflv u;n—l)aaaﬂalum = [gaﬁ(umfb u;n—l)ﬁaa,& 8l]um + 8l(9aﬂ(umfla ulm—l)aaaﬁum)

I A (a21)
=19 (um—humfl)va]aaaﬂum+aF(um—17umfl)‘

To avoid ambiguity, we use ' to denote any 0 with |a| = I. We seek to apply the energy estimate
(@) to (), so we need the following lemma.
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Lemma 4.7. Let F and g** be as above and assume that v € C®(R*?). Forl < s, we have

O Fw S+ Y Haﬂv(t,-)HLm)S_l Y 9%t )], (4.22)

1BI< 552 ] |B|<s+1

60, 00005l S A+ 32 [0%ue] ) 32 107l 2)
BI<1+52] Bl <s+1

SRCED DI CETCR] ISl DI CAOBT IR S ]}

181< 552 181<[552 |8 <s+1
(4.23)

Proof. For simplicity, for each N > 0 we write [v<n|:= 2| <y [v]-

If | = 0, it follows from F(0,0) = 0 and [F(V| < 1 that [F(v,0")] < |v| + |[/|. We also have
(9% (v,v"),0'] = 0. Now we assume 0 < | < s. By Leibniz’s rule and chain rule, we can write
O'F(v,v') as a linear combination (with real constant coefficients) of terms of the form

F(T)(v,v’)~Halj8kjv, 1<r<li, Zl*:lgs, kj =0,1.
j=1

So, there is at most one [; with [; > s/2 (or equivalently, I; > |s/2] +1 = [(s + 2)/2]). We use

|v<si1| to estimate the term 9% 9% v with the largest [;, and use ]vqﬁ” to control the rest r — 1
> =L 2

terms. We conclude that

0F (0,0)] S (14 logyssz ) ozonl

This finishes the proof of () Note that the assumption F'(0,0) = 0 is not used in the proof
above with [ > 0, so for each 0 < [ < s, we have also proved that

09(0,0)] S (L+ foyszz )" focual. (424)
Moreover, we have
(9% (v,v),0'0a05w = ¢ (v,0")0' Dadsw — ' (g™ (v,v")Badpw).

If we apply Leibniz’s rule and chain rule to expand —8' (g (v,v")0,0pw), again we can write
(%% (v,v"), 0"]0n0pw as a linear combination (with real constant coefficients) of terms of the form

o (g(v,0))-0"Pw,  lo+lh=1, 1 <L
If l[p = 0, then we obtain an upper bound
101 0Pw] S Jwssial.
If Iy > 0, then we apply () (with s replaced by lp < s) to obtain an upper bound
(Lt v sz DO ozt ] - 1002w S (1 + fogsi2 )*Hosigra| - [wsay 1ol

If iy > lp, then i1 +2 < 1+2 < s+2and lp <1/2 < s/2, so in this case we have |v<j;+1] - |w<i 2| S
‘U<Lﬁj| Jw<sya]. Il <lp, then Iy < s/2 and I +2 < L#J and lp +1 < s+ 1, so in this case
<|= <
we have v 1] - lw<iy 42| S |v<s+1] - |w<LﬁJ |. We thus finish the proof. O
= = = )
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Applemma @ to the right hand side of () Thus, the L?(R%) norm of the right hand
1.2

side of (4.21)) at time ¢ is bounded by
1+ 5 o], E e r0r 5 aci],r et
1B1<| =2 ] |B|<s+1 BI<| =42 ) |1B|<s+1
cre S Pl - 3 ],
1B1<[*32] 1B1<1 5] 1B]<s+1

Moreover, by the Sobolev embedding H(@+2)/2] « [°° we have

o T D v et

1BI<|2£2] |BI<[2£2 |+ 442 |

> pmols 3 ptmo)

1BI<[ =53] 1BI<| =53 |+ 442

)

L2

(4.25)

AN

2

Note that
5+3 d+2
2215
By the induction hypotheses A,,_1(t) < A, we have

>

I<s
S (0t At () Ama () + (1+ A1 () A (8) + (14 A1 ()" Ayt (8) A (1)
S(A+A)°(1+ An(t)).

|<s+l<=s>d+2

9 -1, 1) DaD50 (1)

L2

We can now apply the energy estimate to d'u with [ < s. It follows from (@) and () that
for each t € [0,T7,

S (untw],, + o)

I<s

S O (un)| , + |0 0)]

I<s

)

L2

L2) + C’A/O (A (7) + 1) dr) exp(2/O Z !‘89**(um_1,u;n,1)(7')HLoo dr).

By the chain rule and the Sobolev embedding, we have
109" (um—1, 1) (8, 2)| S fum-1 (8, 2)] + [t (8 2)] S Am-a(2) < A.
As a result, we have
A (t) < CeCY (A (0) + Cat + /0 t CaAp(7) dr).
By Gronwall’s inequality (@) we have

Ap(t) < CeC(A(0) + Cat) exp(CC 4%, te[0,T]. (4.26)
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All the constants in this inequality are independent of m. Besides, we claim that A,,(0) can be
controlled by a constant Ay independent of m. To see this, we fix m > s. If &' contains at most
one time derivative, then we have nothing to prove since the initial data are (u°,u'). In general,
we replace @' with 9} where [ > 0 in (@) It follows that at t =0

goo(uo, u1)8§+2um =—g™ W’ ul) - 8Vz(9éum + [go"g(um_l, u 1), ai]éhdgum + 8£F(um_1, ).

If we expand [g%° (wm—1,ul, 1), 0}]000pUm + 0L F (um—1,ul,_,) by applying the chain rule, we notice
that the order of time derivatives of each term on the right hand side must be < [+ 1. For all those
terms with time derivatives of order > 2, we again apply () to lower the order of their time
derivatives. Then, after at most s such actions, every term on the right hand side can be expressed
in terms of (u’,u') and their (spatial) derivatives. We also note that this expression is independent
of m. Thus, A4,,(0) < Ag for some Ap independent of m (but depending on s). This finishes the
proof of our claim. In conclusion, by choosing A > 1 and T' < 1 (both independent of m), we can
make A,,(t) < CAg < A. This finishes the proof of part b).

Finally we prove part ¢). If ¢) is true, then the sequence (uy,,ul,) converges to some (u,u’) €
CH' N C'L?([0.T] x RY). We can check that (u,v) is indeed a weak solution to (@) (related to
taking limit in (@)) For each t € [0, 7], the sequence (ty,, u.,)(t) is bounded in H5*! x H*, so it
has a subsequence converging weakly to some (7, w) in H**! x H* (Banach-Alaoglu). At the same
time, (um,ul,)(t) — (u,u’)(t) in H' x L% so we must have (u,u')(t) = (u,w) € H*"! x H*. Using
part b), we have

o) e+ 8 < i s (6) o1+ K i [t (8] 72 < 24 < oc.
Using the equation (@) to lower the order of time derivatives, we conclude that

A(t) = Z Haau(t)uﬂ < o9, te[0,T]. (4.27)

|a|<s+1
To show c), we notice that

9 (1, 1) P08 (um — 1) (4.28)

= (gaﬁ(um—% u'/m—Q) - gaﬁ(um—b u;n—l))aaaﬁum—l + F(um—la u;n—l) - F(um—27 u'/m—Q)'

The right hand side is bounded by
(Itm—1 = 2] =+ [ty — g, o) (1 + |t 1 ).

Also recall that u,, and u,,_1 have the same Cauchy data at t = 0. Thus, by the energy estimate
(@), the Sobolev embedding () and the estimate (), we have

t
Cnl®) S (14 4) [ Col) 4 Cra() dr. ¢ 0.7)
0
and by Gronwall’s inequality

t
Conl(t) < CaeCAT / Conr(7) dr,  te[0,T).
0
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The constant here is independent of m. By iteration, we have

CAT \m
Cin(t) < (C4eCATY™ / Colr) dry -~ dry < GO (0 Cott).

07 < S <t m! tefo,7]

By choosing sufficiently small T, we have C4e“4TT < 1. And since 1/m! < 27™, we obtain c).
Note that the proof shows that T" can be bounded from below by a fixed small constant if one
assumes that the 1 x H* norm of the data is smaller than a fixed constant.

4.2.3 Blowup criterion

Suppose that T, < oo where T, comes from the statement of Theorem @ We claim that if

sup S |oult,x)| < A < oo,
(t2)€l0T)XRY | S(5ra) /2 (4.29)
then
sup |0%u(t)]] ;2 < 0.
t€[0,T%) MZS:H (4.30)

In fact, if A(t) = 3_|4j<s41 [[0%u(?)] 12, then arguing as in the proof in Section , we can show

that (@) implies
A(t) < Cr, a(A(0) + Ca /Ot(A(T) +1) dr), t€[0,Ty).

Now () follows from an application of Gronwall’s inequality.
With this claim and the last sentence in Section , we can show that () implies that u
can extend to a function in

L®HTI N ™ H3([0,T,] x RY).

Hence we can use the existence part of Theorem @ to see that u extends to a solution verifying
the bounds in Theorem for some T > T.,.

4.3 Proof of Theorem Q

We finish this section by proving Theorem @
By the Sobolev embedding, to prove the first part, we only need to show that there exists " > 0
such that
> lou)l, <Cs,  VEE[0,T),Vs € Zy.
|a|<s+1

By Theorem @, there exists such a T for s = d + 3.
Next, by the Sobolev embedding, we notice that if () holds for some s, then

(4.31)

sup 0%u| < oo.
>

0,7 xRe
OTRY <1 a22)
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Also note that
s+4
a 2
Here we have (s +4)/2 instead of (s + 3)/2 on the left hand side because we now want to estimate

<s+2 [[0%u(t) || 2 instead of 37, <o 1 [[0%u(t)]| 2 as in Section @ Using the proof in Section
@vve obtain () with s + 1 replaced by s + 2. By induction, we prove () for all s.

It remains to prove the second part of Theorem Y.4. By Theorem @, the T, in our theorem is
exactly the supremum over all T" such that () holds with s = d + 3. By the above induction, it
also has to be the supremum over all T' such that there is a C°°([0, 7] x R9) solution.

d+2
J<s+1- | e s> d+3.

5 Commuting vector fields

In Section E, we have proved that a solution to (@) in R13 has a pointwise decay rate O({t)~!).
In order to prove this decay without using Kirchoff’s formula (2.9), we introduce commuting vector
fields Z and a related Sobolev type inequality (called the Klainerman-Sobolev inequality).

5.1 Definition

We now give the definition of the commuting vector fields.

Definition 5.1. In R!*?, we consider the following vector fields:

O, a=0,1,....d translations;
S =t + Z?zl x;0; scaling; (5.1)
Qij =205 —x;0;, 1<i<j<d rotations; '

Qg; :=1t0; +x;0,, 1=1,...,d Lorentz boosts.

We use Zo, ..., Z(44+1)(d+2)/2 to denote the (d + 1)(d +2)/2 + 1 vector fields in (@) respectively,
and we call each Z; a commuting vector field.

If I = (i1,...,ir) is a multiindex (of length |I| = r) where 0 < i, < (d+ 1)(d + 2)/2, we shall
write

zl =2z, -7 . (5.2)
If |I| = 1, then we may also omit the superscript and write Z only.
Remark 5.1.1. It is convenient to set 2; = 0 and Q;; = —Qy; ifd>¢> 5 > 1.

Remark 5.1.2. The notations in this note is different from those in other texts. For example,
in [Sog0§], the author uses Ly to denote the S here. He also uses I' to denote the vector fields in
(b.1), and uses Z to denote a proper subset of (EI)

Remark 5.1.3. Each commuting vector field Z is related to a symmetry of the linear wave equation
Ou = 0 in R, Let us take the scaling S as an example. If u = u(t,z) solves Cu = 0, then so
does uy = uy(t,z) = u(At, Az) for each constant A € R. By differentiating u) with respect to A and
setting A = 0, we get another solution to the linear wave equation:

d

auﬂ)\:g = Su.

Similarly for other commuting vector fields.
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5.2 Basic properties

We first list several commutation properties. These properties more or less explain why we call
them “commuting vector fields”. For simplicity, we use C - Z to denote a linear combination of the
commuting vector fields with real constant coefficients. In other words,

(d+1)(d+2)/2
C-7Z= Z C;Z; where the C, are real constants.
=0

Similarly, we use C' - 9 to denote a linear combination of partial derivatives with real constant

coeflicients.
We have

1. For any two commuting vector fields Z; and Zj, we have [Z;, Z;] = C - Z.

2. For any commuting vector field Z; and any partial derivative 0, we have [Z;,0,] = C -0 (or
simply [Z,0] = C - 0). Note that a corollary of this property is that for any k,7 > 0, we have

Z |akZI¢’ ~ Z ’218k¢’7 (5'3)

[|<i [I|<i
where 0" denotes any partial derivatives of order .
3. For any commuting vector field Z;, we have [Z;,[] = 0 whenever Z; # S, and [S,0] = —200.

The proofs of these commutation properties are left as an exercise.
In addition, we have the following pointwise estimates.

Lemma 5.2. For any function ¢ = ¢(t,z) with t > 0, we have

0%l <zl =)™ Y 127, Wk =0; (5.4)
<k
d
D10+ wid)g] < (o] +071 Y 1Z79). (5.5)
=1 [I|=1

Here recall that OF denotes any partial derivatives of order k, and w; := x;/|z|.

Proof. We first prove (@) with £ = 1 (and there is nothing to prove when k& = 0). Since 9 €
{20, Za41)(d+2)/2}> we already have [0¢| S Z\IISI |Z%¢|. Moreover, we notice that

d

d
D wiQoi =Y wiltd; + 2;0) = t0, + |x[0y, S =10, + |2[0,.
=1

=1
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Here 9, := Z;-lzl |x]_1xj8j. As a result, we can express 9, 0, in terms of Zle wifg; and S:

S+ o0, wil Y Wi - S
9 — 0, =

(9 8 — 3 )
et o 2| + 2] — ¢
d d
1 1 1 1 —2t5 + 2 Z‘*l 2;0;
20; = — S Qoi = = 3
= T =t +(\x\+t+\xy—t);°‘“ 0 2]? — 2
d d
1 1 1 1 2|:L‘|S—2t2», wiQOi
20, = S - Qi = L :
" (\xy+t+ ya;\—t) +(\x|+t \x!—t);wz o |z|2 — 2
Since \ﬁ% = ‘x'%t, we have

d
(@] + 160] S el =171 (1S + D 1Q0i8]) S Ml =671 Y 1279
i=1

|T]=1

Moreover, since
d d
Zwiﬁij = sz(l‘zaj — :L‘J&) = \:c|8] - :L‘jar, on = :ch@t + tﬁj,
i=1 i=1
for each j =1,...,d we have

d
O = (t+ |$|)_1(Zwi9ij + Qo; — xj(0r — Or)).
=1

It thus follows that

d
|65] S (t+ [2) 7O 192458] + Q050 + [/ é — or])
i=1

Szl +6)71 D 12561+ |l + 16l Sl =t D> 1279

1]=1 [I)=1

In the last estimate we use the triangle inequality ||z| — t| < |z| 4 ¢t. By noticing that min{1, ||z| —
t} < (Jz| — t)~1. we obtain (5.4) with k = 1.

To prove (@) with k > 1, we use induction. Suppose we have proved (@) for each k < ko.
Then,

0%0g| = 07 0g| < (Ju| — )R YT 12709l

[1|<ko—1
S{al—0 R S jazl¢l by (b))
[7|<ko—1
S (el -ty Y (0279,
|1|<ko
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Finally we prove (@) By the computations above, we have

d
0j +wjoy = (t+ |x!)_1(z wiSij + Qoj — x(0r — 0r)) + w0
=1
_ T wif + Qo — (9 — 0y) + (w5 + tw))0 _ i wifiy + Qoj +w;S

|z| + ¢ |z| + ¢

Thus, |¢; +wj¢e| < (Jz|+¢) 7t 2oir=1 |Z1¢|. And since |¢j +w;di| < 2oir=1 |Z1$|, we are done. [

Remark 5.2.1. Note that 9; +w;0, i = 1,2, 3 span the tangent space of the light cone |z|—t = C,
and that d; — 0, is orthogonal to the light cone |z| —t = C. Thus, sometimes we call 9; — 9, normal
derivative, and call 0; + w;0; tangential derivatives.

Lemma tells us that heuristically the tangential derivatives have better decays than normal
derivative.

5.3 The Klainerman-Sobolev inequality

Recall the Sobolev embedding H*(R?) ¢ L>®(R%), s > d/2. Since |(d+2)/2] is the smallest integer
larger than d/2, we have

1F 1 oo Rty Sa 1 | giarozsgay S Y 105 Fll g2y - (5.6)
|| <(d+2)/2

In this subsection, we prove the Klainerman-Sobolev inequality (see (@) below). We ask our
readers to compare (@) with (@)

Theorem 5.3 (Klainerman-Sobolev). Let u € C®(R'*9) vanish when |z| is large. Then, for all
t>0 and x € RY,

(ol +6)F (2] = O F u(t,2) Sa D (1276 p2gay - (5.7)

d+2
‘”ST

Proof. If |x| +t < 1, then (|z| + t>%<|xl - t>% <1, s0 (@) follows directly from (@) So we can
assume that |z| +¢ > 1 from now on.
Let us first assume that ||x| — t| > ¢/2, or equivalently |z| ¢ [t/2,3t/2]. In this case, we have

(left as an exercise)
|z| 4+t

o <l —t] < t+|al (5-8)

Now define a function f in R? by
fy) =ult,z + (t + [z])y).

We now recall a localized version of the Sobolev embedding (@) for each 6 > 0, we have

J@PSsa > [ @graryldy voeRt 59)
lal<(d+2)/2 7 B(09)

31



To prove this, we simply apply ( ) oy +— flx+y)- x(z+y) where y € CX(RY), 0 < x < 1,
x(0) = 1 and X|ga\p(,s5) = 0. Apply ( d with = 0 and 0 = 1/12 (or any number in (0,1/6)),
and we obtain

Ju(t, z)|* = [f(0)* S 05 f(y)|? dy
|a<(%—;2 2/3(0’5) !

AN

/ (& + [2)™ [l (1, + (¢ + [2])y)P d
la|<(d+2)/2 7 B(09)

> / (t + |22l (¢, 2)? d.
jal<(d+2)/2 BEAEHED)

To avoid ambiguity, we use u(®(t,2) := (8%u)(t, ). In the second row, we use the chain rule and
Leibniz’s rule. In the third row, we make a substitution z = = + (¢t + |z|)y. By (@) in Lemma
we have

t+ |z

@, 2) < — )yl zLy(t, )| < £)~led Zhu(t h —t >
Wt 2) <S> (2l =12t 2)| S (2] + 1) 1zt )], whenever ||z] —t] > 5

[1<le HI<l|e

The second estimate holds because ||z| —t| > (t + |z|)/12 whenever |z — z| < (|z| + ¢)/12 and
||z| —t| > t/2. To see this, we note that by (p.§) and the triangle inequality

2l =t > || =t = ||z = [=]] = ([=[ +8)/6 = [z — 2| = (1/6 = 1/12)(t + |]).

In summary, we have

u(t. )P S (41D S 250 -

[11<(d+2)/2

This gives us (@)
Now we suppose ||z| —t| < t/2, or equivalently |x| € [t/2,3t/2]. Note that now ¢ > 2/5 because
|z| +¢ > 1. It suffices to prove the following two estimates:

[ut,2)| S ¢ 2] oy (5.10)
[7|<(d+2)/2

u(t,2)| S G2 — o2 ST [ 2 )
[11<(d+2)/2

We first prove () Define a function f in R x S by

flg,w) = u(t, (t + q)w).

HLQ(W), whenever ||z| —t| > 1. (5.11)

We need a new Sobolev type inequality in R x S !: for each § > 0, we have

faoolP Sa Y / /S IOk f(q+ 5, W) dvds,  Vlgw) ERXSTL (519

j+k<(d+2)/
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Here 0, denotes any rotation €2;;, 1 < i < j < 3 restricted to the sphere S%-1, and 9% denotes
any product of k£ such vector fields. We shall not prove this inequality here, but we remark that
it follows from (@) and partitions of unity. Now, apply () with ¢ = |z| — ¢, w = z/|z| and
d =1/10 < t/4. Because of the definition of f, we have

0L f(|a] — t + s,v) = (D), (|z] + s)v).

Thus, by () we have
u(t, )2 = [f(le] —t PSS / / (DI u)(t, (j2] + s))|? dvds
gd—1

J+k<(d+2)/2

|z|+d )
/ rl_dl(ﬁﬂZlu)(t,ru)Prd_l dvdr
gd—1

J+|II<(d+2 j2 7 1xl=0

< / / A=) (2T (8, ) e dudr
/4 Sd 1

1)< (d+2)/

<t Y /|<qu><t,y>|2 dy.
I|<(dr2)/2 /B

This gives us () In the third row, we use |z| — 0 > t/2 —t/4 and |z|+ < 3t/2 +t/4. We also
use Z1(y/|y|) = O(1) whenever |y| ~ ¢ > 1.
Now we prove (b.11). Fix (t,29) € Ry with /2 > ||zg| —¢| > 1 and |zg| +¢ > 1. Set
= |xog| — t, so 1 < |qo| < t/2. We now set
U(Sv V) = u(ta (t +qo + qOS)V)'

It is clear that v(0,w) = u(t, z¢) where w = z¢/|zo|. Moreover, by the chain rule and Leibniz’s rule,
we have

S k) S Y (o), (ol + qos)v)]-

J+k<(d+2)/2 J+k<(d+2)/2
Thus, by () with ¢ =0, w = zo/|xo| and 6 = 1/4, we have

el =w0f s > [ [ ok avas

GHE<(d+2)/2

> / L @095 ol + avs)) s

j+k<(d+2)/

el Y /

GHk<(d+2) /2 |zo|—dlqo]

|zo|+61qo] ,
/ 4 (o0 )T %) (t, 7)) [Pre=t dudr.
Sd—1

In the third row, we make a substitution r = |zo| + gos. To continue, we notice that

|zo| — dlgo| > t/2—6-t/2>1/8,
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<0 Tl_d S tl_d

in the integral. Moreover, whenever r € [|xg| — d|qol, |xo| + d|qo|], we have
=] = |lzo| = t| = [r — |xol| = lqo| — dlqo| = 3lq0l/4-

It follows that

fut, 20) 2 < Jaol 1) /

GHk<(d+2)/2 |zo|—dlqo]

|zo|+46|qo] |
/ [(((r = £)0,) Q5 u) (¢, rv) [Pr™ dvdr
gd-1

< lgol
k< (dt2)/2

Sl 1870 S /rZ’ (ty)l dy.

111<(d+2)/

This gives us () O

Remark 5.3.1. The key idea is that we combine the usual Sobolev embedding in R? (and some
of its variants) with a change of variables.

/ (4] = 00,2 0) 1) dy
lyl€(lzol—dlqol,|zol+dlqol]

5.4 Application to the linear wave equation

Using the commuting vector fields and the Klainerman-Sobolev inequality, we can now show some
pointwise estimates for solutions to the linear wave equation without solving it explicitly.
Suppose that u € C‘X’(]Rfd) (which is of course not necessary) is a global solution to

Ou=20 in R}ﬁd;
(5.13)
(u, D) |—o = (u°,ul) € C(RY).

Since [,Z] = C - O for some constant C, for each multiindex I the function Zu also satisfies
0Z%u = 0 and we have (Z!u, 3tZIu)@g € C°(R?). By the energy conservation law and the finite

speed of propagation from Theorem B.2, we have

|(Z"u)’ W) (0| oy Sr 1, ¥ multiindex 1.

Ol ey < 112

By the Klainerman-Sobolev inequality and by (@), we have

0/ (t,2)| S Gl + )7V =723 |2 0u0)]| g

[<(d+2)/2
< (Jz|+ 1)~ (d— 1/2<|x’ £y~ 1/2 Z H(ZI HL2(Rd)
[T11<(d+2)/2

S (lal + 1)~V o] — )2,

By the finite speed of propagation, we have u(t,x) = 0 whenever |z| —t > C for some constant C.
Since

t+C
[ oty a0 g2y gy @0 gy,
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we conclude that
u(t, )] S (&)~ D2z — 1)/,

This is weaker than the estimates given in Section @, but such estimates are usually enough in
the study of nonlinear problems.

If d is odd and if we assume that the solution vanishes for ||z| —¢| > R, then the proof above
does recover the estimate u = O((t)~(@=1/2) in Section R.5. However, proving that the solution
vanishes for ||z| —t| > R seems to require the use of Kirchoff’s formula.

6 Almost global existence in three space dimensions and global
existence in higher dimensions

Using the tools developed in the previous sections, we can now prove the first long time existence
result in this course.
Consider the Cauchy problem

g°?(u)0a0pu = F(u')  in RLTY
(6.1)
(w, Oput) |0 = (e, eul).

Here we have

1) The unknown u is R-valued, and v’ = (0,u)%_,. Of course, all the results proved in this section
also hold for RV -valued functions.

2) We have (u®,u') € C*(R?%) and 0 < ¢ < 1 is sufficiently small. By “sufficiently small”, we
mean there exists some ¢ € (0,1) depending on (u®, u!) such that e is an arbitrary number in

(0,60).

3) ¢**, F are given C™ functions such that g% = g%, ¢®#(0) = m*?, F(0) = 0 and dF(0) = 0.
As a result, we have ¢g*%(0)9,05 = O and F(u') = O(|u/|?).

Note that the derivatives of ¢**, F' do not need to be O(1) everywhere, and that the assumption
(@) is not necessary. This is because v is expected to be small.
The main result for this section is the following theorem.

Theorem 6.1. Fiz a dimension d > 1 and fix (u®,u') € C(R?). Then, for all sufficiently small
0 < e < 1 (depending on (u°,ul)), the Cauchy problem (@) has a (unique) C*> solution for all
0 <t < Ty, where

o0, d
T, . exp(c/e), d
- c/e?, d
c/e, d

I

v

I

4
3
2
1

When d = 1,2,3, the constant c is a small constant in (0,1) depending only on (u°,u') (and not
one).
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Remark 6.1.1. When d = 3, this existence result (called almost global existence) is sharp. For
example, it is known that any nontrivial solutions (B) and (@) with C2° data must blow up
in finite time, and we can show that the lifespan is e¢/¢ for some constant ¢ > 0 (not necessarily
small).

Before we start the proof, I would like to explain why we have Ty in the result. Using the
Klainerman-Sobolev inequality, the energy estimate and Gronwall’s inequality, to end the proof we
need to show that

1 = CApe(r)~@=D/2 gr < 1.
0

Here C, Ag are two large constants and ¢ is a sufficiently small constant chosen after C, Ag are
chosen.

If d > 4, then (d — 1)/2 > 3/2 and thus I; < CApe. Thus, by choosing ¢ < 1 we do have
CAge < 1. If d = 1,2,3, then we have Iy < CAgeT, CAg(Ty)'/?, CApen(Ty), respectively. By
setting Ty as above with ¢ sufficiently small (depending on Ag, C'), we can make [ < 1.

6.1 Continuity arguments: an introduction

To prove Theorem EI, of course we need to apply Theorem @»@ Meanwhile we also need to
apply a continuity argument (also called a bootstrap argument). Such an argument is based on the
following easy fact.

Proposition 6.2 (Proposition 1.21 in [Tao06]). Let I be a time interval (bounded or unbounded).
For each t € I, we have two statements, a “hypothesis” H(t), and a “conclusion” C(t). Suppose
we can verify the following four assertions:

(a) If H(t) holds for some t € I, then C(t) holds for the same t.

(b) If C(t) holds for some t € I, then there exists an open set O C I containing t such that H(t")
holds for allt' € O.

(¢) If ty,ta,... is a sequence in I which converges to some t € I, and if C(t,) holds for each n,
then C(t) holds.

(d) There exists to € I such that H(to) holds.
Then C(t) holds for allt € I.

Proof. Let A:={t € I: C(t)is true}. Then, (a)—(d) tell us that A is a nonempty set in I which
is both open and closed. Since I is connected, we conclude that A = I by using basic topology. [

You can check Section 1.6 of [Tao06] for some simple applications of this argument if you are
interested in it.
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6.2 Setup of the continuity argument

In the proof of Theorem @, we set [ :=[0,Ty) (if d < 3, then we first fix a small ¢ € (0,1) without
choosing its explicit value at this moment). For each T' € [0,Ty), our hypothesis H(T) is that there
exists a C* solution u for all ¢ € [0, 7] such that

At) = Y 12" @)]] oy < Aoes VEE[0.T].

(6.2)
[I|<N
Our conclusion C(T') is that there exists a C* solution u for all ¢ € [0, 7] such that
1
At) < §A05, vt € [0,T]. (6.3)

Here N > d + 4 is a large integer and Ag > 1 is a large constant. We will choose their values later
in the proof.

Let us briefly explain how we apply Proposition @ The assertion (a) states that H(T) =
C(T), i.e. the estimate ( implies @) Checking this assertion would be the most difficult step
in the proof of Theorem (.1 We will prove (a) in the rest of this section. Here we emphasize that
we can prove H(T) = C(T') only holds for large Ay. If it holds for all Ay > 0, then by applying
H(T) = C(T) repeatedly, we get A(T) = 0 which is absurd.

The assertion (b) follows from the local existence result for (@) and the continuity of A(t). To
see this, we suppose that C(T) is true. By the Klainerman-Sobolev inequality, we have

S 2O s Y 2

[1|<(d+6)/2 [71<L 40+ 42
If we choose N > |46 4 [ZF2| (e.g. N = d + 4), then we conclude that
sup Z |0%u(t,x)| S sup A(t) < Ape/2.
(t,I)E[O,T]XRd 1§|a|§(d+6)/2 tG[O,T]

And since u(t, z) = u(0,x) + fot((?Tu)(T, x) dr, we conclude that

> [0%u] € L=([0,T] x RY).
la|<(d+6)/2

By Theorem @, we can extend u to a C* solution in [0,7 + §] x R? for some positive § > 0.
We also need to apply Theorem @ to see that A(t) < oo for each t € [0,T + ¢]. Since A(t) is a
continuous function, and since A(T") < Ape/2, we have

A(t) < Age,  te€[0,T + ]

by shrinking ¢ if necessary. This gives us H(t) in a neighborhood of T'.
The assertion (c) is an easy consequence of the continuity of A(t).
The assertion (d) follows if we can show H(0) holds. In fact, since (u®,u') € C°, we have
(Z'u, 0,2 u)|i=0 € O by using the equation (@) to lower the order of time derivatives. Thus, if
0

we choose Ay sufficiently large (depending on (u’,u')), we have (6.2) for T = 0.
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In summary, we check the four assertions in Proposition @ We can thus apply this proposition
to show that there exists a solution to (@) for t € [0,T}) satisfying (@) This finishes the proof
of Theorem

In future we will keep using Proposition @ to prove long time existence results. At that time,
we will only state that we apply a continuity argument without referring to Proposition 6.2, and
we will only check the assertions (a) and (d) and take the other two assertions for granted.

6.3 Proof of assertion (a)

As explained in the previous subsection, we need to prove that H(7') implies C(T'), or (@) implies
(@) We need to apply the energy estimate (@)
Let us first prove some pointwise bounds. By the Klainerman-Sobolev inequality, we have

Yo 12N )] S (el + ) I Ja] =) V2A®) S Aty D,

6.4
[[|<N—| %3] (64
Since ¢ is chosen after Ay is chosen, we have
Z | Z1u/ (t,2)| < CApe < 1, as long as e < 1. (6.5)
T<N—[2£2) '
Fix a multiindex I with [I| < N. We first derive an equation for Z/u. In fact,
P(u)8a052"u = [9°" (u') 000, I]quZ[( (u'))
= [0, Z"u+ [(9°° (v') = m**)8a03, Z"u+ Z" (F(u'))
= [0, 2"Ju + [(¢*° (u') = m*?), 2"0a0u + (¢°° (u) — m*P)[0adp, Z"Ju+ Z (F(u)).
(6.6)

We write the right hand side of (@) as RI + Rl + RL + RL. To apply the energy estimate, we need
to control the L2(R%) norm of R! at time t.

Let us first estimate R}. For simplicity we write [v<ps| = o< M |ZTv| (this notation is different
from that used in the proof of Lemma ). Since F(0) = 0 and dF(0) = 0, and since |u/| <1 (by
(@)), we have

[F()] S .

In general, if [I| > 1, by the chain rule and Leibniz’s rule, we can write Z!(F(u')) as a linear
combination of terms of the form

W@y T[] 2%, >0, |J| =, |J;] >0 for each j.

If 7 = 1, then since dF(0) = 0 and |v/| < 1, we have |F («/)| < |o/|. In this case

T
- T1 2754 < W) <wl-

Jj=1
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If > 1, then we have |F(")(u/)] < 1 since [u/| < 1. As in the proof of Lemma , we have
|J;| > |I]/2 for at most one J;. For the other j, since N > d + 4 we have

d+2

[Jil <HI/2< N/2< N = |——].

In this case
FOW) - T 2% S 1) o) I 1) <] < 1) a5z |10 <],
j=1

In summary, we have
[RA S () v asz () <n| S Aoe(t)™ D72 (w) <
and
[RI®)]] 2 S Aos(t) "V A().

Next let us estimate R5. We have RS = 0 if |I| = 0, so suppose that |I| > 0. By Leibniz’s rule,
we can write R} as a linear combination of terms of the form

270%u- 2% (g% () =m®), I+ |K| =1, |J| < |I], | K| > 0.
By the chain rule and Leibniz’s rule, we can follow the proof for Z!(F(u')) above to show that
|25 (g% (') = m*)| = |25 (g™ ()] S ()< x|
Thus,

RIS D Wl W)yl S Y 1) <gll(@)<pnl-

0<j<1] 0<j<l1]
For each 0 < j < |I|, at most one of j + 1 and |I| — j is larger than (/N + 1)/2. And since

N +1 d+2

N>d+4— SN—LTJ,

we have
T
B S (W) ey gz () <n]
Again, we obtain

1R2@)]] 2 <

~

Ape(t)~@=D/2 A1),
We remark that it is even simpler to estimate R% than to estimate R]. Again we would get
1RS> < Ave(t) =D A(0).

The proof for this estimate is left as an exercise.
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Finally let us estimate RI. If |[I| = 0, we have Rl = 0, so suppose that |I| > 0. Since
[, Z] = CO for each commuting vector field Z, [0, Z!Ju can be written as a linear combination of
terms of the form

077, |J| < |I].
Meanwhile, we have
4
0Z7u = g°° (1)0a0p 27 u — (9" (') = m*®)0a03 27w =">>  R{ + O(|/||(u)<n]).
j=1

It follows that

RIS Y 1027ul S Y IR+ [WlI(w)<nl-
<l 1<l

Thus, we can use induction to prove that

RIS Y IR+ [ ll(w)<nl-
|J|<|1]
This inequality and the proofs above show that
Ape(t)~@=D/2 A1),

1RO 2 5

Now we apply the energy estimate (@) to ZTu. Since the L? norm of the right hand side of
(@) at time ¢ is bounded above by Age(t)~(¢=D/2A(t), we have

At /Aos ~@=D2A(7) dr) - exp( /Ha HW) ()] o dr),  tE€[0,T) C[0,Ty).
Meanwhile, since

007 ()] £ "] £ 1) <y 242 | S Aoelt) D12,

we have
A()E, d Z 4;
t ApeIn(T), d=3;
sk () < 0 ) )
[ 106wyl arsd e n 425 (6.7)
A[)&T, d=1.
Recall that T' < Ty and that
o0, d>4;
o) ewle/e), d=3;
4T /e, d=2;
c/e, d=1.
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By choosing sufficiently small ¢ when d > 4, and by choosing ¢ € (0,1) sufficiently small when
d < 3, we can make the left hand side of (p.7) smaller than 1. It follows that

t
A(t) < CA(0) + / CAoe(r)y"@=V2A(r) dr,  te[0,T).
0
By Gronwall’s inequality, we have
t
A(t) < CA(0) exp(/ CA08<T>_(d_1)/2 dr), t€0,T].
0

By choosing ¢ or ¢ sufficiently small, again we can make the second exponential here < 1. We
conclude that A(t) < CA(0). Since A(0) < Cye and since C, Cjy are known before we choose Ay, by
choosing A sufficiently large we have C'A(0) < %. This finishes the proof of the assertion (a).

7 The null condition

In this section we would focus on the lifespan of (@) when d = 3. Given Cg° data of size ¢ < 1,
by Theorem @ we know that this equation has a solution for ¢ € [0,exp(c/e)]. We also know
that not all equations of the form (@) have global existence (John’s examples: Cu = u? and
Ou = wguy). In contrast, we know that Ou = 0 admits a global solution for all C2° data. The
following question arises naturally: is there a sufficient condition for a small data global existence
result for (6.1))? This is why we introduce the null condition. In this section, our main result is the
following theorem.

Theorem 7.1. Fiz (u®,u') € C°(R3) and consider the Cauchy problem (@) in R, Suppose
that the equation also satisfies the null condition. Then, for all sufficiently small 0 < ¢ < 1
(depending on (u°,u')), the Cauchy problem (EI) has a (unique) C* solution for all t > 0.

Remark 7.1.1. This theorem was first proved by Klainerman [Klag85, Kla84] and Christodoulou
[Chr86]. To my knowledge, it has at least three different proofs. One is from [H97] (or the first
edition of [Sog08]). In both books, the authors allow the coefficients to depend on the unknown
function w itself, so their methods actually work for a larger class of equations. The second one is
from [Sog0§] (the second edition). This proof can be adapted to other multi-speed systems where
the Lorentz boosts are not available. The third one from [Alil0]. There the author makes use of
Alinhac’s ghost weight.

To prevent from making this note too long, here I cannot discuss all these three proofs above.
In this section, I will use the last proof from [Alil(]. At the end of this section, I will also briefly
discuss how the proofs from [H97, Sog08] work.

7.1 Definition and basic properties
Definition 7.2. Suppose that the Taylor expansions of g** and F' in (@) at 0 are

g*P (') = m*® + g8 onu + O(|u/ ),

7.1
F(u') = £ 0qudsu+ O(|u']?). (7.1)
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We say the equation (@) (or the coefficients g5**, fi*) satisfies the null condition if

g6 €abply = fg Cabp = 0, whenever £ e R'FY, |G = |61 + | + &7 (7:2)
It is easy to check that (@) and (@) satisfy the null condition.
In general, we can also define the null condition for
9°% (u, )0 Opu = F(u,u’)

where u is an R-valued unknown. In this case, we simply replace the remainders in (EI) with
O(Jul? + |u/|?) or O(|u|® + |[v/]3). We can also define the null condition if (@) is replaced by
a system of quasilinear wave equations for an R¥-valued unknown. For simplicity, we shall not
discuss these general cases in this note.

Let us briefly explain the motivation behind (@) To apply the energy estimate, we need to
estimate the L? norm of F(u'). The cubic terms in the Taylor expansion of F is good, so let us
focus on the quadratic terms. For simplicity, we assume that F(u') = fg' o uqug. For each partial
derivative 0,, we can decompose it as the sum of a normal derivative (with respect to the light cone
|z| —t = C) and a tangential derivative. By easy computations, the normal derivative is equal to
240 (0, — 0,) where ¢ = |z| — t. We can check that g7 = [V,q|?. Thus, if we expand the quadratic
form F(u’) by using the decomposition above, we get

1
F(U/) = ngﬁ%%(ut - Ur)2 +0u-Pu=20u-Ju

where @u denotes one of the tangential derivatives 0; + w;0;. By (@), we expect tangential
derivatives to have better decays, so that is good. Similarly, we can make a similar discussion for
ggﬁ)‘(?,\uﬁaagu.

We now make the discussions above rigorous. Since 9y — 0, = 20; + tangential derivatives, it
would not affect our proof if we replace 9, — 9, with d; in our decomposition above. This would
make our computations a little simpler.

Lemma 7.3. Suppose that g5** and fi* satisfy the null condition (@) Then,

1967 0udadpv] + |96 Dauds0rv] + |95 Dgudadav| < |Tul|0%v] + |Oul|TOv],
1957 Daudgvdrw| < |Tul|dv||ow| + |9ul|Tv||[dw]| + |ul|dv]| Tw],

|57 0audgv] S 0u||Tv] + [Tul|Ov].

Here |Tu| :== S°0_ |ui 4+ wiue|. We can then apply (@) in Lemma to control the right hand
stdes of these two inequalities.

Proof. Set q = |x| —t and Ty, = 04 + ¢a0r- We now have 9, = T, — qo0; and thus
93’8’\(%\118&851) = —ggﬁ’\untaaagv + Thu - 8%
= gg‘ﬁ’\qanut@tagv +Tu- 8% + Ou-Tov

= —g(‘i‘wqa(mqwt : @27) +Tu- 0%+ 0u-Tdv + Ou - TOv
=Tu 0%+ du-Tdv.
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Here Tu - 9*v is a linear combination of Thu - 9,dsv with O(1) coefficients. Similarly for other
terms. Also note that the last identity follows from the null condition. The same proof applies to
other terms on the left hand side of the first inequality. The second and third inequality can be
proved in a similar way. O

Remark 7.3.1. If there is no null condition, then the best result we have is
19072 O\udadpv| < |0ul|0®v], | f8P Baudsu| < |Oul|dv).

By Lemma @, we expect |Ou| < (r — )71 Zu| and |Tu| < (r + )71 Zu|. The second estimate is
better than the first one. That explains why the null condition improves the almost global existence
result in Theorem

We now state another useful property for the null condition. For simplicity, we call f0 O udgv

*** **

or goﬁ O\u0a05v a null form (for (u,v)) if g satisfy the null condition ([7.2). We will see in
the next lemma that if we apply Z! to a null form then we will get a sum of several null forms
(not necessarily for (u,v)).

Lemma 7.4. Suppose that g5** and fi* satisfy the null condition (@) For each multiindex I,

ZI(QS‘BAGAu@a@gv) = Z a;. J28)\Z Tu0,05 720,
[J1]+]J2|<|1|

Zl(fgﬁaauaﬁv) = Z f?IB,JQi?aZJluagZJ?v.
[J1|+|J2|<|1|

constants satisfying the null condition ([7.2).
and G5, = 0 if | Jo| = |I|, |J1| = 0 but Jo # 1.

Here for each pair of multiindices (Ji, J@wzth | Ji| + [J2| < |I|, the coefficients g7, and fjf are

Moreover, we have 90? =90 b

Proof. By induction, we only need to compute Z(fy' of Daudgv) and Z(gg P9\ ud, dgv) for an arbi-
trary commuting vector field Z. By the product rule, we have

Z(15° 0audgv) = f5° Z0audg + f57 0auZdgy
= foa’B('?aZuagv + fgﬂaauaﬁZv +f6xﬁ[27 aa]uaﬁv + fgﬁaau[Z, 85}1),

null form

Z (g5 0\udadgv) = g5 ZONudadgv + g5 03uZ 00050
— g0P 0\ Zudadpv + g5 0rudW0s Zv

null form

+ 96712, 0\|udadpv + g5 Osul Z, 0aldpv + g5 OnudalZ, D3]v.
Moreover, for each vector field Z = 2%(t, x)0,, we have [Z,05] = —(982%)0a. As a result,

1812, 0a)udgv + [P 00ulZ, 050 = — 3% (00z")Opudsv — 57 Bqu(9327) 05w
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A1 Z, O\|udadsv + g2 ONulZ, 0a)05v + 957 0NudL[Z, D5)v
= —gg‘ﬂ)‘(a,\z )0 u0a Ogv — 90’8 O\u(0a27) 05050 — goﬁ O\u(0327) D 0pv.

In order to check the null condition, we need to check that

F58(0027)6065 + 107 €a(9527)E5 = 0,

98PN 00276060l + 95760 (0027)E0E + 957N (0527 )Enbs = 0,

whenever ¢ € R with [&]? = 2123 &%, If Z = 0, then 9z = 0 so these two identities hold
trivially. If Z = S, then 0,2°&, = £, so we reduce these two identities to (@) If Z = Qjj;, then
002785 = 0ai€j — 0aj&i, so the left hand sides of these two identities reduce to

fPeies — FiP€ies + fQi€ats — 7 €aki = (&;0k, — &0¢,)(fo €atp),

957 €608 — 987 Eikaln + g0 ExEi€s — G EnEils + 98P ENEiEa — 95NN = (€508, — €10k, ) (95 EaBE).
Since &;0¢, — &0k, is tangent to the cone [§]* = > =123 |€;|%, and since 98"8)‘@155@ = fél’gfaf/g =0

on this cone, we conclude these two identities. Finally, if Z = Qq;, then 0,27¢, = 0aifo + da0éi, SO
the left hand sides of these two identities reduce to

FPeots + [Pk + f&i€nbo + F806aks = (Eigy + E00e,) (1 €nts),

987 €0als + 957060 + gy E0EES + 90 EnEiks + 98N ENE0En + gE PN ENEiln = (€8, + €006 ) (957 EaBEN).

Since &;0¢, + £00k, is tangent to the cone |&|* = 2 j=123 |2, and since ggﬂ’\fa@f)\ = fgﬁfafg =0
on this cone, we conclude these two identities. ]

7.2 Preliminary estimates

In this subsection, we seek to prove the following estimate.

Lemma 7.5. Fiz an integer N > 2. Suppose that u is a solution to (@) which satisfies the null
condition. Also assume that

|(u)<nyog1] <1, where |v<pr| = Z 1Z7v]. (7.3)
[J]<M

Then, we have

Z fgaﬂ )0 36211@’ ST (u<n)||(u )<N/2+1’ + |(Ul)§NHT(U§N/2+1)\ + ’(U/)SN/2+1|2|(U/)§N|-
[II<N

(7.4)
Here we set [T'(v<m)| = 3| j1<m \TZ7v| with T = (Ta) = (O + Oa(r — t)0y).
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Recall from the previous section that for each multiindex I, we have
9°P (u)0a0p2"u = [0, Z"u + [(9°" (') = m*?), 2"0a05u + (¢*° (u') = m*") (0205, Z"Ju + Z" (F(u))
=: R + R} + R} + R.
(7.5)

We start with Rf. Note that F(u') = fg' p uqug + F(u") where F,(u’) vanishes of third order at
0 (i.e. d*F.(0) =0, k = 0,1,2). By the chain rule and Leibniz’s rule, and because of (@), we have

Y 12N (E()] S 1) ewpl? (W) 2],

1I<N

The proof of this estimate is left as an exercise. Moreover, by Lemma @ and @, we have

ST 12N uaup)| S Y- (T2 ul|0Z7ul) S 1T (uam)I(w)<iyal + | (W) <n 1T (uenyo)].
[I|[<N |J1|+|J2| <N

In summary,

DRI S T ()W) <ol + 1)< IIT (e o) | + (@) <npol*| () <] (7.6)
1<y

Next we consider R} + RL. Write
g™ (') = m = g5 ur + g2 ()
where o (u’) vanishes of second order at 0. We can prove that (exercise)

D 127 NI S 1) <npal () <.

[J|<N
Now,
R =[5 uy, Z1000pu + [92°, Z'10a05u
= 0P 0\uZ! 0,05u — ZT (¢*PAO\udadpu) + [9°° (W), Z)0a0su,
RY = 8P 05u[0a05, Zu + 28 (u')[0a0p, Z'u.
As a result,

RS + RL = ¢57200uda03 2 u — Z' (g*P 0zudaBpu) — Z' (927 (u)0udpu) + g% (0 )00ds 2 .
By Lemma @, we can write ggﬁ 8>\u8a6521u — Zl(go‘ﬁ)‘a)\uﬁaagu) as a sum of null forms
G502 - 020527, || + |l < |11, | o] < 1.

In particular, we emphasize |Jo| < |I| because of the second half of Lemma @ It follows from
Lemma @ and from [0, Z] = C - J that

1982 0\ubW05 2w — Z! (g Oy udadsu)|
< Z (| TZ 7 ||0*Z 2 u| + |02 u||TOZ72u))

[J1l+]J2| <N
[Jo|<N

ST (uan)I|(W) <njog1| 4+ T (uany2) (W) <N |+ () <N | T (u<njo)| + (W) <2l T (u<n)|
=S |T(USN)||(U/)§N/2+1\ + ’(UI)SN||T(U§N/2+1>|o
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Similarly, we can write —Z7(g2° (u/ )0a0pu) + ge B! )0a05Z1u as a linear combination of
27 (g2 ()27 0005u, ||+ || < I, |T2] < |1I.
It follows that
| = Z" (g2 (u)0apu) + g2 (u) 0003 Z"ul
S Z |(ul)§\J1|/2H(U/)§|J1|H(U/)§|J2|+1’

[J1]+]J2|<N
|Jo|<N

S W) enpall (W) 2n @) <njoral + 1) <npoP[(W) <n| S 1) vz P1(W) <nl.

In summary, we have
RS + B3| S |T(us)l| (@) <njaral + (W) <n 1T (usnyo )| + 1) <o [P (1) < (7.7)

Finally we estimate R{. It is clear that R! = 0 if |[I| = 0. Since [, Z] = CO, we can write R}
as a linear combination of terms of the form [0Z7u with |.J| < |I|. Meanwhile, we have

027u = g™ (0)0a05 27 u — (¢°° (W) — m*P)0,05Zu

4

Z — g8 0\uBa0 2 u — g2 (u)0nBs 2" u

Z O(|ITu||8%Z7u| + |9u||TOZ u| + |/ 12192 Z7u])  (by Lemma [7.9).
=1

We can estimate Ry + R{ + Rj using (@) and (@) And since |J| < N, we conclude that

RIS Y IR+ 1T (uem) (@) <njzin] + () <n I T (usnjor)| + (W) <vjora P(w) <],
|JI<|1]

By induction, we conclude that

IR{| < T (ue M) (W) <njap1] + (W) <n 1T (uensos1)] + (W) <njoia 1) <. (7.8)
This finishes the proof of the lemma.
Remark 7.5.1. Since [T'¢| < |¢'|, it follows from (@) that

Z 9% (u') @ 092"l S [(u u)<n () <njoin| + |(Ul)§N/2+1|2|(U/)§N|- (7.9)
[I|<N

This is in fact the estimate we shall get without assuming the null condition.
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7.3 The energy estimate

I would like to start this subsection with an explanation on why the usual energy estimate is not
enough in the proof of Theorem [7.1. In the proof, we need to estimate E(t) = ||(v')<n|;2. So,
what is the upper bound for E(t) in our continuity argument here? If E(t) < Ce, then by the
Klainerman-Sobolev inequality, we shall obtain

E(t) S E0)+ /t et LE(7) dr.
0

By Gronwall’s inequality we have E(t) < et“® which does not end the continuity argument. How
about E(t) < Cet®® in the continuity argument? It is even worse because we shall get

E(t) < E(0) + / t er HCEE(T) dr.
0

By Gronwall’s inequality we have E(t) < tCt“" . Even worse! This is why we need to introduce
some new energy estimates here.
We need an energy estimate from [Alil0].

Proposition 7.6. Let u € C%([0,T] x R3) vanish for large |x| and satisfy
Pu := g*?(w')0a0pu = F, V(t,z) € [0,T) x R%. (7.10)
Suppose that g* = g%, that w vanishes for all |x| >t + C, that

g°? (') = m®® + g§71 0w + O(Jw' ) (7.11)

kokk

where the coefficients gi** are constants satisfying the null condition (@), and that
J
Yo N027w]| oy < Cos, 0<e< 1. (7.12)
J|<3

Then, for each smalln € (0,1), we have

b (] -7 o)

(7.13)
CCoe / t
Sne (HU(O)HLQ(R3)+ ; 1F ()l L2 (msy d7)-

Here recall that |Tu|? = Z?Zl uj + wiug)?.

In the proof, we make use of the method of ghost weight which was introduced by Alinhac. Let
a € C*(R) be a function to be chosen later. Now we shall compute e*(*I=Yy, Pu. Let g?ﬁ = Oy g™’
be the derivative of ¢®? with respect to the y-th component. Now,

Oa(eurg™ (w'))ug

g (W) B0 Opu = Do (e urg™® (w')ug
s eaa’qautgaﬂ (w')ug

) _
= On(eurg®” (w')ug) —
— €%(0adu) g™ (w')ug — e“utgff‘ﬂ(w/) - (0aO0yw)ug.
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Here recall that ¢ = r — t. Next,

—e(Dadiu) g™ (w)ug = —0,(e"g* (w')uaug) + (g™ (w')ug)ua
= =0 (eg™ (w")uaup) — e*d'g™" (W) uguy
+ g2 (w') - (BB w)ugug + %9 (') (d5u)ua

=—LHS

Thus,
Qg o aB(,, _ 8 a af 1 a, !l af 1 a af 9,0
—e*(000pu) g™ (W ug = — =9 (e g*" (W )uqup) — Jeayg (W ugua + 3¢9 (w') - (005 w)ugug.

In summary,

a

e“us Pu = 0 (®urg® (w')ug) — ea qaurg® (w')ug — € urgy Bw') - (DaBrw)ug
1

1 1
0,(eg* (w'Yuqug) — §€aa'9aﬁ(’w Jugtia + ieagﬁw( w') - (Osdyw)ugua.

[\ \

Thus we can write —e®u;Pu = Z?,ézo Ogeg + e Ry + e%a’ Ry where

1
eo = —e ur g (w')ug + 2e“go‘ﬂ( wuqug,
1
Ry = g5 (w') - (Oadyw)usug — 5976( w') - (OpOyw)ugua,
Ry = qagaﬂ(w')ut%g + §gaﬂ(w’)uau5.

We first estimate eg. By (), () and the Klainerman-Sobolev inequality, we have |g®* (w’)—
m®B| < Coe. Tt follows that

1
eo = e (5[ + O(Coelu*)), (7.14)

and therefore

1 1
(5 — CCoe)e’|u'|? < en < (5 + CCoe)e|u |,

Next let us estimate R;. By (), we have
gy (w') = g5™" + O(|u')
and therefore
1
Ri = g; ’Bw(utugaa@vw — iuaum?t@ww) + O(|u|?|w'||w"|)
= O(|[v/||Tu||w”"| + |W'|?|TOw| + [v'*|w'||w"]) by Lemma @
By (), the Klainerman-Sobolev inequality and Lemma @, we have

> 10z7w| < Coett + [al) x| — )72, || S Coe(t + |z) |z — )72, |Tow| < Coelt+ |al) >
<1
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In summary,
|R1| S Coe(t + |zl) (|| — &) 72| | Tu| + Coe(|z| + )~ 2|u[%.
Finally we estimate Ry. Since
9" (') = m* + ggPorw + O(juw' ),
we have
1 1

Ry = qamaﬁutu5 + imaﬁuaug + qagé‘“wwtuﬁ + iggﬁAwAuauB + O(]w’]Q\u’\Q)

- 1 12 afBA 112 / / N2 12

= gty + 5| + gag P (Tyw — g u(Tyu — qgu) + O PITw| + /|| Tul '] + '[P

1
= upty + §IU'I2 + O(Ju'P|Tw| + ||| Tul|w'| + [w'|*']?).

Note that wgu, + 5[u'|? = %2?21 |Tjul? and that

Tw| S (|2 + 867" Y [27w] S (|| +t>_1(/ > 10,27 w(t, px/|z])| dp)  w vanishes for [z| — ¢ > C
|J]=1 (|,t+C1 |J|=1
S (=l + 7f>‘1(/ Coep+ 1)~ p— )71/ dp) S Coe(lz| + ) (|| — 1)/,
[lz],t+C]

Thus, we have
1
Ry > o |Tuf? = CCos(fa| + ) (|| — t)!/?|u/[* — CCoe(Ja] + )~ (|| — 1) /*|| T
1 -
> 4| Tul® = CCoe(fa] + ) (|| — )2 |u' .

We now choose a so that lims_, a(s) = 0 and that a/(s) = 8(s)~177. Note that > 0 implies
that |a| < 1 and thus e® ~ 1 everywhere. Now,

a'Ry + Ry > 2(|z| — )1 Tw|? — CCoe(|a| + ) 72|/ |> — CCoe(t + |z|) (2| — t) /2| || T
> (Je| = )71 Tul* = CCoe (|| + )2 |u'*.

We now integrate —e%u, Pu = Z%:o dges + €“Ry + ea' Ry. By setting E(t) = [ eo(t,x) dx, we
have

E'(t) = /—e“utPu —e*(R1+ d'Ry) dx
< /eayu’npy ] — )Tl + CCoeJa] + 1) 26| dr
< CEMY?|F)| 2 — H<| . t>_(1+77)/2|Tu|H; + CCoe(t)2E(1).
If we set

10 =0+ [ -1-n- e,
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then
H'(t) S H)Y?|F(1)] 12 + CCost) > H(t).

We finish the proof by dividing both sides by H (t)l/ 2 applying Gronwall’s inequality and noticing
e* ~ 1.

Remark 7.6.1. From this proof, we can see why e is called a ghost weight. Since e® ~ 1, the
energy defined with this weight is equivalent to that defined without this weight. This is very
different from the energy used in [H97]. It thus seems useless to introduce this weight. However,
using this weight would introduce an extra term in the energy estimate. This extra term will be
necessary in the proof of global existence.

7.4 Continuity argument

We can now set up the continuity argument used for the proof. For each T € [0, 00), our hypothesis
is that there exists a C* solution u for all ¢ € [0,T7], such that

At):= Y 127 O] sy < Are, tE[0,T]. (7.15)
[II<N

on N and A;. All these constants are to be chosen later later. We would like to prove ( with
A; replaced by A /2. For simplicity, we would only check the assertion (a) in Proposition §.2. The
proofs of other assertions are the same as those in Section 6.2

By the Klainerman-Sobolev inequality, we first notice that whenever 0 <t < T,

Here N > 8 and A; > 1 are large constants, and 0 < € < 1 is a sufficiently small constant degending

Yo l0Z%u(t,x)| ~ |(W)en—2l = D 127 (t2)] < CAre(ja] + ) (|| — 1)1/, (7.16)

[|<N—2 [[<N—2

By the finite speed of propagation, we have Z/u = 0 whenever |x| —t > R for some constant R > 0
depending on the initial data. Thus,

fuen—s| < / () <n—a(t, p/|2])] dp < / Avelp+1)" o — )72 dp < Arelja] + ) (Ja| — )12,
[lz|,t+R] [|z|,t+R]

(7.17)
By choosing € <4, 1 and noticing that N/2+2 < N —2 whenever N > 8, we have |(u/)<y/241] < 1.
Thus, by Lemma [7.5, we have

> 19 ()00 Z ul

T[<N

ST (uen)||(W)<njog1] + (W) <N [T (uanyo1)] + ’(UI)SN/Q—H’Q‘(UI)SN’

S Ave(lz] + )z = )72 T (uan)| + Are(lx] + 1) (|2 — )2 |(u) <] + AT (|2] + )7 () <n]
< Ave(la| + )7 H|a] — )7V T (uen)| + Are () 2| () <nl-
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In the last estimate, we notice that (|x| —t) < (|z| +¢) and that A;e < 1 if we choose ¢ <4, 1.
Now we can apply Proposition @ (with (w,u) replaced by (u, Z'u)) to obtain

i </Ot /Ra<|:v| — )" NT (uen) (7, @) dxdT) " (7.18)

Sn A(0) + tAlE (-1 +7) N =) 2T (uen) ()|, + Arelr) ™52 A(r) dr.
0 L

By choosing £ < 4, 1, we can make e“41¢ < 2, s0 we do not have e“41¢ here. To continue, we note
that

/ot A |11+ 17 = ) T e ()

t
S [ e - T e |\
0

t 1/2
coe([ore) ([ oo,
0
) 1/2
Sﬂ? Aie (/0 H<| . ‘ _ T>*1/2*"/2‘T(U§N)(T)” Lo dT) .

To get the last estimate, we need to choose 0 < 1 < 1. It is not hard to see that by choosing
€ <4, 1, we can use the second term on the left hand side of () to absorb this integral. In
summary, we have

dr
LQ

>1/2

A@)Sfum4i/a%eﬁyﬁﬂAhﬁdr

0

It then follows from Gronwall’s inequality and ¢ <4, 1 that A(t) < CA(0) < Ce where C is
independent of A; and €. By choosing A; > 1, we have A(t) < A1e/2 for all ¢t € [0,T]. This
finishes the proof of the continuity argument.

7.5 Alternative proof: I

Let me now present two different proofs. The first one is from [H97]. There Hérmander made use
of the following energy estimate.

Proposition 7.7. Fiz d > 2. Let u € C2([0,T] x R?) wvanish for large |x| and satisfy
B (w)Dadgu(t, x) = F(t,x), V(t,z) € [0,T) x R%. (7.19)

Suppose that g% = g%, that
g (w') = g3" 0w + g&P (w') (7.20)

where the coefficients g5** are constants satisfying the null condition (@), and that for each
sufficiently small constant 0 < § < 1 we have

J —1 J(ap —2
o Z7wl <ot +t+]a)h D 2762 (w') < S+t |2]) 2 (7.21)
|7]<2 [J]<1

*
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Then, by setting
Eo() = [ 3 12%u(t, o) + (d = Dlult.) da.
R J=1

we have

Eo(t)"? S (14 ) (Eo(0)"? + /Ot(l + 1)U+ | D)l 2ay dr). (7.22)

In the continuity argument, Hormander considered the L2 norm of not only (u’)<xy but also
u<y. This is why we cannot use the usual energy estimate (@) here.

Please read Proposition 6.6.6 and Lemma 6.6.7 in [H97] (note that g% (u/) = —m®? + g8 u,, +
O(|v/[?) in [H97]). The basic idea of proof is as follows. We apply the multiplier method to Ku-Oyu
where

Ku = (1+t*+ |z[})u + 2tz - Vou + (d — 1)tu.

By tedious computations, we can again write

d
—K’LLDgu = Z 85% + R
B=0

where 0 <eg ~ >, ;14 |Z7u)? + (d — 1)u? (need § < 1 to get this estimate) and |R| < 6(1 +t +
|z])~teo. By setting E(t) := [eo(t,z) dz and noticing that |Ku| < ep, we have
E'(t) SO+ 6T E@) + [t + |- DE®) poay BB

and thus

%((1 +1)"CEMY?) S (L8Pt + - DE@) e

We now integrate this inequality.
To finish the proof from [H97], we also need the following L estimate.

Lemma 7.8. Let F € C2(R?) and suppose that w = w(t,x) solves Dw = F with (w, w;)|i—o = 0.
Then,
b X<l ZTF (s, y)|

1+t t,x)| S dyds. 7.23
U+t lalotta)l s [ SR dys (7.2

Proof. Let us first prove a homogeneous version of () we have

t 71
R3 s+ |yl

@+MMwwwM§A

Here Z is one of following commuting vector fields: scaling S, rotations €2;; and Lorentz boosts
Qp;. Note that the coefficients of Z are homogeneous polynomials of (¢,z) of degree 1, so we have
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(Z'wy)(t,z) = (Z'w)(M, Az) where wy := w(At,\z). If we have proved () for w, then by
replacing w with w), we have Uw) = A2F) and thus

Z\1|§2(21()\2F>\))(57y)
R3 s+ [yl

(t + [e)Jw(M, A)| = (¢ + 2])|wa (£, )] S /0 dyds

t ZF AS, Ay At Z'F S,y
:AQ/ S 112 [(ZTF) (s, ) dyds:)\_l/ GG
0 JR3 s + [yl 0o Jrs s + [yl
It thus suffices to prove () with ¢ = 1.
The solution to —[Jw = F' with zero data can be written explicitly:

1 Pt — |yl z —y)

w(t,x) = / dy. 7.25
4 Sy <t Y| (7.25)

This follows from Duhamel’s principle: if v(¢,x;s) solves the linear wave equation with data
(v,v)]t=0 = (0, F(s,-)), then w = f(f v(t — s,x;8) ds solves Ow = F with zero data. You can
also find this formula in 1.1, [Sog08§].

i) Let us first suppose that supp F' C {|y| < s/2}. If we go back to the proof of Lemma @ we
recall that

3 3
ol + el S Hlzl = ¢Sl + Y [Qidl),  1d5] S T+ 2|71 QD 150l + [Q0;8] + |zlge — ¢r))-

In summary, we have

06] < llel =171 Y 12" 9).

7]=1
And since [Z,2'] = C - Z, we have

0% Sllal =17 > 1Z7g), k=1

<k

In the support of F', we have ||ly| — s| ~ s, so

kk‘
// |8Fsy dd<// |ZFsy)|dde‘
R3 R3

|7|<2 s+l
Since Ow = 0 in {|y| > s/2} and since (w,w;)|t=0 = 0, we have w(1,z) = 0 whenever |z| > 1 by
the finite speed of propagation. So to end the proof, we assume |z| < 1.
Now, by the fundamental theorem of calculus, we have

k<2

1 1-Jy| 1
\F<1—\yr,x—y>r:/ rF<s,x—y>+/ Fl(r.x —y) dr] dss/ F(s,2 — y)| + |Fl(s,2 — )] ds.
0 s 0

If |y| < 1/2, then similarly we have
1 1—|y\ 1

P~ ylx — )] —/ F(s,2 — ) +/ Fl(r,z —y) dr| ds 5/ F (s, — y)| + |F(s,z — )] ds.
1/2 s 1/2
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It follows from () that

(1 - - F(1- -
(Ul )] S (1) 5 POl =il g, [ EOZblezily,
ly|<1/2 /2<]y|<1

] ]
/ / (F(s, 2 — )| + |F(s, 0 — ) 2%
lyl<i/2 J1/2 ly|

1
//2<|y§1/ (1F (s, —y)[ + |Fsls, 2 —y)]) dsdy.

Note that in the second integral we have 1/|y| < 2. To end the proof, we notice that

d
/ oY < / G dy, Vg e CLRY).
R3 ’Z/‘ R3

We introduce polar coordinates and use integration by parts to prove this estimate.
ii) Next we suppose supp F' C {|y| > s/3}. Set G(t,r) := supj,—, |[F(t,y)|. By the Sobolev
inequality on the sphere, we have

tr|N/Z|QI (t,rw)| dS,

|7|<2

where Q! denotes a product of rotations Qj, 4,5 > 0. Now we let U be the solution to —[JU =
G(t,|z|) with zero data (G(t,0) = 0 because of the support of F, no singularity). By (), it
follows that

olt,2)| < U(t,2) = - / ; G(f—\%’m—yn "

which is rotationally symmetric in = (take substitution z = Ly where L is a rotation). Writing [J
in polar coordinates, we have
—OU =Uy —Upp — 1 U, = G = (rU)gs — (rU)pr = 7G.

Using Duhamel’s principle, we have

r+l—s
|z||w(1,2)| < rU = = // G(s,p) dpds<// pG(s,p) dpds
r—14+s

Z// /SQp|QIF spw]depds<Z//]QIF (s, 9)||y| ™t dyds.

7]<2 17]<2

Note that |y|~! in the last estimate can be replaced by (s + |y|)~! because F =0 in |y| < s/3 and
because |y| + s ~ |y| whenever |y| > s/3. This finishes the proof when |z| > 1/4. When |z| < 1/4,
if (1—|yl,z—y) € supp I, we have [z —y| > ( | /3 and thus [y = |z —y|—[z| = (1-y|/3) —|z|
= 4|y| > 3(1 — |z|) > 1/4. It follows from ([7.25) that

|w<1,x>|,s/|| P~ lx = )] d.
y|I<
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By viewing F'(1 — |y|,z — y) as the value of h(1) = F(7(1 — |y|),7(x —y)) at 7 = 1, we apply the
fundamental theorem of calculus to obtain

16/15
F(L =yl 2 —y)| < / ()| + [1(r)] dr

16/15
S /1 [E(r(1 = [y]), 7(z = y))| + |77 SF)(r(1 = |y|), 7(z — y))| dr.

The Jacobian of the the map (7,y) = (7(1 — |y|),7(z —y)) is 72(1 — (z - y)/|y|) > 3/4 whenever
7 € [1,16/15] and |y| > 1/16. It follows that

16/15
(1, 2)] < /| . / F(r(1 — [y]), (@ — )] + |(SF)(r(1 — [y]), 7(x — y))| drdy
y|<
1
< / / F(s,2)| + |(SF)(s, 2)| dsd-.
0 J|z|<2
This finishes the proof o) in the case supp F' C {|y| > s/3}.

24)

To end the proof of ( , we choose 1) € C2°(R3) such that Y|B(o,1/3) = 1 and ¥|gs\ p(o,1/2) = 0.
Then, 1(y/s)F satisfies 1) and (1 — ¢ (y/s))F satisfies ii). To end the proof, we also note that
7 (b(y/s)) = O(1).

Finally, we return to () If supp F' C {s +|y| > 1}, then we have suppw C {s + |y| > 1}
by the finite speed of propagation. In this case () follows from () Moreover, if supp F' C
{s+]y| < 2}, then we make a translation (s,y) — (s,y+(3,0,0)) and apply the case already proved.
The translations introduce constant vector fields. Combining these two cases by a partition of unity
yields () in full generality. O

Remark 7.8.1. This lemma and its proof are from Lemma 6.6.8, [H97]. There is another version
of () proved in [Sog08] (Theorem II.1.5) where the author avoids using Lorentz boosts.
7.6 Alternative proof: 11

Now let us discuss the proof in [Sog08]. In addition to the usual energy estimate, the author proved
the following sharp weighted energy estimate.

Proposition 7.9. Suppose v solves v = G in le?). Then there is a uniform constant B such
that

(In(2 + t))_1/2 H(r>—1/2v’ <B <Hv'(0)”L2 + /Ot |G (Tl 2 d7'> )

L2([0,t]xR3)

We remark that this estimate is related to local energy estimates for wave equations.
Using this energy estimate and the estimate (), we are able to finish the proof. You can
check Section I1.3 and II.5 in [Sog08] for more details.
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8 Hormander’s asymptotic equations

In this section, we only consider three space dimensions (R!™3). For equations like Ou = u? and
Uu = upuy, we know that any nontrivial global solutions with C'2° data must blow up in finite time.
For equations like (p.1)) satisfying the null condition, we know that there exists a global solution as
long as the initial data belong to C2° and are sufficiently small. The following question then arises
naturally.

Question. Given an arbitrary quasilinear wave equation or an arbitrary system of quasilinear
wave equations, how can we predict whether it has small data global existence or not?

To answer this question, we will introduce a type of asymptotic equations for quasilinear wave
equations. This type of asymptotic equations was first introduced by Hérmander [H97,H87, H91],
so I will also call it Hérmander’s asymptotic equations.

8.1 Motivation

Let us consider the linear wave equation OJu = 0 in R'*3 with C° data (u®,u') at time 0. For
simplicity, we assume that u® = 0 for all x € R3 and u! = 0 for all |x| > 1. Using the results in
Section B}, we know that there exists a global C'* solution u. Now, can we say anything about the
asymptotic behavior of u as t — 0o?

Theorem 8.1. There exists a smooth function F = F(q,w) : R x S = R, such that Fy(q,w) =0
whenever |q| > 1, and

lu(t,z) — 'r_ng(?“ —tw)| < r2, vt,r > 1. (8.1)

Proof. By the finite speed of propagation, there is nothing to prove when |r — ¢| > 1. From now
on we shall assume |r — t| < 2 and r,t = 1. Moreover, because of the rotation symmetry, we only
need to prove (@) at © = (r,0, %Where r>0.

Now, by Kirchoff’s formula (R.2), we have
(ta) = 5 [ ulla+t) dS, = o Yy ds
u(t,z) = — | uw (z+tw)dS, =-— u(y .
™ Js2 4t dB(z,t) Y

We can replace OB(x,t) here with 0B (z,t)NB(0,1) since u! = 0 for all |y| > 1. In dB(z,t)NB(0, 1),
if r,t 2 1 we must have y; < x; = r. This is because y € 0B(x,t) N B(0,1) implies that
r=lz|>lr—y|l—ly >t—1>12> |y1|. So we only need to take the integral on the lower
semisphere. This gives us

1 ul(r — /22 —1y12,9) a— L / ul(r — /12 — [y'12,y) oy
y'eR2, |y/|<1

u(t,xr) = — = —
&)= g /y'eﬂ@, /<t V= y')? YT V=P

Here we use u! = 0 whenever |y| > 1. Note that by setting ¢ = r — t € [~1, 1], we have

9 N2 _ 2
VEE = /g PR, ey = 2t WD

L+ =g/ =P/

They are both smooth functions of (g, 1/r,3’) (it is easy to check that (1—¢q/r)2—|y/|?/r?> > C~1 >0
for some constant C' > 1). In summary, we conclude that u(t, ) = r~'F(q, 1/r) where F is a smooth
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function. For other x € R3, we can also show that u(t,z) = r~'F(q,w,1/r) for a certain smooth
function F'.

Finally, from our derivation, we notice that F(q,w,0) is well-defined and that (q,w,z) —
F(q,w,z) is smooth in R x S x [0,C~!]. By setting Fy(q,w) = F(q,w,0), we conclude (@)
from Taylor’s theorem.

O

Remark 8.1.1. We have a few remarks about this theorem.

o Such a smooth function Fy exists for any initial data (u®,u') € C°. Tt is called the Friedlander
radiation field.

e In fact we can show
|ZL (u(t, x) — v Fy(r — t,w))| <pr2, vt,r 21, VI. (8.2)
Here Z! is a product of commuting vector fields.

e One way to compute Friedlander radiation fields is to use the Radon transform. We refer to,
for example, [Eval0].

Nonrigorously speaking, from Theorem @ we have
u(t, ) ~ 1 Ry (r — t,w), t — oo.
This motivates us to use the following ansatz for a general quasilinear wave equation:
u(t,z) = er tU(s,q,w). (8.3)

Here U is a function of (s,q,w) = (¢lnt,r — t,w). We use the factor ¢ < 1 because only small
solutions are considered. Later we will derive asymptotic equations for U in the coordinate set
(s,q,w). Note that s < ¢ is equivalent to t < e/, so we relate the local existence of U with the
almost global existence of u together.

8.2 Derivation

Let us now derive Hérmander’s asymptotic equations. For simplicity, we only do the derivation for

()
9°% (u)Dudpu = F(u).
Moreover, we make the following assumptions.
e t =1 — 00.
o Zlu=0(et™1), VI.
o (9s,04,0,)*U = O(1), Yk > 0.

o g®PW) = m + g2 uy + O(Ju]2).
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» F(u) = 5 uaus + O(|u/).
In fact, an exact solution u to (@) might not satisfy these assumptions. For example, sometimes
we might expect Z1u = O(st*HC6 ). This, however, does not matter, because those differences are

usually negligible. I should also emphasize that the derivations below would not be rigorous

Now we plug v = er~1U into the (@) We have

9P (u)0uBpu = Ou + g5 uruas + O(273).

Here
Ou = —er™ (0 + 0,) (8¢ — 0,)U + r2A u
Q2 u = O(et™1). Thus,
) (0 — 0,)U + O(et™3)
at + 0,) (et Us — 2U,) + O(et ™)
et 2U, + %t 2Ugs — 26t Uy,) + O(et™3)

where Aju =73, .
-1

Hu (O
1(
(=
)"

-1

= 2¢? (rt Wy +0(et™3).

Besides, we have
up = e*(tr) " tUs — er U, = —er U, + O(e*t72),
uj = —er 2w;U + er  (Uyw; + Uy, - 0w) = er~tw;U, + O(et™2)
uy = —er (et Mgy — Uyy) + O(e*72) = er Uy, + O(e*72),
wy; = er wj(et  Ugy —
uji, = Op(er ™ tw;)Uy + er™tw;j(Uyqwy, + Uy - Ow) + O(et™2)

= er twjwpUyg + O(et ™).

Uyg) + O(et ™) = —er'wjUyy + O(et ™),

=—1and &W; = wj, j =1,2,3, we have

In summary, by writing &y
Uog = €T DaWU, + O(et™2).

Uo = 7 WUy + O(et™2),
It follows that
e2r 20U, Uy + O(%73),

96" urtag = G(w)
2202 4 OS2 7Y)

fg uaus = F(w)e
)‘@a@g@,\. In summary, for ¢ = r — oo, we have

where F(w) = f(?%a@g, G(w) = 98”3
(w)Uq2) = O(et™3).

2r7 22Uy + G(w)U,Uyg — F

We thus obtain the asymptotic equation
(8.4)

2Usq + G(w)UgUgq — F(w)UqQ.
Using the same derivation, we can derive Hérmander’s asymptotic equations for a general system

of quasilinear wave equations.
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Example 8.2. The asymptotic equation for Ou = u? is 2Usq = Uq2. Its solution is

1 1

S
UQ(S7Q7W) Uq<O7Q7w) 2

If Uy(0,q,w) > 0, then there is a blowup at s = 2/Uy(0, ¢, w). But if U|s—¢ € C° is nonzero, then
we must have Uy|s—o > 0 for some (g,w). So the we get a finite-time blowup result for 2Uy, = UqQ.

Example 8.3. The asymptotic equation for Uu = wsuy is 2Usq + UgUyq = 0. This is Burgers’
equation. Again, we have a finite-time blowup result for Burgers’ equation with nonzero C¢° data.
See [HI7].

Example 8.4. If (EI) satisfies the null condition, then the associated asymptotic equation is
Usq = 0. Of course, we can find a global solution to this asymptotic equation.

Based on these examples, we notice that there seems to be a connection between the long time
existence results for quasilinear wave equations and the long time existence results for the associated
Hoérmander’s asymptotic equations. In fact, there is a conjecture about this connection.

Definition 8.5. Consider a general system of quasilinear wave equations. Suppose that for at
data at s = 0 decaying sufficiently fast in ¢, the corresponding system of Hérmander’s asymptotic
equations has a global solution U for all s > 0. Also suppose that U and all its derivatives grow at
most exponentially (< eCs ). Then we say the original system of quasilinear wave equations satisfies
the weak null condition.

There is a conjecture stating that the weak null condition is sufficient for small data global
existence. This conjecture is open up till today. But we have several examples supporting this
conjecture.
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