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1 Introduction
In this course, we would like to study the lifespans of solutions to some special types of
quasilinear wave equations with small, smooth and localized initial data.

Lifespan: Given some initial data at t = 0, what is the supremum of all T ≥ 0, such that a
solution to a certain wave equation with the given data exists for 0 ≤ t ≤ T?

Quasilinear wave equations (studied in this course): Consider

□u = (−∂2t +∆x)u = F (u, u′, u′′) in R1+d
+ = (0,∞)× Rd.

Here u′, u′′ denote the first and second derivatives of u, respectively. An equation of this form
is a nonlinear wave equation. If F ≡ 0, then we get a linear wave equation. If F = F (u, u′)
(independent of u′′), then we get a semilinear wave equation. If F = c(u, u′) · u′′ + f(u, u′), then
we get a quasilinear wave equation.

Small, smooth and localized initial data: initial data in C∞
c (Rd) of size ε� 1.

Here are some examples. Unless specified otherwise, all the unknown functions in this note are
R-valued.

Example 1.1. Linear wave equation (with constant coefficients). □u = −∂2t u+∆xu = 0 in R1+3
+ ;

(u, ∂tu)|t=0 = (u0, u1) ∈ C∞
c (R3).

(1.1)

Fact. We have a global existence result. That is,

∀(u0, u1) ∈ C∞
c (R3), ∃! a global solution u ∈ C∞(R1+3

+ ) to to the Cauchy problem (1.1). (1.2)

Example 1.2. Semilinear wave equations. □u = (∂tu)
2 in R1+3

+ ;

(u, ∂tu)|t=0 = (εu0, εu1) ∈ C∞
c (R3).

(1.3)

 □u = (∂tu)
2 − |∇xu|2 in R1+3

+ ;

(u, ∂tu)|t=0 = (εu0, εu1) ∈ C∞
c (R3).

(1.4)

Here (u0, u1) is an arbitrary pair of functions in C∞
c (R3) (which are independent of ε), and ε ∈ (0, 1)

is a sufficiently small constant depending on (u0, u1).
Question 1. Does there exist a global solution in R1+3

+ to (1.3)?
Answer. No. It is even worse. In fact, any nontrivial solution to (1.3) blows up in finite time.

This result was proved by Fritz John [Joh81,Joh85]. In general, the best result is an almost global
existence result:

∀(u0, u1) ∈ C∞
c (R3), ∃ε0 ∈ (0, 1), ∀ε ∈ (0, ε0), ∃ a C∞ solution to (1.3) for t ∈ [0, exp(c/ε)].

(1.5)
Here ε0 and c are two small constants depending on the data.

Question 2. Does there exist a global solution in R1+3
+ to (1.4)?
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Answer. Yes. We have
∀(u0, u1) ∈ C∞

c (R3), ∃ε0 ∈ (0, 1), ∀ε ∈ (0, ε0), ∃ a global C∞ solution to (1.4) in R1+3
+ .

(1.6)
We sometimes call it a small data global existence result. This result was proved by Klainerman
[Kla85,Kla84] and Christodoulou [Chr86].
Example 1.3. Quasilinear wave equations. □u = ∂tu∂

2
t u in R1+3

+ ;

(u, ∂tu)|t=0 = (εu0, εu1) ∈ C∞
c (R3).

(1.7)

 □u = ∂tu∂
2
t u−∇xu · ∇x∂tu in R1+3

+ ;

(u, ∂tu)|t=0 = (εu0, εu1) ∈ C∞
c (R3).

(1.8)

Here (u0, u1) is an arbitrary pair of functions in C∞
c (R3) (which are independent of ε), and ε ∈ (0, 1)

is a sufficiently small constant depending on (u0, u1).
Question. Does there exist a global solution in R1+3

+ to (1.7) or (1.8)?
Answer. No for (1.7), and yes for (1.8). The results here are almost the same as those for (1.3)

and (1.4). The only difference is that we need an extra condition on the sign of a certain integral
in the blowup result for (1.3).

In this course, we seek to prove all the results listed above except the finite time blowup.
Remark. Some remarks.
1) Why are the results different?

In fact, (1.4) and (1.8) satisfy the null condition. Klainerman [Kla85,Kla84] and Christodoulou
[Chr86] proved that the null condition is sufficient for the small data global existence. If time
permitted, I would also introduce Hörmander’s asymptotic equations (introduced by Hörmander
[H9̈7,H8̈7,H9̈1]) which are closely related to this question.

2) Why do we consider C∞
c data of size ε� 1?

C∞
c : We will use the energy method which requires us to use integration by parts. Of course,

C∞
c is usually too strong and not necessary.

Size ε: We hope to view the nonlinear wave equations studied in this course as perturbations
of □u = 0, so that solutions to those NLW behave as a linear solution as t→ ∞. Extreme and
bad case: □u = u∆u, u ≈ 2 =⇒ closer to Laplace’s equation ∆t,xu ≈ 0 instead of □u = 0.

3) Motivation. Why are we interested in the lifespan problem with small, smooth and localized
data?

• The Einstein vacuum equations in the wave coordinates become a system of quasilinear
wave equations (with R4×4-valued unknowns). In this case, the lifespan problem is closely
related to the global stability problem. See Lindblad-Rodnianski [LR03,LR05].

• The 3D compressible Euler equations can be written as a system of quasilinear wave equa-
tions (with R4×4-valued unknowns) coupled to some transport equations. In this case,
the lifespan problem is closely related to the shock formation. See Speck [Spe19], Luk-
Speck [LS20], Christodoulou-Miao [CM14], etc.
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2 The linear wave equation
Let us first have a review on the linear wave equation in three space dimensions: □u = −∂2t u+∆xu = 0 in R1+3

+ ;

(u, ∂tu)|t=0 = (u0, u1) ∈ C∞
c (R3).

(2.1)

Notation. Let us explain some notations used in (2.1).

1) R1+3
+ := (0,∞) × R3. A point in R1+3

+ is denoted by (xα)
3
α=0 = (t, x) = (t, x1, x2, x3) where

t ∈ (0,∞) and x ∈ R3. Sometimes we also write x0 = t.

2) □ = −∂2t + ∆x = −∂2t +
∑3

j=1 ∂
2
j is the usual d’Alembertian in R1+3. We can also write

□ = mαβ∂α∂β, where we use ∂0 = ∂t, the Einstein summation convention (so the sum is taken
over all α, β ∈ {0, 1, 2, 3}) and the Minkowski metric (mαβ) = (mαβ) = diag(−1, 1, 1, 1) ∈ R4×4.

3) C∞
c (R3) denotes the set of all C∞ R-valued functions f in R3 which are also compactly sup-

ported. In this note, “C∞ functions” is the same as “smooth functions”.

Now we discuss the following four topics related to (2.1): existence, uniqueness, pointwise decays
and energy conservation.

2.1 Existence of a global smooth solution
Proposition 2.1. For each r ∈ R and x ∈ R3, we set

Arh(x) :=
1

4π

∫
S2
h(x+ rω) dSω.

Then
u(t, x) = ∂t(tAtu0) + tAtu

1 (2.2)

is a solution to (2.1) which belongs to C∞(R1+3
+ ). The formula (2.2) is called Kirchoff’s formula.

“Proof”. It is easy to show that the function u defined by (2.2) is indeed a solution to (2.1) and
that u ∈ C∞(R1+3

+ ). Instead, I would like to explain how to derive (2.2).
I. Spherical mean. Suppose that u ∈ C2(R1+3

+ ) is a solution to (2.1). For each r ∈ R and
(t, x) ∈ R1+3

+ , we set

U(r; t, x) = Aru(t, ·) =
1

4π

∫
S2
u(t, x+ rω) dSω.

Then,

Ur =
1

4π

∫
S2
ω · ∇xu(t, x+ rω) dSω

=
r

4π

∫
B(0,1)

∆xu(t, x+ ry) dy (divergence’s theroem)

=
1

4πr2
∆x

∫
B(x,r)

u(t, z) dz (substitute z = x+ ry),
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∂r(r
2Ur) =

1

4π
∆x

∫
∂B(x,r)

u(t, z) dSz =
r2

4π

∫
S2
∆xu(t, x+ rω) dSω (substitute z = x+ ry)

=
r2

4π

∫
S2
∂2t u(t, x+ rω) dSω = r2Utt (u solves □u = 0).

As a result, we have

Utt = r−2∂r(r
2Ur) = 2r−1Ur + Urr =⇒ (rU)tt = 2Ur + rUrr = (rU)rr.

As a result, v = rU is a solution to the linear wave equation in one space dimension:

vtt = vrr, (t, r) ∈ R1+1; (v, vt)|t=0 = (rU(r; 0, x), rUt(r; 0, x)) = (rAru
0, rAru

1)(x).

Solving this equation (left as an exercise), we obtain

v(t, r) =
1

2
[(r + t)Ar+tu

0(x) + (r − t)Ar−tu
0(x)] +

1

2

∫ r+t

r−t
ρAρu

1(x) dρ.

Note that Arh is defined for all r ∈ R and that Arh = A−rh. Thus, we have

u(t, x) = lim
r→0

U(r; t, x)

= lim
r→0

(
1

2r
[(t+ r)At+ru

0(x)− (t− r)At−ru
0(x)] +

1

2r

∫ t+r

t−r
ρAρu

1(x) dρ

)
(ρAρ is an odd function of ρ)

= ∂t(tAtu
0) + tAtu

1.

II. Fourier transform. Recall that the Fourier transform of a function in Rd is defined by

Fw(ξ) = ŵ(ξ) :=

∫
Rd

w(x)e−ix·ξ dx.

We then have

1) The map F : S(Rd) → S(Rd) is a bijective map. Here S(Rd) denotes the space of Schwartz
functions.

2) The inverse F−1 : S(Rd) → S(Rd) of F is given by the Fourier inversion formula

F−1h(x) = (2π)−d

∫
Rd

h(ξ)eix·ξ dξ.

3) F(∂jw)(ξ) = iξjŵ(ξ), so F(∆w)(ξ) = −|ξ|2ŵ(ξ).

4) For any w, v ∈ S(Rd), we have F(w ∗ v) = ŵv̂. Here ∗ is the convolution.

The proofs of these facts can be found in any standard textbook of Fourier analysis.
Assume that u(t, ·) ∈ S(R3) for each t ≥ 0. By taking the Fourier transform (with respect to x

but not t), we obtain from the wave equation that

∂2t û(t, ξ) = F(∆u)(t, ξ) = −|ξ|2û(t, ξ).
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This is an ODE for û(t, ξ) with initial data (û, ∂tû)|t=0 = (û0, û1). Solve this ODE and we obtain

û(t, ξ) = cos(t|ξ|)û0(ξ) + sin(t|ξ|)
|ξ|

û1(ξ). (2.3)

We now need to show that (2.3) implies (2.2). Note that (the computation is left as an exercise)∫
S2
e−iω·ξdSω = 4π · sin(|ξ|)

|ξ|
.

Thus,

sin(t|ξ|)
|ξ|

û1(ξ) =
t

4π

∫
S2
e−iω·tξû1(ξ) dSω =

t

4π

∫
S2

∫
R3

e−iω·tξ−ix·ξu1(x) dxdSω

=
t

4π

∫
S2

∫
R3

e−iy·ξu1(y − tω) dydSω =
t

4π

∫
R3

e−iy·ξ
∫
S2
u1(y − tω) dSωdy

= F(
t

4π

∫
S2
u1(· − tω) dSω)(ξ) = F(tAtu

1)(ξ).

It follows that

cos(t|ξ|)û0(ξ)∂t(
sin(t|ξ|)

|ξ|
û0) = F(∂t(tAtu

0))

and therefore

u(t, x) = F−1(cos(t|ξ|)û0(ξ) + sin(t|ξ|)
|ξ|

û1(ξ)) = ∂t(tAtu
0) + tAtu

1.

Remark 2.1.1. In this proposition we assume u0, u1 ∈ C∞
c , but it is obvious that these assumptions

are too strong and not necessary. In general, if k ≥ 2 is an integer, if (u0, u1) ∈ Ck+1 × Ck(R3),
then (2.2) gives a global Ck solution to (2.1).

Using the Fourier transform, we can relax the assumptions on the initial data even further. For
example, if u0, u1 ∈ L2(R3), then the formula (2.3) is well defined, so we still obtain a solution (not
necessarily a C2 solution but a solution in some weak sense).

Remark 2.1.2. The formula (2.3) is closely related to the Fourier multiplier. That is, given a
function m = m(ξ) ∈ L∞(Rd), we can define a bounded linear operator m(D) : L2(Rd) → L2(Rd)
(here L2 can be replaced with any L2-based Sobolev space Hs, Ḣs) by

m(D)f(x) := F−1(m(·)f̂(·))(x).

This definition is motivated by the case when m is a polynomial of ξ (in which case m(D) is a
linear differential operator since D = ∇/i). Now (2.3) implies that

u(t) = cos(t|D|)u0 + sin(t|D|)
|D|

u1. (2.4)

You might check Appendix A in [Tao06] if you are interested in this topic.
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2.2 Uniqueness
Proposition 2.2. If u and ũ are two C2(R1+3

+ ) solutions to (2.1) with the same data, then u = ũ.

Proof. We have already proved this proposition in “I. Spherical mean” in the derivation of (2.2).
There we showed that a C2(R1+3

+ ) solution to (2.1) must satisfy (2.2).

Remark 2.2.1. Combining Proposition 2.1 and 2.2, we conclude that there exists a unique
C∞(R1+3

+ ) solution to (2.1) and that this unique solution is given by (2.2).
In the rest of this section, when we say “the solution to (2.1)”, we always mean this unique

C∞(R1+3
+ ) solution defined by(2.2).

2.3 Pointwise decays
Before we state the results in this subsection, we first introduce a useful notation.

Notation. In this note, we use C to denote universal positive constants. We write A ≲ B, B ≳ A
or A = O(B) if |A| ≤ CB for some C > 0. We write A ∼ B if A ≲ B and B ≲ A. We use Cv, ≲v

or ≳v if we want to emphasize that the constant depends on a parameter v.

Let us rewrite Kirchoff’s formula (2.2): for each (t, x) ∈ R1+3
+ ,

u(t, x) =
1

4π

∫
S2
u0(x+ tω) + tω · ∇u0(x+ tω) + tu1(x+ tω) dSω. (2.5)

Since (u0, u1) ∈ C∞
c , there exists R > 0 such that u0 ≡ u1 ≡ 0 whenever |x| ≥ R. So the integrand

in (2.5) is nonzero only if |x+ tω| < R.
It follows that

1) Suppose ||x| − t| ≥ R. In this case |x + tω| ≥ ||x| − t| ≥ R, so the integrand in (2.5) is zero
everywhere on S2. Thus, u = 0.

2) Suppose ||x| − t| < R and t ≥ 2. Using substitution y = x+ tω, we write (2.5) as

u(t, x) =
1

4πt2

∫
∂B(x,t)

u0(y) + (y − x) · ∇u0(y) + tu1(y) dSy

and (since supp(u0, u1) ⊂ B(0, R))

|u(t, x)| ≤ 1

4πt2

∫
∂B(x,t)

|u0(y)|+ t|∇u0(y)|+ t|u1(y)| dSω

≲ t−2|∂B(x, t) ∩B(0, R)| ·
(∥∥u0∥∥

L∞(R3)
+ t(

∥∥∇u0∥∥
L∞(R3)

+
∥∥u1∥∥

L∞(R3)
)
)
.

Here |∂B(x, t)∩B(0, R)| is the surface area of a spherical cap with both height and width ≤ 2R,
so |∂B(x, t) ∩B(0, R)| ≲ R2 and

|u(t, x)| ≲ t−2R2(1 + t)
(∥∥u0∥∥

L∞(R3)
+
∥∥∇u0∥∥

L∞(R3)
+
∥∥u1∥∥

L∞(R3)

)
≲R (1 + t)−1

(∥∥u0∥∥
L∞(R3)

+
∥∥∇u0∥∥

L∞(R3)
+
∥∥u1∥∥

L∞(R3)

)
.
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3) Suppose t ≤ 2. By (2.5), we have

|u(t, x)| ≤ 1

4π

∫
S2
|u0(x+ tω)|+ |tω||∇u0(x+ tω)|+ t|u1(x+ tω)| dSω

≲
∥∥u0∥∥

L∞(R3)
+ t(

∥∥∇u0∥∥
L∞(R3)

+
∥∥u1∥∥

L∞(R3)
)

≲
∥∥u0∥∥

L∞(R3)
+
∥∥∇u0∥∥

L∞(R3)
+
∥∥u1∥∥

L∞(R3)
.

In summary, we obtain the following proposition.

Proposition 2.3. Let u be the solution to (2.1). Suppose that there exists R > 0 such that
u0 ≡ u1 ≡ 0 whenever |x| ≥ R. Then,

a) We have u(t, x) = 0 whenever ||x| − t| ≥ R.

b) If we write 〈s〉 :=
√
1 + s2 ∼ 1 + |s|, then |u(t, x)| ≲R,u0,u1 〈t〉−1 for each (t, x) ∈ R1+3

+ .

Remark 2.3.1. Part a) of this proposition is a corollary of the strong Huygens’ principle which
states that the value of u at (t, x) is determined by the initial data on the sphere ∂B(x, t) at time
0. In fact, the strong Huygens’ principle holds for in each odd space dimension d ≥ 3.

If we consider the linear wave equation in an even space dimension, then the best result is the
weak Huygens’ principle or the finite speed of propagation. Here we simply replace “the sphere
∂B(x, t)” with “the ball B(x, t)” in the statement above.

In contrast, for the linear heat equation or the linear Schördinger equation, we have the infinite
speed of propagation.

For a nonlinear problem, the best result we expect is the finite speed of propagation, even if
d = 3 or d is an odd integer.

2.4 Energy conservation
Proposition 2.4. Suppose that u is the solution to (2.1). Define the energy

E(t) :=
1

2

∫
R3

3∑
α=0

|∂αu(t, x)|2 dx, t ≥ 0.

Then, E(t) = E(0) for all t ≥ 0.

Proof. We have

d

dt
E(t) =

∫
R3

3∑
α=0

uαutα dx =

∫
R3

ututt +
3∑

j=1

ujujt dx

=

∫
R3

ututt −
3∑

j=1

ujjut dx (Integrations by parts and finite speed of propagation)

=

∫
R3

−ut□u dx = 0.
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2.5 Other space dimensions
In this note, we focus on the case when the space dimension is 3. However, most results above are
still valid for general space dimensions. Let us state these results without proofs.

Consider the linear wave equation (2.1) in R1+d
+ with C∞

c data.
(A) Existence. There exists a global smooth solution to (2.1). We can write down an explicit

formula for each fixed d, but I prefer not to do so here for simplicity. See Section 2.4 in [Eva10]
or Section I.1 in [Sog08].
However, the formula (2.4) derived from the Fourier transform holds in all space dimensions.

(B) Uniqueness. Nothing is changed.

(C) Pointwise decays. If d ≥ 3 is odd, we have the strong Huygens’ principle and u = O(〈t〉−(d−1)/2).
If d ≥ 2 is even, we have the weak Huygens’ principle and u = O((〈t〉〈|x| − t〉)−(d−1)/2). If
d = 1, then we still have u = O(1) but the strong Huygens’ principle does not hold.
Reason: For odd d ≥ 3, there is an integral on the sphere Sd−1. For even d ≥ 2, there is an
integral in the ball B(0, 1).

(D) Energy conservation. Nothing is changed.

2.6 Difficulty in a nonlinear problem
In the previous subsections, we make use of Kirchoff’s formula to prove most properties of the
solution to (2.1). In a nonlinear problem (e.g. □u = u2t − |∇xu|2), we no longer have an explicit
formula for a solution. How do we prove existence, uniqueness, pointwise decays and energy esti-
mates without the help of Kirchoff’s formula? That is what we would like to know in the future
classes.

3 Energy estimate
In the previous section, we have proved that a solution to (2.1) satisfies the energy conservation
law. In this section, we extend it to a general case.
Proposition 3.1 (Energy estimate). Let u ∈ C2([0, T ]× Rd) vanish for large |x| and satisfy

gαβ(t, x)∂α∂βu(t, x) = F (t, x), ∀(t, x) ∈ [0, T )× Rd. (3.1)

Suppose that gαβ = gβα and that
d∑

α,β=0

|rαβ(t, x)| ≤ 1

2
, ∀(t, x) ∈ [0, T )× Rd. (3.2)

Here rαβ = gαβ −mαβ, (mαβ) = diag(−1, 1, . . . , 1) ∈ R(d+1)×(d+1).
Then, for each t ∈ [0, T ), we have

∥∥u′(t, ·)∥∥
L2(Rd)

≲ (
∥∥u′(0, ·)∥∥

L2(Rd)
+

∫ t

0
‖F (τ, ·)‖L2(Rd) dτ) exp(2

∫ t

0

d∑
α,β,γ=0

∥∥∥∂αgβγ(τ, ·)∥∥∥
L∞(Rd)

dτ).

(3.3)
Here |u′|2 =

∑d
α=0 |∂αu|2.
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Proof. Denote the left hand side of (3.1) as □gu. Our goal is to write

ut□gu =

d∑
i=1

∂i(. . . )︸ ︷︷ ︸
divergence in Rd, IBP

+ ∂t(. . . )︸ ︷︷ ︸
included in energy

+ remainders︸ ︷︷ ︸
contains no second derviatives of u

.

We have

ut□gu = utg
αβ∂α∂βu = ∂α(utg

αβuβ)︸ ︷︷ ︸
good terms

−utαgαβuβ − ut(∂αg
αβ)uβ︸ ︷︷ ︸

remainders

,

−utαgαβuβ = ∂t(−uαgαβuβ)︸ ︷︷ ︸
good terms

+uα(∂tg
αβ)uβ︸ ︷︷ ︸

remainders

+uαg
αβuβt.

Since gαβ = gβα, we have uαgαβuβt = uαg
βαuβt = −LHS, so

−utαgαβuβ =
1

2
(∂t(−uαgαβuβ)︸ ︷︷ ︸

good terms

+uα(∂tg
αβ)uβ︸ ︷︷ ︸

remainders

).

Combining all the computations above, we have

ut□gu = ∂α(utg
αβuβ) +

1

2
∂t(−uαgαβuβ)− ut(∂αg

αβ)uβ +
1

2
uα(∂tg

αβ)uβ .

Set (we add a negative sign to make e0 ≥ 0)

e0(t, x) = −(g0βutuβ − 1

2
gαβuαuβ); ej(t, x) = −gjβutuβ ; R = (∂αg

αβ)utuβ − 1

2
(∂tg

αβ)uαuβ .

We thus have

−ut□gu = ∂te0 +

d∑
j=1

∂jej +R.

Integrate this identity, and we have∫
Rd

−ut□gu dx =

∫
Rd

∂te0 +

d∑
j=1

∂jej +R dx = ∂t

∫
Rd

e0(t, x) dx+

∫
Rd

R dx. (3.4)

To finish our proof, we need to estimate e0 and R. Note that

R = (∂αg
α0 − 1

2
∂tg

00)u2t + (∂αg
αj − 1

2
∂tg

0j − 1

2
∂tg

j0)utuj −
1

2
(∂tg

ij)uiuj

= (∂jg
j0 +

1

2
∂tg

00)u2t + (∂ig
ij)utuj −

1

2
(∂tg

ij)uiuj .

Here the sum is taken over all i, j = 1, . . . , d. It is then clear that

|R| ≤ |u′|2(
∑
j

|∂jgj0|+
1

2
|∂tg00|+

∑
i,j

|∂igij |+
1

2

∑
i,j

|∂tgij |) ≤ |u′|2|∂g| (no ∂∗g∗∗ appear twice!)
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where |u′|2 =
∑d

α=0 |∂αu|2 and |∂g| =
∑d

α,β,γ=0 |∂αgβγ |. To estimate e0, we note that

e0 = −(m0βutuβ − 1

2
mαβuαuβ)− (r0βutuβ − 1

2
rαβuαuβ) =

1

2
|u′|2 +Q.

Here

Q = (−r00 + 1

2
r00)u2t + (−r0j + 1

2
r0j +

1

2
rj0)utuj +

1

2
rijuiuj = −1

2
r00u2t +

1

2
rijuiuj

and thus

|Q| ≤ 1

2

d∑
α,β=0

|rαβ | · |u′|2 ≤ 1

4
|u′|2, (by (3.2)).

As a result, we have 1
4 |u

′|2 ≤ e0 ≤ 3
4 |u

′|2. In summary, by (3.4) we have

∂t

∫
Rd

e0(t, x) dx =

∫
Rd

−utF −R dx ≤
∫
Rd

|u′||F |+ |∂g||u′|2 dx ≤
∫
Rd

(2
√
e0|F |+ 4|∂g|e0)(t, x) dx.

If we set E(t) =
∫
Rd e0(t, x) dx, then by Hölder’s inequality,

d

dt
E(t) ≤ 2E(t)1/2 ‖F (t)‖L2(Rd) + 4 ‖∂g(t)‖L∞(Rd)E(t),

d

dt
E(t)1/2 ≤ ‖F (t)‖L2(Rd) + 2 ‖∂g(t)‖L∞(Rd)E(t)1/2.

We thus have
d

dt

(
E(t)1/2 exp(−2

∫ t

0
‖∂g(τ)‖L∞(Rd) dτ)

)
≤ ‖F (t)‖L2(Rd) exp(−2

∫ t

0
‖∂g(τ)‖L∞(Rd) dτ) ≤ ‖F (t)‖L2(Rd) .

As a result, we have

E(t)1/2 exp(−2

∫ t

0
‖∂g(τ)‖L∞(Rd) dτ) ≤ E(0)1/2 +

∫ t

0
‖F (τ)‖L2(Rd) dτ

and therefore∥∥u′(t)∥∥
L2(Rd)

≤ 2
√
E(t) ≤ (2E(0)1/2 +

∫ t

0
‖F (τ)‖L2(Rd) dτ) exp(2

∫ t

0
‖∂g(τ)‖L∞(Rd) dτ)

≤ (
√
3
∥∥u′(0)∥∥

L2(Rd)
+

∫ t

0
‖F (τ)‖L2(Rd) dτ) exp(2

∫ t

0
‖∂g(τ)‖L∞(Rd) dτ).

Remark 3.1.1. This proof is an example of the “multiplier method”. In general, for a vector field
X, we write Xu□gu = divergence + remainder and derive some estimates. We can even add a
weight (i.e. compute Xu□gu · w). This method will appear again in the future notes.

It turns out that the proof of the energy estimate can be used to prove a finite speed of
propagation result.
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Proposition 3.2 (Finite speed of propagation). Let u be a C2 solution to □u = F (u, u′, u′′) in the
backward light cone through (t0, x0):

Λ−
(t0,x0)

= {(t, x) ∈ [0, t0)× Rd : |x− x0| < t0 − t}. (3.5)

Assume that F (0, 0, u′′) = 0. If u = ∂tu = 0 whenever t = 0 and |x − x0| < t0, then u ≡ 0 in
Λ−
(t0,x0)

.

Proof. Let ϕ = ϕ(s, x) be a C1 function defined for s ∈ [0, t0) and x ∈ Rd with |x − x0| < t0. At
this moment we do not give an explicit formula for ϕ, but we assume that

a) ϕ(0, x) = 0 and lims→t0 ϕ(s, x) = t0 − |x− x0|.

b) s 7→ ϕ(s, x) is nondecreasing for each fixed x.

c) There exists a nondecreasing function θ defined on [0, t0), such that for each 0 ≤ s0 < t0, we
have

|∇xϕ(s, x)| ≤ θ(s0) < 1, whenever s ∈ [0, s0] and |x− x0| < t0. (3.6)

Set

Rs = {(t, x) : 0 ≤ t ≤ ϕ(s, x), |x− x0| < t0.},
Λs = {(t, x) : t = ϕ(s, x), |x− x0| < t0.}.

Then, we have

Λ−
(t0,x0)

=
⋃

s∈[0,t0)

Rs, ∂Rs = Λs ∪ {t = 0, |x− x0| < t0}︸ ︷︷ ︸
where u = ut = 0

.

Since the outward unit normal at (ϕ(s, x), x) ∈ Λs is (1,−∇xϕ)/
√
1 + |∇xϕ|2, so by the divergence

theorem, we have∫
Rs

utF dtdx =

∫
Rs

ut□u dtdx =

∫
Rs

−1

2
∂t|u′|2 +

d∑
j=1

∂j(ujut)︸ ︷︷ ︸
from the proof of the energy estimate with g = m

dtdx

=

∫
Λs

(−1

2
|u′|2 −

d∑
j=1

ϕjujut)
dS√

1 + |∇xϕ|2

≤
∫
Λs

1

2
(−1 + θ(s))|u′|2 dS√

1 + |∇xϕ|2
.

To get the last estimate, we notice that

|
d∑

j=1

ϕjujut| ≤ |∇xϕ · ∇xu||ut| ≤ |∇xϕ||∇xu||ut| ≤
1

2
|∇xϕ|(|∇xu|2 + |ut|2) =

1

2
|∇xϕ||u′|2.
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Meanwhile, since F (0, 0, u′′) = 0, we have |F (u, u′, u′′)| ≲ |u|+ |u′| (since u, u′, u′′ remains bounded
in the closure of Λ−

(t0,x0)
) and thus

utF ≥ −|utF | ≥ −C|ut|(|u|+ |u′|) ≥ −C(|u|2 + |u′|2).

By the Minkowski inequality∫ ϕ(s,x)

0
|u(t, x)|2 dt =

∫ ϕ(s,x)

0
|
∫ t

0
∂τu(τ, x) dτ |2 dt (u(0, x) = 0)

≤ t20

∫ ϕ(s,x)

0
|u′(τ, x)|2 dτ,

we have ∫
Rs

utF dtdx ≥ −C
∫
Rs

(|u′|2 + |u|2) dtdx ≥ −C(t20 + 1)

∫
Rs

|u′|2 dtdx

= −C(t20 + 1)

∫ s

0

∫
Λs′

|u′|2 · ϕt√
1 + |∇xϕ|2

dSds′.

The last identity comes from the following lemma (which is Theorem 6 in Appendix C.4, [Eva10]).

Lemma 3.3. Consider a family of smooth bounded regions U(τ) ⊂ Rd depending on τ ∈ R smoothly.
Write v for the velocity of the moving boundary ∂U(τ) and ν for the outward pointing unit normal.
If f = f(x, τ) is a smooth function, then

d

dτ

∫
U(τ)

fdx =

∫
∂U(τ)

fv · ν dS +

∫
U(τ)

∂τf dx.

In this proof, |u′|2 does not depend on s′, so there is only one integral on Λs′ . Morever, ν =
(1,−∇xϕ)/

√
1 + |∇xϕ|2 and v = d

ds′ (ϕ(s
′, x), x) = (ϕt, 0).

In summary, if we set I(s) =
∫
Λs

|u′|2 dS√
1+|∇xϕ|2

, for each 0 ≤ s ≤ s0 < t0 we have

1

2
(1− θ(s0))I(s) ≤ −

∫
Rs

utF dtdx ≤ C(t20 + 1)

∫ s

0
sup

t∈[0,s0]
|x−x0|<t0

|∂tϕ(t, x)| · I(s′) ds′.

We can prove that I(s) = 0 for all 0 ≤ s ≤ s0 < t0 by applying Gronwall’s inequality.

Lemma 3.4 (Gronwall’s inequality). Suppose that A,E, r are bounded nonnegative functions on
[0, T ] and that E is increasing there. If

A(t) ≤ E(t) +

∫ t

0
r(s)A(s) ds, t ∈ [0, T ],

it follows that

A(t) ≤ E(t) exp(

∫ t

0
r(s) ds). (3.7)
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Proof. It suffices to prove this inequality at t = T , in which case we can replace E(t) with E := E(T )
in the assumption. If we set

B(t) = E +

∫ t

0
r(s)A(s) ds,

then

B′(t) = r(t)A(t) ≤ r(t)B(t).

Thus,

∂t(B(t) exp(−
∫ t

0
r(s) ds)) ≤ 0

and thus

B(T ) exp(−
∫ T

0
r(s) ds)) ≤ B(0) = E.

This ends the proof.

Thus

u′ ≡ 0 in
⋃

s0∈[0,t0)

⋃
s∈[0,s0]

Λs =
⋃

s0∈[0,t0)

Rs0 = Λ−
(t0,x0)

.

It follows from u ≡ 0 whenever t = 0 and |x− x0| < t0 that u ≡ 0 in Λ−
(t0,x0)

.
Finally, we give an explicit formula for ϕ. We can set

ϕ(s, x) := t0 −
(
(t0 − s)2 − t−2

0 (s2 − 2ts)|x− x0|2
)1/2

.

We can check (left as an exercise) that the assumptions a)-c) listed at the beginning of this proof
hold for this ϕ.

Remark 3.4.1. Gronwall’s inequality (3.7) is an important tool in the proof of the (almost) global
existence results in this course.

An obvious corollary of Proposition 3.2 is as follows.

Corollary 3.5. Let u be a C2 solution to □u = F (u, u′, u′′) in [0, T )×Rd. Assume that F (0, 0, u′′) =
0. If u = ∂tu = 0 whenever t = 0 and |x| > R, then u ≡ 0 whenever t ∈ [0, T ) and |x| > t+R.

By sending R → 0 and using the continuity, we also get the uniqueness result in the previous
section.
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4 Local existence and blowup criteria
In order to prove a global existence result, we need to apply a local existence result.

Consider the Cauchy problem gαβ(u, u′)∂α∂βu = F (u, u′) in R1+d
+ ;

(u, ∂tu)|t=0 = (u0, u1).
(4.1)

In this section, we consider general space dimension d ≥ 1. Moreover, we assume that gαβ , F are
given C∞ functions with all derivatives O(1), such that F (0, 0) = 0 and

3∑
α,β=0

|gαβ −mαβ | < 1/2. (4.2)

In the following local existence result, we assume that our initial data belong to some L2-based
Sobolev space. Here is the definition.
Definition 4.1. Fix s ∈ R. The Sobolev spaceHs(Rd) consists of u ∈ S ′(Rd) such that û ∈ L2

loc(Rd)
and

‖u‖2Hs(Rd) =

∫
Rd

〈ξ〉2s|û(ξ)|2 dξ <∞. (4.3)

Here we recall that S ′(Rd) is the space of tempered distributions, i.e. bounded (or equivalently,
continuous) linear functionals of S(Rd). If you have never seen S ′(Rd) before, you can simply view
Hs(Rd) as the closure of S(Rd) in some larger space under the Hs norm.

By Plancherel’s theorem, if u ∈ Hs(Rd), then using the Fourier multiplier, we can write

‖u‖Hs(Rd) = (2π)d/2 ‖〈D〉su‖L2(Rd) . (4.4)

Moreover, since F(∂ju) = iξj û and since 〈ξ〉2 ∼ 1 +
∑d

j=1 ξ
2
j , we have

‖〈D〉u‖L2(Rd) ∼d ‖u‖L2(Rd) +

d∑
j=1

‖∂ju‖L2(Rd) .

Thus, if s is a nonnegative integer, then

‖u‖Hs(Rd) ∼s,d

∑
|α|≤s

‖∂αu‖L2(Rd) . (4.5)

We can now state the local existence theorem.
Theorem 4.2 (Local existence, Theorem 6.4.11 in [H9̈7]). Let s > (d + 2)/2 be an integer. If
(u0, u1) ∈ Hs+1 ×Hs(Rd), then there exists T > 0, depending on the norm of the initial data, such
that the Cauchy problem (4.1) has a unique solution

u ∈ L∞Hs+1 ∩ C0,1Hs([0, T ]× Rd). (4.6)

Here C0,1 denotes the space of Lipschitz continuous function, so ut ∈ Hs. It follows that u ∈
C2([0, T ]× Rd).

Moreover, if T∗ is the supremum over all such times T , then either T∗ = ∞ or∑
|α|≤2

|∂αu| /∈ L∞([0, T∗)× Rd). (4.7)
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Remark 4.2.1. The second half of this theorem is a blowup criterion. It tells us what happens if
there is a finite time blowup. Obviously, we need to use this criterion if we hope to prove global
existence.

In this note, I prefer not to give a complete proof of Theorem 4.2. For simplicity, I plan to
follow the proof in [Sog08] which gives a weaker version of Theorem 4.2.
Theorem 4.3 (Local existence, Theorem I.4.1 in [Sog08]). Let s ≥ (d + 2) be an integer. If
(u0, u1) ∈ Hs+1 ×Hs(Rd), then there exists T > 0, depending on the norm of the initial data, such
that the Cauchy problem (4.1) has a unique solution satisfying∑

|α|≤s+1

‖∂αu‖L2(Rd) <∞, ∀t ∈ [0, T ]. (4.8)

Moreover, if T∗ is the supremum over all such times T , then either T∗ = ∞ or∑
|α|≤(s+3)/2

|∂αu| /∈ L∞([0, T∗)× Rd). (4.9)

In this note, we are mainly concerned with Cauchy problems with C∞
c data. Thus, we prefer

to use the following theorem.
Theorem 4.4 (Theorem I.4.2 in [Sog08]). If (u0, u1) ∈ C∞

c (Rd), then there exists T > 0 such that
(4.1) has a solution u ∈ C∞([0, T ]×Rd). If T∗ is the supremum over all such times T , then either
T∗ = ∞ or ∑

|α|≤(d+6)/2

|∂αu| /∈ L∞([0, T∗)× Rd). (4.10)

4.1 Existence and uniqueness for linear equations
The proof of Theorem 4.3 is based on local existence of a linear problem. Set a linear differential
operator L by

Lu = gαβ(t, x)∂α∂βu+ bα(t, x)∂αu+ a(t, x)u. (4.11)
Here we assume that g∗∗, b∗, a are all given C∞ functions with uniform bounds on each derivative
if (t, x) ∈ [0, T ]× Rd. Moreover, we assume that

3∑
α,β=0

|gαβ(t, x)−mαβ | < 1/2, in [0, T ]× Rd.

We now set L∗ as the L2(R1+d)-adjoint of L. In other words, given v ∈ C∞
c (R1+d), we expect

〈Lu, v〉L2(R1+d)(=

∫
R1+d

Lu · v dtdx) = 〈u, L∗v〉L2(R1+d).

Using integration by parts, we can see that

L∗v = ∂α∂β(g
αβv)− ∂α(b

αv) + av. (4.12)

Here (4.12) is written in divergence form, and we can write it in non-divergence form (so L∗ has
the same form as L does with different b∗ and a).

We can now state the main theorem for this subsection.

17



Theorem 4.5. Let s ∈ R. Then, for each (u0, u1) ∈ Hs+1 ×Hs(Rd) and F ∈ L1Hs([0, T ] × Rd),
there is a unique

u ∈ CHs+1 ∩ C1Hs([0, T ]× Rd) (4.13)
solving  Lu = F in (0, T )× Rd;

(u, ∂tu)|t=0 = (u0, u1).
(4.14)

In this theorem, when we say u solves (4.14), we mean that u is a weak solution to (4.14) in
the following sense: for each ψ ∈ C∞

c ((−∞, T )× Rd), we have∫
[0,T ]×Rd

ψF dtdx =

∫
[0,T ]×Rd

L∗ψu dtdx−
∫
Rd

ψ(0, x)g00(0, x)u1(x) dx

+

∫
Rd

∂t(g00ψ)− b0ψ + 2

d∑
j=1

∂j(ψg
j0)

 (0, x)u0(x) dx.

(4.15)

One can derive this formula assuming that u ∈ C2 solves (4.14) pointwisely by applying integration
by parts.

We start our proof with the following estimate.

Theorem 4.6. Let s ∈ R, T ∈ (0,∞) and assume L is as above. If

u ∈ CHs+1 ∩ C1Hs([0, T ]× Rd),

and if

Lu ∈ L1Hs([0, T ]× Rd),

then for t ∈ (0, T ) we have∑
|α|≤1

‖∂αu(t, ·)‖Hs(Rd) ≲s,T

∑
|α|≤1

‖∂αu(0, ·)‖Hs(Rd) +

∫ t

0
‖Lu(τ, ·)‖Hs(Rd) dτ. (4.16)

Proof. We start with the case s = 0. Since the coefficients of L are bounded, we have∥∥∥gαβ∂α∂βu(t)∥∥∥
L2

≤ ‖Lu(t)‖L2 + C
∑
|α|≤1

‖∂αu(t)‖L2 .

By the energy estimate (3.3) in Proposition 3.1, we have

∥∥u′(t)∥∥
L2 ≲

∥∥u′(0)∥∥
L2 +

∫ t

0
(‖Lu(τ)‖L2 +

∑
|α|≤1

‖∂αu(τ)‖L2) dτ

 exp(CT ).

By the fundamental theorem of calculus, we have

‖u(t)‖L2 ≤ ‖u(0)‖L2 +

∫ t

0

∥∥u′(τ)∥∥
L2 dτ.
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In summary, if we set A(t) =
∑

|α|≤1 ‖∂αu(t)‖L2 , then we have

A(t) ≤ Cs,T (A(0) +

∫ t

0
Lu(τ) dτ +

∫ t

0
A(τ) dτ).

By Gronwall’s inequality ((3.7)), we conclude (4.16) with s = 0.
For general s ∈ R, we apply (4.16) with s = 0 to 〈D〉su (recall that 〈D〉s is a Fourier multiplier

defined in Remark 2.1.2). We thus have∑
|α|≤1

‖∂α〈D〉su(t)‖L2 ≲s,T

∑
|α|≤1

‖∂α〈D〉su(0)‖L2 +

∫ t

0
‖L〈D〉su(τ)‖L2 dτ.

Since we can commute ∂α and 〈D〉s, by (4.4) we have∑
|α|≤1

‖∂α〈D〉su(t)‖L2 ∼
∑
|α|≤1

‖∂αu(t)‖Hs .

Moreover, we have

‖L〈D〉su(τ)‖L2 ≲ ‖〈D〉sLu(τ)‖L2 + ‖[L, 〈D〉s]u(τ)‖L2 ≲ ‖Lu(τ)‖Hs + ‖[L, 〈D〉s]u(τ)‖L2 .

By replacing L with |g00|−1L, we assume without loss of generality that g00 ≡ −1. In this case, we
claim that for each s ∈ R,

‖[L, 〈D〉s]u(τ)‖L2 ≲s

∑
|α|≤1

‖∂αu(τ)‖Hs .

If this claim holds, then we finish the proof by applying Gronwall’s inequality.
The proof of this claim follows from the boundedness of pseudodifferential operators. For

simplicity, I will not prove this result in this note. Instead, let us consider the simplest case when
s is a positive even number. In this case, 〈D〉s = (I−∆)s/2 is a linear differential operator of order
s. In this case, the commutator [L, 〈D〉s] is a linear differential operator of order s + 1 with O(1)
coefficients, and we notice that there is at most one t-derivative because g00 ≡ −1. As a result,

‖[L, 〈D〉s]u(τ)‖L2 ≲
∑

|α|+|β|≤1+s
|α|≤1

∥∥∥∂αt ∂βxu(τ)∥∥∥
L2

≲
∑
|α|≤1

‖∂αu(τ)‖Hs .

Note that in the last step we use (4.5).

We can now prove a local existence result for (4.14).

Proof of Theorem 4.5. We first prove the uniqueness part. If u and ũ are two solutions to (4.14)
with the same initial data, then w := u− ũ solves Lw = 0 and (w,wt)|t=0 = 0. By applying (4.16)
to w, we conclude that w = 0.

Now we prove the existence part. We start with the zero data case (u0, u1 ≡ 0). For each
ψ ∈ C∞

c ((−∞, T ) × Rd), by applying (4.16) to ψ with t replaced by T − t and L replaced by L∗,
we have for each t ∈ [0, T ]

‖ψ(t)‖H−s ≲ ‖ψ(t)‖H−s−1 +
∥∥ψ′(t)

∥∥
H−s−1 ≲

∫ T

0
‖L∗ψ(τ)‖H−s−1 dτ.
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Here we recall that ψ ≡ 0 near t = T . We have

|〈F, ψ〉L2(R1+d
+ )| ≲

∫ T

0
|〈F, ψ〉L2(Rd)| dt ≲

∫ T

0
‖F (t)‖Hs ‖ψ(t)‖H−s dt

≲
∫ T

0

∫ T

0
‖F (t)‖Hs ‖L∗ψ(τ)‖H−s−1 dτdt

≲ ‖F‖L1Hs

∫ T

0
‖L∗ψ(t)‖H−s−1 dt.

Note that if u is a weak solution to (4.14) with zero data, then we should have 〈u, L∗ψ〉L2(R1+d
+ ) =

〈F, ψ〉L2(R1+d
+ ). The proof above shows that if we set W (v) := 〈F, v〉, then W is a bounded linear

functional of {L∗ψ : ψ ∈ C∞
c ((−∞, T ) × Rd)} ⊂ L1H−s−1([0, T ] × Rd). So by the Hahn-Banach

theorem, we can extend W to a bounded linear functional of L1H−s−1([0, T ]× Rd) with the same
norm. And since the dual of L1H−s−1 is L∞Hs+1, we obtain

u ∈ L∞Hs+1([0, T ]× Rd), such that W (v) = 〈u, v〉.

Since 〈u, L∗ψ〉 =W (L∗ψ) = 〈F, ψ〉, we conclude that u is a weak solution to (4.14) with zero data.
Next we need to show (4.13). First we assume that F ∈ C∞

c ([0, T ] × Rd). Since C∞
c ⊂ L1Hs

for each s ∈ R and since the initial data are zero, the weak solution from the previous paragraph
belongs to L∞HN ([0, T ] × Rd) for each N ∈ Z. We fix a large integer N ≥ 2 whose value will be
chosen later, and we claim that in this case

u ∈ CHN−1 ∩ C1HN−2([0, T ]× Rd).

To see this, we notice that v = ut solves

g00vt + 2
d∑

j=1

gj0vj + b0v = −
∑
j,k≥1

gjkujk −
d∑

j=1

bjuj − au+ F.

The right hand side belongs to L∞HN−1([0, T ] × Rd) because of (4.5) and Leibniz’s rule; the
proof is left as an exercise. Without loss of generality, we assume that g00 ≡ −1. We claim that
ut = v ∈ L∞HN−1([0, T ]× Rd). In fact, for each |α| ≤ N − 1, we have

d

dt
‖∂αx v(t)‖

2
L2 = 2

∫
∂αx v∂

α
x vt dx = 2

∫
∂αx v∂

α
x (2g

j0∂jv + b0v +Q) dx

≤ 2

∫
gj0∂j [(∂

α
x v)

2] dx+ C

∫
|∂αx v|(|∂αxQ|+

∑
|β|≤|α|

|∂βxv|) dx

≤ C ‖Q‖L∞HN−1 · ‖v(t)‖HN−1 + C ‖v(t)‖2HN−1 .

Here Q = −(−
∑

j,k≥1 g
jkujk −

∑d
j=1 b

juj − au+ F ) ∈ L∞HN−1([0, T ]×Rd). To get the last step,
we note that (using integration by parts and the density of C∞

c in HN )∫
gj0∂j [(∂

α
x v)

2] dx =

∫
∂j [g

j0(∂αx v)
2] dx−

∫
(∂jg

j0)(∂αx v)
2 dx ≤ C ‖v(t)‖2HN−1 .
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As a result, we have

d

dt
‖v(t)‖HN−1 ≤ C ‖Q‖L∞HN−1 + C ‖v(t)‖HN−1

and thus ‖v(t)‖HN−1 ≲T ‖Q‖L∞HN−1 by Gronwall’s inequality. This finishes the proof of the claim.
Using the equation Lu = F again, we obtain utt = g ·∇xu

′+ b ·u′+au−F ∈ L∞HN−2([0, T ]×Rd).
In summary, we have

u ∈ CHN−1 ∩ C1HN−2([0, T ]× Rd).

We now choose N ≥ s+ 2 and thus obtain (4.13).
For general F ∈ L1Hs([0, T ] × Rd), we choose a sequence of Fm in C∞

c ([0, T ] × Rd) such that
Fm → F in L1Hs. For each Fm, we have obtain a unique um ∈ CHs+1 ∩ C1Hs([0, T ] × Rd) such
that Lum = Fm and (um, ∂tum)|t=0 = 0. By applying (4.16) to um − un, we obtain

sup
t∈[0,T ]

(‖(um − un)(t)‖Hs +
∥∥(um − un)

′(t)
∥∥
Hs) ≲

∫ T

0
‖(Fm − Fn)(τ)‖Hs dτ → 0, m, n→ ∞.

So, {um} is a Cauchy sequence in CHs+1 ∩ C1Hs([0, T ] × Rd), so it has a limit u in CHs+1 ∩
C1Hs([0, T ]× Rd). It is easy to check that u is the solution to (4.14) with zero data.

To solve the equation with general Cauchy data, we first assume that the initial data belong
to C∞

c . We then set u0(t, x) = u0(x) + tu1(x). If v solves Lv = F − Lu0 with zero data, then
u = v+ u0 solves (4.14) with data (u0, u1). Here we need to assume that the initial data belong to
C∞
c because we need Lu0 ∈ L1Hs. For general data (u0, u1) ∈ Hs+1 × Hs, we use a sequence of

C∞
c data to approximate it and apply (4.16). The proof here is very similar to that in the previous

paragraph.

4.2 Local existence for quasilinear equations
We now return to the proof of Theorem 4.3.

4.2.1 Uniqueness

Suppose that u and ũ solve (4.1) with the same data and that

u, ũ ∈ L∞Hs+1 ∩ C0,1Hs([0, T ]× Rd).

Then, we obtain

gαβ(u, u′)∂α∂β(u− ũ) = (gαβ(ũ, ũ′)− gαβ(u, u′))∂α∂βũ+ F (u, u′)− F (ũ, ũ′).

We hope to apply the energy estimate (3.3) to u − ũ, so we need to estimate the L2 norm of the
right hand side at time t. It is easy to see that

|(gαβ(ũ, ũ′)− gαβ(u, u′))∂α∂βũ+ F (u, u′)− F (ũ, ũ′)| ≲
∑
|α|≤1

|∂α(u− ũ)| · (1 + |ũ′′|).
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Then, by the energy estimate (3.3) and the fundamental theorem of calculus

‖w(t)‖L2 ≲ ‖w(0)‖L2 +

∫ t

0
‖∂tw(τ)‖L2 dτ, (4.17)

we conclude that∑
|α|≤1

‖∂α(u− ũ)(t)‖L2 ≲
∑
|α|≤1

‖∂α(u− ũ)(0)‖L2 +

∫ t

0

∑
|α|≤1

‖∂α(u− ũ)(τ)‖L2 · (1 +
∥∥ũ′′(τ)∥∥

L∞) dτ

=

∫ t

0

∑
|α|≤1

‖∂α(u− ũ)(τ)‖L2 · (1 +
∥∥ũ′′(τ)∥∥

L∞) dτ.

The second estimate holds because u and ũ have equal initial data. By the Sobolev embedding, we
also have

‖f‖L∞(Rd) ≲
∑

|α|≤⌊ d+2
2

⌋

‖∂αf‖L2(Rd) .

Here we remind our readers that bd+2
2 c is the smallest integer larger than d/2. Since s ≥ d + 2 ≥

2 + bd+2
2 c, we have ∥∥ũ′′(t)∥∥

L∞ ≲
∑

|α|≤2+⌊ d+2
2

⌋

‖∂αũ(t)‖L2 ≲ ‖ũ‖L∞Hs+1 .

It follows that∑
|α|≤1

‖∂α(u− ũ)(t)‖L2 ≲
∫ t

0

∑
|α|≤1

‖∂α(u− ũ)(τ)‖L2 · (1 +
∥∥ũ′′∥∥

L∞Hs+1) dτ, t ∈ [0, T ].

By Gronwall’s inequality (3.7), we conclude that u ≡ ũ in [0, T ]× Rd.
The argument in the uniqueness proof will also be used in the existence proof below. There we

also need to apply the energy estimate (3.3) and the estimate (4.17) to control the Hs+1 norm of
the solution.

4.2.2 Existence

We now prove the existence part. We assume that u0, u1 ∈ C∞
c for simplicity. For general data, we

can use an approximation argument which is similar to that used in the proof of Theorem 4.5; we
skip the details in this note. To construct a solution, we use the method of Picard iteration. Set
u−1 ≡ 0 and define um for m ≥ 0 inductively by gαβ(um−1, u

′
m−1)∂α∂βum = F (um−1, u

′
m−1),

(um, ∂tum)|t=0 = (u0, u1).
(4.18)

Since um−1 is known before we solve (4.18), the equation (4.18) is a linear Cauchy problem for um.
Here we hope to prove that
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a) The solution um to (4.18) exists and belongs to C∞
c ([0, T ]×Rd) (in both t, x). Here T is a fixed

number independent of m to be chosen later in b).

b) There exists a sufficiently small time T > 0 and a sufficiently large constant A > 1, both
independent of m, such that

Am(t) :=
∑

|α|≤s+1

‖∂αum(t)‖L2 ≤ A <∞, t ∈ [0, T ]. (4.19)

Here we remind our readers that Am(t) is not equivalent to the Hs+1 norm of um(t), because
we allow time derivatives in (4.19).

c) We have
Cm(t) := ‖um(t)− um−1(t)‖L2 +

∥∥u′m(t)− u′m−1(t)
∥∥
L2 ≲ 2−m. (4.20)

We will prove a)-c) by induction. If m = −1, there is nothing to prove. Now we fix m ≥ 0 and
suppose a)-c) above hold with m replaced by m− 1.

Let us first prove part a). By the induction hypotheses, we have um−1 ∈ C∞
c ([0, T ] × Rd),

so g∗∗(um−1, u
′
m−1) and F (um−1, u

′
m−1) are C∞ with uniform bounds on each derivative. Since

F (0, 0) = 0, we also have F (um−1, u
′
m−1) ∈ C∞

c ([0, T ] × Rd). Thus, we can apply Theorem 4.5 to
obtain a unique solution

um ∈
⋂
s≥0

(CHs+1 ∩ C1Hs)([0, T ]× Rd) ⊂ C1
t C

∞
x ([0, T ]× Rd)

to (4.18). Here we use the Sobolev embedding
⋂

s≥0H
s
x ⊂ C∞

x . To show um ∈ C∞
t,x, we use (4.18)

(or (4.21) below) to lower the order of time derivatives. For example, we have

∂2t um = (−g00)−1(g∗∗ · ∂∇xum − F ).

It follows that ∂2t um ∈ C∞
x . We continue this process and conclude that um ∈ C∞

t,x. Since um−1 ∈
C∞
c , we can choose some R = Rm−1 > 0 such that um−1 ≡ 0 whenever t ∈ [0, T ] and |x| > R. In

other words, we have

gαβ(0, 0)∂α∂βum = 0, whenever |x| ≥ R; um = ∂tum = 0, whenever t = 0, |x| ≥ R.

If χ ∈ C∞(R) is a function such that χ|(−∞,R+1) = 0 and χ|(R+2,∞) = 1, then w := χ(|x|)um is a
solution to gαβ(0, 0)∂α∂βw = 0 with zero initial data. With the help of the energy estimate (3.3),
we conclude that u ≡ 0 whenever |x| ≥ R+ 2. Thus, um ∈ C∞

c ([0, T ]× Rd).
Next we prove part b). For each l ≤ s, we have

gαβ(um−1, u
′
m−1)∂α∂β∂

lum = [gαβ(um−1, u
′
m−1)∂α∂β , ∂

l]um + ∂l(gαβ(um−1, u
′
m−1)∂α∂βum)

= [gαβ(um−1, u
′
m−1), ∂

l]∂α∂βum + ∂lF (um−1, u
′
m−1).

(4.21)

To avoid ambiguity, we use ∂l to denote any ∂α with |α| = l. We seek to apply the energy estimate
(3.3) to (4.21), so we need the following lemma.
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Lemma 4.7. Let F and g∗∗ be as above and assume that v ∈ C∞(R1+d). For l ≤ s, we have

|∂lF (v, v′)| ≲ (1 +
∑

|β|≤⌊ s+2
2

⌋

∥∥∥∂βv(t, ·)∥∥∥
L∞

)s−1
∑

|β|≤s+1

|∂βv(t, x)|, (4.22)

|[gαβ(v, v′), ∂l]∂α∂βw| ≲ (1 +
∑

|β|≤⌊ s+2
2

⌋

∥∥∥∂βv(t, ·)∥∥∥
L∞

)s
∑

|β|≤s+1

|∂βw(t, x)|

+ (1 +
∑

|β|≤⌊ s+2
2

⌋

∥∥∥∂βv(t, ·)∥∥∥
L∞

)s−1
∑

|β|≤⌊ s+3
2

⌋

∥∥∥∂βw(t, ·)∥∥∥
L∞

·
∑

|β|≤s+1

|∂βv(t, x)|.

(4.23)

Proof. For simplicity, for each N ≥ 0 we write |v≤N | :=
∑

|α|≤N |v|.
If l = 0, it follows from F (0, 0) = 0 and |F (1)| ≲ 1 that |F (v, v′)| ≲ |v| + |v′|. We also have

[gαβ(v, v′), ∂l] = 0. Now we assume 0 < l ≤ s. By Leibniz’s rule and chain rule, we can write
∂lF (v, v′) as a linear combination (with real constant coefficients) of terms of the form

F (r)(v, v′) ·
r∏

j=1

∂lj∂kjv, 1 ≤ r ≤ l,
∑

l∗ = l ≤ s, kj = 0, 1.

So, there is at most one lj with lj > s/2 (or equivalently, lj ≥ bs/2c + 1 = b(s + 2)/2c). We use
|v≤s+1| to estimate the term ∂lj∂kjv with the largest lj , and use |v≤⌊ s+2

2
⌋| to control the rest r − 1

terms. We conclude that

|∂lF (v, v′)| ≲ (1 + |v≤⌊ s+2
2

⌋|)
s−1|v≤s+1|.

This finishes the proof of (4.22). Note that the assumption F (0, 0) = 0 is not used in the proof
above with l > 0, so for each 0 < l ≤ s, we have also proved that

|∂lg(v, v′)| ≲ (1 + |v≤⌊ s+2
2

⌋|)
s−1|v≤s+1|. (4.24)

Moreover, we have

[gαβ(v, v′), ∂l]∂α∂βw = gαβ(v, v′)∂l∂α∂βw − ∂l(gαβ(v, v′)∂α∂βw).

If we apply Leibniz’s rule and chain rule to expand −∂l(gαβ(v, v′)∂α∂βw), again we can write
[gαβ(v, v′), ∂l]∂α∂βw as a linear combination (with real constant coefficients) of terms of the form

∂l0(g(v, v′)) · ∂l1∂2w, l0 + l1 = l, l1 < l.

If l0 = 0, then we obtain an upper bound

|∂l1∂2w| ≲ |w≤s+1|.

If l0 > 0, then we apply (4.24) (with s replaced by l0 ≤ s) to obtain an upper bound

(1 + |v≤⌊ l0+2
2

⌋|)
l0−1|v≤l0+1| · |∂l1+2w| ≲ (1 + |v≤⌊ s+2

2
⌋|)

s−1|v≤l0+1| · |w≤l1+2|.

If l1 ≥ l0, then l1+2 < l+2 ≤ s+2 and l0 ≤ l/2 ≤ s/2, so in this case we have |v≤l0+1| · |w≤l1+2| ≲
|v≤⌊ s+2

2
⌋| · |w≤s+1|. If l1 < l0, then l1 < s/2 and l1 + 2 ≤ b s+3

2 c and l0 + 1 ≤ s + 1, so in this case
we have |v≤l0+1| · |w≤l1+2| ≲ |v≤s+1| · |w≤⌊ s+2

2
⌋|. We thus finish the proof.
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Apply Lemma 4.7 to the right hand side of (4.21). Thus, the L2(Rd) norm of the right hand
side of (4.21) at time t is bounded by

(1 +
∑

|β|≤⌊ s+2
2

⌋

∥∥∥∂βum−1(t)
∥∥∥
L∞

)s−1
∑

|β|≤s+1

∥∥∥∂βum−1(t)
∥∥∥
L2

+ (1 +
∑

|β|≤⌊ s+2
2

⌋

∥∥∥∂βum−1(t)
∥∥∥
L∞

)s
∑

|β|≤s+1

∥∥∥∂βum(t)
∥∥∥
L2

+ (1 +
∑

|β|≤⌊ s+2
2

⌋

∥∥∥∂βum−1(t)
∥∥∥
L∞

)s−1
∑

|β|≤⌊ s+3
2

⌋

∥∥∥∂βum(t)
∥∥∥
L∞

·
∑

|β|≤s+1

∥∥∥∂βum−1(t)
∥∥∥
L2
.

Moreover, by the Sobolev embedding H⌊(d+2)/2⌋ ⊂ L∞, we have∑
|β|≤⌊ s+2

2
⌋

∥∥∥∂βum−1(t)
∥∥∥
L∞

≲
∑

|β|≤⌊ s+2
2

⌋+⌊ d+2
2

⌋

∥∥∥∂βum−1(t)
∥∥∥
L2
,

∑
|β|≤⌊ s+3

2
⌋

∥∥∥∂βum(t)
∥∥∥
L∞

≲
∑

|β|≤⌊ s+3
2

⌋+⌊ d+2
2

⌋

∥∥∥∂βum(t)
∥∥∥
L2
.

(4.25)

Note that

bs+ 3

2
c+ bd+ 2

2
c ≤ s+ 1 ⇐⇒ s ≥ d+ 2.

By the induction hypotheses Am−1(t) ≤ A, we have∑
l≤s

∥∥∥gαβ(um−1, u
′
m−1)∂α∂β∂

lum(t)
∥∥∥
L2

≲ (1 +Am−1(t))
s−1Am−1(t) + (1 + Am−1(t))

sAm(t) + (1 + Am−1(t))
s−1Am−1(t)Am(t)

≲ (1 +A)s(1 +Am(t)).

We can now apply the energy estimate to ∂lu with l ≤ s. It follows from (3.3) and (4.17) that
for each t ∈ [0, T ],∑
l≤s

(
∥∥∥∂lum(t)

∥∥∥
L2

+
∥∥∥∂lu′m(t)

∥∥∥
L2
)

≲ (
∑
l≤s

(
∥∥∥∂lum(0)

∥∥∥
L2

+
∥∥∥∂lu′m(0)

∥∥∥
L2
) + CA

∫ t

0
(Am(τ) + 1) dτ) exp(2

∫ t

0

∑∥∥∂g∗∗(um−1, u
′
m−1)(τ)

∥∥
L∞ dτ).

By the chain rule and the Sobolev embedding, we have

|∂g∗∗(um−1, u
′
m−1)(t, x)| ≲ |um−1(t, x)|+ |u′m−1(t, x)| ≲ Am−1(t) ≤ A.

As a result, we have

Am(t) ≤ CeCAt(Am(0) + CAt+

∫ t

0
CAAm(τ) dτ).

By Gronwall’s inequality (3.7) we have

Am(t) ≤ CeCAt(Am(0) + CAt) exp(CCAe
CAt), t ∈ [0, T ]. (4.26)

25



All the constants in this inequality are independent of m. Besides, we claim that Am(0) can be
controlled by a constant A0 independent of m. To see this, we fix m ≥ s. If ∂l contains at most
one time derivative, then we have nothing to prove since the initial data are (u0, u1). In general,
we replace ∂l with ∂lt where l ≥ 0 in (4.21). It follows that at t = 0

g00(u0, u1)∂l+2
t um = −g∗∗(u0, u1) · ∂∇x∂

l
tum + [gαβ(um−1, u

′
m−1), ∂

l
t]∂α∂βum + ∂ltF (um−1, u

′
m−1).

If we expand [gαβ(um−1, u
′
m−1), ∂

l
t]∂α∂βum+∂ltF (um−1, u

′
m−1) by applying the chain rule, we notice

that the order of time derivatives of each term on the right hand side must be ≤ l+1. For all those
terms with time derivatives of order ≥ 2, we again apply (4.21) to lower the order of their time
derivatives. Then, after at most s such actions, every term on the right hand side can be expressed
in terms of (u0, u1) and their (spatial) derivatives. We also note that this expression is independent
of m. Thus, Am(0) ≲ A0 for some A0 independent of m (but depending on s). This finishes the
proof of our claim. In conclusion, by choosing A� 1 and T � 1 (both independent of m), we can
make Am(t) ≤ CA0 < A. This finishes the proof of part b).

Finally we prove part c). If c) is true, then the sequence (um, u
′
m) converges to some (u, u′) ∈

CH1 ∩ C1L2([0, T ] × Rd). We can check that (u, u′) is indeed a weak solution to (4.1) (related to
taking limit in (4.15)). For each t ∈ [0, T ], the sequence (um, u

′
m)(t) is bounded in Hs+1×Hs, so it

has a subsequence converging weakly to some (ũ, w̃) in Hs+1 ×Hs (Banach-Alaoglu). At the same
time, (um, u′m)(t) → (u, u′)(t) in H1 × L2, so we must have (u, u′)(t) = (ũ, w̃) ∈ Hs+1 ×Hs. Using
part b), we have

‖u(t)‖Hs+1 + ‖ut(t)‖Hs ≤ lim inf
m→∞

‖um(t)‖Hs+1 + lim inf
m→∞

‖∂tum(t)‖Hs ≤ 2A <∞.

Using the equation (4.1) to lower the order of time derivatives, we conclude that

A(t) :=
∑

|α|≤s+1

‖∂αu(t)‖L2 <∞, t ∈ [0, T ]. (4.27)

To show c), we notice that

gαβ(um−1, u
′
m−1)∂α∂β(um − um−1)

= (gαβ(um−2, u
′
m−2)− gαβ(um−1, u

′
m−1))∂α∂βum−1 + F (um−1, u

′
m−1)− F (um−2, u

′
m−2).

(4.28)

The right hand side is bounded by

(|um−1 − um−2|+ |u′m−1 − u′m−2|)(1 + |u′′m−1|).

Also recall that um and um−1 have the same Cauchy data at t = 0. Thus, by the energy estimate
(3.3), the Sobolev embedding (4.25) and the estimate (4.17), we have

Cm(t) ≲ (1 +A)

∫ t

0
Cm(τ) + Cm−1(τ) dτ, t ∈ [0, T )

and by Gronwall’s inequality

Cm(t) ≤ CAe
CAT

∫ t

0
Cm−1(τ) dτ, t ∈ [0, T ).
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The constant here is independent of m. By iteration, we have

Cm(t) ≤ (CAe
CAT )m

∫
0≤τ1≤···≤τm≤t

C0(τ1) dτ1 · · · dτm ≤ (CAe
CAT t)m

m!
sup

t∈[0,T ]
C0(t).

By choosing sufficiently small T , we have CAe
CATT ≤ 1. And since 1/m! ≲ 2−m, we obtain c).

Note that the proof shows that T can be bounded from below by a fixed small constant if one
assumes that the Hs+1 ×Hs norm of the data is smaller than a fixed constant.

4.2.3 Blowup criterion

Suppose that T∗ <∞ where T∗ comes from the statement of Theorem 4.3. We claim that if

sup
(t,x)∈[0,T∗)×Rd

∑
|α|≤(s+3)/2

|∂αu(t, x)| ≤ A <∞, (4.29)

then
sup

t∈[0,T∗)

∑
|α|≤s+1

‖∂αu(t)‖L2 <∞. (4.30)

In fact, if A(t) =
∑

|α|≤s+1 ‖∂αu(t)‖L2 , then arguing as in the proof in Section 4.2.2, we can show
that (4.30) implies

A(t) ≤ CT∗,A(A(0) + CA

∫ t

0
(A(τ) + 1) dτ), t ∈ [0, T∗).

Now (4.30) follows from an application of Gronwall’s inequality.
With this claim and the last sentence in Section 4.2.2, we can show that (4.29) implies that u

can extend to a function in

L∞Hs+1 ∩ C0,1Hs([0, T∗]× Rd).

Hence we can use the existence part of Theorem 4.3 to see that u extends to a solution verifying
the bounds in Theorem 4.3 for some T > T∗.

4.3 Proof of Theorem 4.4
We finish this section by proving Theorem 4.4.

By the Sobolev embedding, to prove the first part, we only need to show that there exists T > 0
such that ∑

|α|≤s+1

‖∂αu(t)‖L2 ≤ Cs, ∀t ∈ [0, T ], ∀s ∈ Z+. (4.31)

By Theorem 4.3, there exists such a T for s = d+ 3.
Next, by the Sobolev embedding, we notice that if (4.31) holds for some s, then

sup
[0,T ]×Rd

∑
|α|≤s+1−⌊ d+2

2
⌋

|∂αu| <∞.
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Also note that

bs+ 4

2
c ≤ s+ 1− bd+ 2

2
c ⇐⇒ s ≥ d+ 3.

Here we have (s+4)/2 instead of (s+3)/2 on the left hand side because we now want to estimate∑
|α|≤s+2 ‖∂αu(t)‖L2 instead of

∑
|α|≤s+1 ‖∂αu(t)‖L2 as in Section 4.2.2. Using the proof in Section

4.2.2, we obtain (4.31) with s+ 1 replaced by s+ 2. By induction, we prove (4.31) for all s.
It remains to prove the second part of Theorem 4.4. By Theorem 4.3, the T∗ in our theorem is

exactly the supremum over all T such that (4.31) holds with s = d+ 3. By the above induction, it
also has to be the supremum over all T such that there is a C∞([0, T ]× Rd) solution.

5 Commuting vector fields
In Section 2, we have proved that a solution to (2.1) in R1+3 has a pointwise decay rate O(〈t〉−1).
In order to prove this decay without using Kirchoff’s formula (2.2), we introduce commuting vector
fields Z and a related Sobolev type inequality (called the Klainerman-Sobolev inequality).

5.1 Definition
We now give the definition of the commuting vector fields.

Definition 5.1. In R1+d, we consider the following vector fields:

∂α, α = 0, 1, . . . , d translations;
S := t∂t +

∑d
j=1 xj∂j scaling;

Ωij := xi∂j − xj∂i, 1 ≤ i < j ≤ d rotations;
Ω0i := t∂i + xi∂t, i = 1, . . . , d Lorentz boosts.

(5.1)

We use Z0, . . . , Z(d+1)(d+2)/2 to denote the (d + 1)(d + 2)/2 + 1 vector fields in (5.1) respectively,
and we call each Zj a commuting vector field.

If I = (i1, . . . , ir) is a multiindex (of length |I| = r) where 0 ≤ i∗ ≤ (d + 1)(d + 2)/2, we shall
write

ZI := Zi1 · · ·Zir . (5.2)
If |I| = 1, then we may also omit the superscript and write Z only.

Remark 5.1.1. It is convenient to set Ωii = 0 and Ωij = −Ωji if d ≥ i > j ≥ 1.

Remark 5.1.2. The notations in this note is different from those in other texts. For example,
in [Sog08], the author uses L0 to denote the S here. He also uses Γ to denote the vector fields in
(5.1), and uses Z to denote a proper subset of (5.1).

Remark 5.1.3. Each commuting vector field Z is related to a symmetry of the linear wave equation
□u = 0 in R1+d. Let us take the scaling S as an example. If u = u(t, x) solves □u = 0, then so
does uλ = uλ(t, x) = u(λt, λx) for each constant λ ∈ R. By differentiating uλ with respect to λ and
setting λ = 0, we get another solution to the linear wave equation:

d

dλ
uλ|λ=0 = Su.

Similarly for other commuting vector fields.
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5.2 Basic properties
We first list several commutation properties. These properties more or less explain why we call
them “commuting vector fields”. For simplicity, we use C ·Z to denote a linear combination of the
commuting vector fields with real constant coefficients. In other words,

C · Z =

(d+1)(d+2)/2∑
j=0

CjZj , where the C∗ are real constants.

Similarly, we use C · ∂ to denote a linear combination of partial derivatives with real constant
coefficients.

We have

1. For any two commuting vector fields Zj and Zk, we have [Zj , Zk] = C · Z.

2. For any commuting vector field Zj and any partial derivative ∂α, we have [Zj , ∂α] = C · ∂ (or
simply [Z, ∂] = C · ∂). Note that a corollary of this property is that for any k, i ≥ 0, we have∑

|I|≤i

|∂kZIϕ| ∼
∑
|I|≤i

|ZI∂kϕ|, (5.3)

where ∂l denotes any partial derivatives of order l.

3. For any commuting vector field Zj , we have [Zj ,□] = 0 whenever Zj 6= S, and [S,□] = −2□.

The proofs of these commutation properties are left as an exercise.
In addition, we have the following pointwise estimates.

Lemma 5.2. For any function ϕ = ϕ(t, x) with t ≥ 0, we have

|∂kϕ| ≲ 〈|x| − t〉−k
∑
|I|≤k

|ZIϕ|, ∀k ≥ 0; (5.4)

d∑
i=1

|(∂i + ωi∂t)ϕ| ≲ 〈|x|+ t〉−1
∑
|I|=1

|ZIϕ|. (5.5)

Here recall that ∂k denotes any partial derivatives of order k, and ωi := xi/|x|.

Proof. We first prove (5.4) with k = 1 (and there is nothing to prove when k = 0). Since ∂ ∈
{Z0, . . . , Z(d+1)(d+2)/2}, we already have |∂ϕ| ≲

∑
|I|≤1 |ZIϕ|. Moreover, we notice that

d∑
i=1

ωiΩ0i =

d∑
i=1

ωi(t∂i + xi∂t) = t∂r + |x|∂t, S = t∂t + |x|∂r.
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Here ∂r :=
∑d

j=1 |x|−1xj∂j . As a result, we can express ∂t, ∂r in terms of
∑d

i=1 ωiΩ0i and S:

∂t + ∂r =
S +

∑d
i=1 ωiΩ0i

|x|+ t
, ∂t − ∂r =

∑d
i=1 ωiΩ0i − S

|x| − t
;

2∂t = (
1

|x|+ t
− 1

|x| − t
)S + (

1

|x|+ t
+

1

|x| − t
)

d∑
i=1

ωiΩ0i =
−2tS + 2

∑d
i=1 xiΩ0i

|x|2 − t2
,

2∂r = (
1

|x|+ t
+

1

|x| − t
)S + (

1

|x|+ t
− 1

|x| − t
)

d∑
i=1

ωiΩ0i =
2|x|S − 2t

∑d
i=1 ωiΩ0i

|x|2 − t2
.

Since |x|+t
|x|2−t2

= 1
|x|−t , we have

|ϕt|+ |ϕr| ≲ ||x| − t|−1(|Sϕ|+
d∑

i=1

|Ω0iϕ|) ≲ ||x| − t|−1
∑
|I|=1

|ZIϕ|.

Moreover, since

d∑
i=1

ωiΩij =

d∑
i=1

ωi(xi∂j − xj∂i) = |x|∂j − xj∂r, Ω0j = xj∂t + t∂j ,

for each j = 1, . . . , d we have

∂j = (t+ |x|)−1(
d∑

i=1

ωiΩij +Ω0j − xj(∂t − ∂r)).

It thus follows that

|ϕj | ≲ (t+ |x|)−1(

d∑
i=1

|Ωijϕ|+ |Ω0jϕ|+ |x||ϕt − ϕr|)

≲ (|x|+ t)−1
∑
|I|=1

|ZIϕ|+ |ϕt|+ |ϕr| ≲ ||x| − t|−1
∑
|I|=1

|ZIϕ|.

In the last estimate we use the triangle inequality ||x| − t| ≤ |x|+ t. By noticing that min{1, ||x| −
t|} ≲ 〈|x| − t〉−1, we obtain (5.4) with k = 1.

To prove (5.4) with k > 1, we use induction. Suppose we have proved (5.4) for each k < k0.
Then,

|∂k0ϕ| = |∂k0−1∂ϕ| ≲ 〈|x| − t〉1−k0
∑

|I|≤k0−1

|ZI∂ϕ|

≲ 〈|x| − t〉1−k0
∑

|I|≤k0−1

|∂ZIϕ| (by (5.3))

≲ 〈|x| − t〉−k0
∑

|I|≤k0

|∂ZIϕ|.
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Finally we prove (5.5). By the computations above, we have

∂j + ωj∂t = (t+ |x|)−1(

d∑
i=1

ωiΩij +Ω0j − xj(∂t − ∂r)) + ωj∂t

=

∑d
i=1 ωiΩij +Ω0j − xj(∂t − ∂r) + (xj + tωj)∂t

|x|+ t
=

∑d
i=1 ωiΩij +Ω0j + ωjS

|x|+ t
.

Thus, |ϕj +ωjϕt| ≲ (|x|+ t)−1
∑

|I|=1 |ZIϕ|. And since |ϕj +ωjϕt| ≲
∑

|I|=1 |ZIϕ|, we are done.

Remark 5.2.1. Note that ∂i+ωi∂t, i = 1, 2, 3 span the tangent space of the light cone |x|− t = C,
and that ∂t−∂r is orthogonal to the light cone |x|− t = C. Thus, sometimes we call ∂t−∂r normal
derivative, and call ∂i + ωi∂t tangential derivatives.

Lemma 5.2 tells us that heuristically the tangential derivatives have better decays than normal
derivative.

5.3 The Klainerman-Sobolev inequality
Recall the Sobolev embedding Hs(Rd) ⊂ L∞(Rd), s > d/2. Since b(d+2)/2c is the smallest integer
larger than d/2, we have

‖f‖L∞(Rd) ≲d ‖f‖H⌊(d+2)/2⌋(Rd) ≲
∑

|α|≤(d+2)/2

‖∂αx f‖L2(Rd) . (5.6)

In this subsection, we prove the Klainerman-Sobolev inequality (see (5.7) below). We ask our
readers to compare (5.7) with (5.6).

Theorem 5.3 (Klainerman-Sobolev). Let u ∈ C∞(R1+d) vanish when |x| is large. Then, for all
t > 0 and x ∈ Rd,

〈|x|+ t〉
d−1
2 〈|x| − t〉

1
2 |u(t, x)| ≲d

∑
|I|≤ d+2

2

∥∥ZIu(t)
∥∥
L2(Rd)

. (5.7)

Proof. If |x|+ t ≤ 1, then 〈|x|+ t〉
d−1
2 〈|x| − t〉

1
2 ≲ 1, so (5.7) follows directly from (5.6). So we can

assume that |x|+ t > 1 from now on.
Let us first assume that ||x| − t| > t/2, or equivalently |x| /∈ [t/2, 3t/2]. In this case, we have

(left as an exercise)
|x|+ t

6
≤ ||x| − t| ≤ t+ |x|. (5.8)

Now define a function f in Rd by

f(y) = u(t, x+ (t+ |x|)y).

We now recall a localized version of the Sobolev embedding (5.6): for each δ > 0, we have

|f(x)|2 ≲δ,d

∑
|α|≤(d+2)/2

∫
B(0,δ)

|∂αy f(x+ y)|2 dy, ∀x ∈ Rd. (5.9)
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To prove this, we simply apply (5.6) to y 7→ f(x + y) · χ(x + y) where χ ∈ C∞
c (Rd), 0 ≤ χ ≤ 1,

χ(0) = 1 and χ|Rd\B(0,δ) = 0. Apply (5.9) with x = 0 and δ = 1/12 (or any number in (0, 1/6)),
and we obtain

|u(t, x)|2 = |f(0)|2 ≲
∑

|α|≤(d+2)/2

∫
B(0,δ)

|∂αy f(y)|2 dy

≲
∑

|α|≤(d+2)/2

∫
B(0,δ)

(t+ |x|)2|α||u(α)(t, x+ (t+ |x|)y)|2 dy

≲
∑

|α|≤(d+2)/2

∫
B(x,δ(t+|x|))

(t+ |x|)2|α|−d|u(α)(t, z)|2 dz.

To avoid ambiguity, we use u(α)(t, z) := (∂αu)(t, z). In the second row, we use the chain rule and
Leibniz’s rule. In the third row, we make a substitution z = x+ (t+ |x|)y. By (5.4) in Lemma 5.2,
we have

|u(α)(t, z)| ≲
∑

|I|≤|α|

〈|z| − t〉−|α||ZIu(t, z)| ≲ (|x|+ t)−|α|
∑

|I|≤|α|

|ZIu(t, z)|, whenever ||z| − t| ≥ t+ |x|
6

.

The second estimate holds because ||z| − t| ≥ (t + |x|)/12 whenever |z − x| < (|x| + t)/12 and
||x| − t| > t/2. To see this, we note that by (5.8) and the triangle inequality

||z| − t| ≥ ||x| − t| − ||z| − |x|| ≥ (|x|+ t)/6− |z − x| ≥ (1/6− 1/12)(t+ |x|).

In summary, we have

|u(t, x)|2 ≲ (t+ |x|)−d
∑

|I|≤(d+2)/2

∥∥ZIu(t)
∥∥2
L2(Rd)

.

This gives us (5.7).
Now we suppose ||x| − t| ≤ t/2, or equivalently |x| ∈ [t/2, 3t/2]. Note that now t > 2/5 because

|x|+ t > 1. It suffices to prove the following two estimates:

|u(t, x)| ≲ t−(d−1)/2
∑

|I|≤(d+2)/2

∥∥ZIu(t)
∥∥
L2(Rd)

; (5.10)

|u(t, x)| ≲ t−(d−1)/2||x| − t|−1/2
∑

|I|≤(d+2)/2

∥∥ZIu(t)
∥∥
L2(Rd)

, whenever ||x| − t| ≥ 1. (5.11)

We first prove (5.10). Define a function f in R× Sd−1 by

f(q, ω) = u(t, (t+ q)ω).

We need a new Sobolev type inequality in R× Sd−1: for each δ > 0, we have

|f(q, ω)|2 ≲δ,d

∑
j+k≤(d+2)/2

∫ δ

−δ

∫
Sd−1

|∂js∂kνf(q + s, ν)|2 dνds, ∀(q, ω) ∈ R× Sd−1. (5.12)
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Here ∂ν denotes any rotation Ωij , 1 ≤ i < j ≤ 3 restricted to the sphere Sd−1, and ∂kν denotes
any product of k such vector fields. We shall not prove this inequality here, but we remark that
it follows from (5.6) and partitions of unity. Now, apply (5.12) with q = |x| − t, ω = x/|x| and
δ = 1/10 < t/4. Because of the definition of f , we have

∂js∂
l
νf(|x| − t+ s, ν) = (∂jrΩ

lu)(t, (|x|+ s)ν).

Thus, by (5.12) we have

|u(t, x)|2 = |f(|x| − t, ω)|2 ≲
∑

j+k≤(d+2)/2

∫ δ

−δ

∫
Sd−1

|(∂jrΩku)(t, (|x|+ s)ν)|2 dνds

≲
∑

j+|I|≤(d+2)/2

∫ |x|+δ

|x|−δ

∫
Sd−1

r1−d|(∂jrZIu)(t, rν)|2rd−1 dνdr

≲
∑

|I|≤(d+2)/2

∫ 2t

t/4

∫
Sd−1

t1−d|(ZIu)(t, rν)|2rd−1 dνdr

≲ t1−d
∑

|I|≤(d+2)/2

∫
Rd

|(ZIu)(t, y)|2 dy.

This gives us (5.10). In the third row, we use |x| − δ ≥ t/2− t/4 and |x|+ δ ≤ 3t/2 + t/4. We also
use ZI(y/|y|) = O(1) whenever |y| ∼ t ≳ 1.

Now we prove (5.11). Fix (t, x0) ∈ R1+d
+ with t/2 ≥ ||x0| − t| ≥ 1 and |x0| + t ≥ 1. Set

q0 := |x0| − t, so 1 ≤ |q0| ≤ t/2. We now set

v(s, ν) := u(t, (t+ q0 + q0s)ν).

It is clear that v(0, ω) = u(t, x0) where ω = x0/|x0|. Moreover, by the chain rule and Leibniz’s rule,
we have ∑

j+k≤(d+2)/2

|∂js∂kνv(s, ν)| ≲
∑

j+k≤(d+2)/2

|((q0∂r)jΩku)(t, (|x0|+ q0s)ν)|.

Thus, by (5.12) with q = 0, ω = x0/|x0| and δ = 1/4, we have

|u(t, x0)|2 = |v(0, ω)|2 ≲
∑

j+k≤(d+2)/2

∫ δ

−δ

∫
Sd−1

|∂js∂kνv(s, ν)|2 dνds

≲
∑

j+k≤(d+2)/2

∫ δ

−δ

∫
Sd−1

|((q0∂r)jΩku)(t, (|x0|+ q0s)ν)|2 dνds

= |q0|−1
∑

j+k≤(d+2)/2

∫ |x0|+δ|q0|

|x0|−δ|q0|

∫
Sd−1

r1−d · |((q0∂r)jΩku)(t, rν)|2rd−1 dνdr.

In the third row, we make a substitution r = |x0|+ q0s. To continue, we notice that

|x0| − δ|q0| ≥ t/2− δ · t/2 ≥ t/8,
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so r1−d ≲ t1−d in the integral. Moreover, whenever r ∈ [|x0| − δ|q0|, |x0|+ δ|q0|], we have

|r − t| ≥ ||x0| − t| − |r − |x0|| ≥ |q0| − δ|q0| = 3|q0|/4.

It follows that

|u(t, x0)|2 ≲ |q0|−1t1−d
∑

j+k≤(d+2)/2

∫ |x0|+δ|q0|

|x0|−δ|q0|

∫
Sd−1

|(((r − t)∂r)
jΩku)(t, rν)|2rd−1 dνdr

≲ |q0|−1t1−d
∑

j+k≤(d+2)/2

∫
|y|∈[|x0|−δ|q0|,|x0|+δ|q0|]

|(((|y| − t)∂r)
jΩku)(t, y)|2 dy

≲ |q0|−1t1−d
∑

|I|≤(d+2)/2

∫
Rd

|ZIu(t, y)|2 dy.

This gives us (5.11).

Remark 5.3.1. The key idea is that we combine the usual Sobolev embedding in Rd (and some
of its variants) with a change of variables.

5.4 Application to the linear wave equation
Using the commuting vector fields and the Klainerman-Sobolev inequality, we can now show some
pointwise estimates for solutions to the linear wave equation without solving it explicitly.

Suppose that u ∈ C∞(R1+d
+ ) (which is of course not necessary) is a global solution to □u = 0 in R1+d

+ ;

(u, ∂tu)|t=0 = (u0, u1) ∈ C∞
c (Rd).

(5.13)

Since [□, Z] = C · □ for some constant C, for each multiindex I the function ZIu also satisfies
□ZIu = 0 and we have (ZIu, ∂tZ

Iu)|t=0 ∈ C∞
c (Rd). By the energy conservation law and the finite

speed of propagation from Theorem 3.2, we have∥∥(ZIu)′(t)
∥∥
L2(Rd)

≲
∥∥(ZIu)′(0)

∥∥
L2(Rd)

≲I 1, ∀ multiindex I.

By the Klainerman-Sobolev inequality and by (5.3), we have

|u′(t, x)| ≲ 〈|x|+ t〉−(d−1)/2〈|x| − t〉−1/2
∑

|I|≤(d+2)/2

∥∥ZI∂u(t)
∥∥
L2(Rd)

≲ 〈|x|+ t〉−(d−1)/2〈|x| − t〉−1/2
∑

|I|≤(d+2)/2

∥∥(ZIu)′(t)
∥∥
L2(Rd)

≲ 〈|x|+ t〉−(d−1)/2〈|x| − t〉−1/2.

By the finite speed of propagation, we have u(t, x) = 0 whenever |x| − t ≥ C for some constant C.
Since ∫ t+C

r
〈ρ+ t〉−(d−1)/2〈ρ− t〉−1/2 dρ ≲ 〈t〉−(d−1)/2〈r − t〉1/2,
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we conclude that

|u(t, x)| ≲ 〈t〉−(d−1)/2〈|x| − t〉1/2.

This is weaker than the estimates given in Section 2.5, but such estimates are usually enough in
the study of nonlinear problems.

If d is odd and if we assume that the solution vanishes for ||x| − t| ≥ R, then the proof above
does recover the estimate u = O(〈t〉−(d−1)/2) in Section 2.5. However, proving that the solution
vanishes for ||x| − t| ≥ R seems to require the use of Kirchoff’s formula.

6 Almost global existence in three space dimensions and global
existence in higher dimensions

Using the tools developed in the previous sections, we can now prove the first long time existence
result in this course.

Consider the Cauchy problem gαβ(u′)∂α∂βu = F (u′) in R1+d
+ ;

(u, ∂tu)|t=0 = (εu0, εu1).
(6.1)

Here we have

1) The unknown u is R-valued, and u′ = (∂αu)
d
α=0. Of course, all the results proved in this section

also hold for RN -valued functions.

2) We have (u0, u1) ∈ C∞
c (Rd) and 0 < ε � 1 is sufficiently small. By “sufficiently small”, we

mean there exists some ε0 ∈ (0, 1) depending on (u0, u1) such that ε is an arbitrary number in
(0, ε0).

3) g∗∗, F are given C∞ functions such that gαβ = gβα, gαβ(0) = mαβ , F (0) = 0 and dF (0) = 0.
As a result, we have gαβ(0)∂α∂β = □ and F (u′) = O(|u′|2).

Note that the derivatives of g∗∗, F do not need to be O(1) everywhere, and that the assumption
(4.2) is not necessary. This is because u′ is expected to be small.

The main result for this section is the following theorem.

Theorem 6.1. Fix a dimension d ≥ 1 and fix (u0, u1) ∈ C∞
c (Rd). Then, for all sufficiently small

0 < ε � 1 (depending on (u0, u1)), the Cauchy problem (6.1) has a (unique) C∞ solution for all
0 ≤ t < Td, where

Td :=


∞, d ≥ 4;
exp(c/ε), d = 3;
c/ε2, d = 2;
c/ε, d = 1.

When d = 1, 2, 3, the constant c is a small constant in (0, 1) depending only on (u0, u1) (and not
on ε).
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Remark 6.1.1. When d = 3, this existence result (called almost global existence) is sharp. For
example, it is known that any nontrivial solutions (1.3) and (1.7) with C∞

c data must blow up
in finite time, and we can show that the lifespan is ec/ε for some constant c > 0 (not necessarily
small).

Before we start the proof, I would like to explain why we have Td in the result. Using the
Klainerman-Sobolev inequality, the energy estimate and Gronwall’s inequality, to end the proof we
need to show that

Id :=

∫ Td

0
CA0ε〈τ〉−(d−1)/2 dτ < 1.

Here C,A0 are two large constants and ε is a sufficiently small constant chosen after C,A0 are
chosen.

If d ≥ 4, then (d − 1)/2 ≥ 3/2 and thus Id ≤ CA0ε. Thus, by choosing ε � 1 we do have
CA0ε < 1. If d = 1, 2, 3, then we have Id ≤ CA0εT,CA0〈Td〉1/2, CA0ε ln〈Td〉, respectively. By
setting Td as above with c sufficiently small (depending on A0, C), we can make Id < 1.

6.1 Continuity arguments: an introduction
To prove Theorem 6.1, of course we need to apply Theorem 4.2–4.4. Meanwhile we also need to
apply a continuity argument (also called a bootstrap argument). Such an argument is based on the
following easy fact.

Proposition 6.2 (Proposition 1.21 in [Tao06]). Let I be a time interval (bounded or unbounded).
For each t ∈ I, we have two statements, a “hypothesis” H(t), and a “conclusion” C(t). Suppose
we can verify the following four assertions:

(a) If H(t) holds for some t ∈ I, then C(t) holds for the same t.

(b) If C(t) holds for some t ∈ I, then there exists an open set O ⊂ I containing t such that H(t′)
holds for all t′ ∈ O.

(c) If t1, t2, . . . is a sequence in I which converges to some t ∈ I, and if C(tn) holds for each n,
then C(t) holds.

(d) There exists t0 ∈ I such that H(t0) holds.

Then C(t) holds for all t ∈ I.

Proof. Let A := {t ∈ I : C(t) is true}. Then, (a)–(d) tell us that A is a nonempty set in I which
is both open and closed. Since I is connected, we conclude that A = I by using basic topology.

You can check Section 1.6 of [Tao06] for some simple applications of this argument if you are
interested in it.
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6.2 Setup of the continuity argument
In the proof of Theorem 6.1, we set I := [0, Td) (if d ≤ 3, then we first fix a small c ∈ (0, 1) without
choosing its explicit value at this moment). For each T ∈ [0, Td), our hypothesis H(T ) is that there
exists a C∞ solution u for all t ∈ [0, T ] such that

A(t) :=
∑
|I|≤N

∥∥ZIu′(t)
∥∥
L2(Rd)

≤ A0ε, ∀t ∈ [0, T ]. (6.2)

Our conclusion C(T ) is that there exists a C∞ solution u for all t ∈ [0, T ] such that

A(t) ≤ 1

2
A0ε, ∀t ∈ [0, T ]. (6.3)

Here N ≥ d+ 4 is a large integer and A0 > 1 is a large constant. We will choose their values later
in the proof.

Let us briefly explain how we apply Proposition 6.2. The assertion (a) states that H(T ) =⇒
C(T ), i.e. the estimate (6.2) implies (6.3). Checking this assertion would be the most difficult step
in the proof of Theorem 6.1. We will prove (a) in the rest of this section. Here we emphasize that
we can prove H(T ) =⇒ C(T ) only holds for large A0. If it holds for all A0 > 0, then by applying
H(T ) =⇒ C(T ) repeatedly, we get A(T ) = 0 which is absurd.

The assertion (b) follows from the local existence result for (6.1) and the continuity of A(t). To
see this, we suppose that C(T ) is true. By the Klainerman-Sobolev inequality, we have∑

|I|≤(d+6)/2

∥∥ZIu′(t)
∥∥
L∞ ≲ 〈t〉−(d−1)/2

∑
|I|≤⌊ d+6

2
⌋+⌊ d+2

2
⌋

∥∥ZIu′(t)
∥∥
L2 .

If we choose N ≥ bd+6
2 c+ bd+2

2 c (e.g. N = d+ 4), then we conclude that

sup
(t,x)∈[0,T ]×Rd

∑
1≤|α|≤(d+6)/2

|∂αu(t, x)| ≲ sup
t∈[0,T ]

A(t) ≤ A0ε/2.

And since u(t, x) = u(0, x) +
∫ t
0 (∂τu)(τ, x) dτ , we conclude that∑
|α|≤(d+6)/2

|∂αu| ∈ L∞([0, T ]× Rd).

By Theorem 4.4, we can extend u to a C∞ solution in [0, T + δ] × Rd for some positive δ > 0.
We also need to apply Theorem 4.3 to see that A(t) < ∞ for each t ∈ [0, T + δ]. Since A(t) is a
continuous function, and since A(T ) ≤ A0ε/2, we have

A(t) ≤ A0ε, t ∈ [0, T + δ]

by shrinking δ if necessary. This gives us H(t) in a neighborhood of T .
The assertion (c) is an easy consequence of the continuity of A(t).
The assertion (d) follows if we can show H(0) holds. In fact, since (u0, u1) ∈ C∞

c , we have
(ZIu, ∂tZ

Iu)|t=0 ∈ C∞
c by using the equation (6.1) to lower the order of time derivatives. Thus, if

we choose A0 sufficiently large (depending on (u0, u1)), we have (6.2) for T = 0.
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In summary, we check the four assertions in Proposition 6.2. We can thus apply this proposition
to show that there exists a solution to (6.1) for t ∈ [0, Td) satisfying (6.3). This finishes the proof
of Theorem 6.1.

In future we will keep using Proposition 6.2 to prove long time existence results. At that time,
we will only state that we apply a continuity argument without referring to Proposition 6.2, and
we will only check the assertions (a) and (d) and take the other two assertions for granted.

6.3 Proof of assertion (a)
As explained in the previous subsection, we need to prove that H(T ) implies C(T ), or (6.2) implies
(6.3). We need to apply the energy estimate (3.3).

Let us first prove some pointwise bounds. By the Klainerman-Sobolev inequality, we have∑
|I|≤N−⌊ d+2

2
⌋

|ZIu′(t, x)| ≲ 〈|x|+ t〉−(d−1)/2〈|x| − t〉−1/2A(t) ≲ A0ε〈t〉−(d−1)/2. (6.4)

Since ε is chosen after A0 is chosen, we have∑
|I|≤N−⌊ d+2

2
⌋

|ZIu′(t, x)| ≤ CA0ε ≤ 1, as long as ε� 1. (6.5)

Fix a multiindex I with |I| ≤ N . We first derive an equation for ZIu. In fact,

gαβ(u′)∂α∂βZ
Iu = [gαβ(u′)∂α∂β , Z

I ]u+ ZI(F (u′))

= [□, ZI ]u+ [(gαβ(u′)−mαβ)∂α∂β , Z
I ]u+ ZI(F (u′))

= [□, ZI ]u+ [(gαβ(u′)−mαβ), ZI ]∂α∂βu+ (gαβ(u′)−mαβ)[∂α∂β , Z
I ]u+ ZI(F (u′)).

(6.6)
We write the right hand side of (6.6) as RI

1+R
I
2+R

I
3+R

I
4. To apply the energy estimate, we need

to control the L2(Rd) norm of RI
∗ at time t.

Let us first estimate RI
4. For simplicity we write |v≤M | =

∑
|I|≤M |ZIv| (this notation is different

from that used in the proof of Lemma 4.22). Since F (0) = 0 and dF (0) = 0, and since |u′| ≤ 1 (by
(6.5)), we have

|F (u′)| ≲ |u′|2.

In general, if |I| ≥ 1, by the chain rule and Leibniz’s rule, we can write ZI(F (u′)) as a linear
combination of terms of the form

F (r)(u′) ·
r∏

j=1

ZJju′, r > 0,
∑

|J∗| = |I|, |Jj | > 0 for each j.

If r = 1, then since dF (0) = 0 and |u′| ≤ 1, we have |F (1)(u′)| ≲ |u′|. In this case

|F (r)(u′) ·
r∏

j=1

ZJju′| ≲ |u′||(u′)≤N |.
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If r > 1, then we have |F (r)(u′)| ≲ 1 since |u′| ≤ 1. As in the proof of Lemma 4.22, we have
|Jj | > |I|/2 for at most one Jj . For the other j, since N ≥ d+ 4 we have

|Jj | ≤ |I|/2 ≤ N/2 ≤ N − bd+ 2

2
c.

In this case

|F (r)(u′) ·
r∏

j=1

ZJju′| ≲ |(u′)≤N−⌊ d+2
2

⌋|
r−1|(u′)≤N | ≤ |(u′)≤N−⌊ d+2

2
⌋||(u

′)≤N |.

In summary, we have

|RI
4| ≲ |(u′)≤N−⌊ d+2

2
⌋||(u

′)≤N | ≲ A0ε〈t〉−(d−1)/2|(u′)≤N |;

and ∥∥RI
4(t)

∥∥
L2 ≲ A0ε〈t〉−(d−1)/2A(t).

Next let us estimate RI
2. We have RI

2 = 0 if |I| = 0, so suppose that |I| > 0. By Leibniz’s rule,
we can write RI

2 as a linear combination of terms of the form

ZJ∂2u · ZK(gαβ(u′)−mαβ), |J |+ |K| = |I|, |J | < |I|, |K| > 0.

By the chain rule and Leibniz’s rule, we can follow the proof for ZI(F (u′)) above to show that

|ZK(g∗∗(u′)−mαβ)| = |ZK(g∗∗(u′))| ≲ |(u′)≤|K||.

Thus,

|RI
2| ≲

∑
0≤j<|I|

|(u′′)≤j ||(u′)≤|I|−j | ≲
∑

0≤j<|I|

|(u′)≤j+1||(u′)≤|I|−j |.

For each 0 ≤ j < |I|, at most one of j + 1 and |I| − j is larger than (N + 1)/2. And since

N ≥ d+ 4 =⇒ N + 1

2
≤ N − bd+ 2

2
c,

we have

|RI
2| ≲ |(u′)≤N−⌊ d+2

2
⌋||(u

′)≤N |.

Again, we obtain ∥∥RI
2(t)

∥∥
L2 ≲ A0ε〈t〉−(d−1)/2A(t).

We remark that it is even simpler to estimate RI
3 than to estimate RI

2. Again we would get∥∥RI
3(t)

∥∥
L2 ≲ A0ε〈t〉−(d−1)/2A(t).

The proof for this estimate is left as an exercise.
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Finally let us estimate RI
1. If |I| = 0, we have RI

1 = 0, so suppose that |I| > 0. Since
[□, Z] = C□ for each commuting vector field Z, [□, ZI ]u can be written as a linear combination of
terms of the form

□ZJu, |J | < |I|.

Meanwhile, we have

□ZJu = gαβ(u′)∂α∂βZ
Ju− (gαβ(u′)−mαβ)∂α∂βZ

Ju =

4∑
j=1

RJ
j +O(|u′||(u′)≤N |).

It follows that

|RI
1| ≲

∑
|J |<|I|

|□ZJu| ≲
∑

|J |<|I|

|RJ
j |+ |u′||(u′)≤N |.

Thus, we can use induction to prove that

|RI
1| ≲

∑
|J |<|I|

|RJ
j |+ |u′||(u′)≤N |.

This inequality and the proofs above show that∥∥RI
1(t)

∥∥
L2 ≲ A0ε〈t〉−(d−1)/2A(t).

Now we apply the energy estimate (3.3) to ZIu. Since the L2 norm of the right hand side of
(6.6) at time t is bounded above by A0ε〈t〉−(d−1)/2A(t), we have

A(t) ≲ (A(0) +

∫ t

0
A0ε〈τ〉−(d−1)/2A(τ) dτ) · exp(2

∫ t

0

∥∥∂(g∗∗(u′))(τ)∥∥
L∞ dτ), t ∈ [0, T ] ⊂ [0, Td).

Meanwhile, since

|∂(g∗∗(u′))| ≲ |u′′| ≲ |(u′)≤N−⌊ d+2
2

⌋| ≲ A0ε〈t〉−(d−1)/2,

we have ∫ t

0

∥∥∂(g∗∗(u′))(τ)∥∥
L∞ dτ ≲


A0ε, d ≥ 4;
A0ε ln〈T 〉, d = 3;

A0ε〈T 〉1/2, d = 2;
A0εT, d = 1.

(6.7)

Recall that T < Td and that

Td :=


∞, d ≥ 4;
exp(c/ε), d = 3;
c/ε2, d = 2;
c/ε, d = 1.
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By choosing sufficiently small ε when d ≥ 4, and by choosing c ∈ (0, 1) sufficiently small when
d ≤ 3, we can make the left hand side of (6.7) smaller than 1. It follows that

A(t) ≤ CA(0) +

∫ t

0
CA0ε〈τ〉−(d−1)/2A(τ) dτ, t ∈ [0, T ].

By Gronwall’s inequality, we have

A(t) ≤ CA(0) exp(

∫ t

0
CA0ε〈τ〉−(d−1)/2 dτ), t ∈ [0, T ].

By choosing ε or c sufficiently small, again we can make the second exponential here ≲ 1. We
conclude that A(t) ≤ CA(0). Since A(0) ≤ C0ε and since C,C0 are known before we choose A0, by
choosing A0 sufficiently large we have CA(0) ≤ A0ε

2 . This finishes the proof of the assertion (a).

7 The null condition
In this section we would focus on the lifespan of (6.1) when d = 3. Given C∞

c data of size ε � 1,
by Theorem 6.1 we know that this equation has a solution for t ∈ [0, exp(c/ε)]. We also know
that not all equations of the form (6.1) have global existence (John’s examples: □u = u2t and
□u = ututt). In contrast, we know that □u = 0 admits a global solution for all C∞

c data. The
following question arises naturally: is there a sufficient condition for a small data global existence
result for (6.1)? This is why we introduce the null condition. In this section, our main result is the
following theorem.

Theorem 7.1. Fix (u0, u1) ∈ C∞
c (R3) and consider the Cauchy problem (6.1) in R1+3

+ . Suppose
that the equation also satisfies the null condition. Then, for all sufficiently small 0 < ε � 1
(depending on (u0, u1)), the Cauchy problem (6.1) has a (unique) C∞ solution for all t ≥ 0.

Remark 7.1.1. This theorem was first proved by Klainerman [Kla85, Kla84] and Christodoulou
[Chr86]. To my knowledge, it has at least three different proofs. One is from [H9̈7] (or the first
edition of [Sog08]). In both books, the authors allow the coefficients to depend on the unknown
function u itself, so their methods actually work for a larger class of equations. The second one is
from [Sog08] (the second edition). This proof can be adapted to other multi-speed systems where
the Lorentz boosts are not available. The third one from [Ali10]. There the author makes use of
Alinhac’s ghost weight.

To prevent from making this note too long, here I cannot discuss all these three proofs above.
In this section, I will use the last proof from [Ali10]. At the end of this section, I will also briefly
discuss how the proofs from [H9̈7,Sog08] work.

7.1 Definition and basic properties
Definition 7.2. Suppose that the Taylor expansions of g∗∗ and F in (6.1) at 0 are

gαβ(u′) = mαβ + gαβλ0 ∂λu+O(|u′|2),

F (u′) = fαβ0 ∂αu∂βu+O(|u′|3).
(7.1)
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We say the equation (6.1) (or the coefficients g∗∗∗0 , f∗∗0 ) satisfies the null condition if

gαβλ0 ξαξβξγ = fαβ0 ξαξβ = 0, whenever ξ ∈ R1+3, |ξ0|2 = |ξ1|2 + |ξ2|2 + |ξ3|2. (7.2)

It is easy to check that (1.4) and (1.8) satisfy the null condition.
In general, we can also define the null condition for

gαβ(u, u′)∂α∂βu = F (u, u′)

where u is an R-valued unknown. In this case, we simply replace the remainders in (7.1) with
O(|u|2 + |u′|2) or O(|u|3 + |u′|3). We can also define the null condition if (6.1) is replaced by
a system of quasilinear wave equations for an RN -valued unknown. For simplicity, we shall not
discuss these general cases in this note.

Let us briefly explain the motivation behind (7.2). To apply the energy estimate, we need to
estimate the L2 norm of F (u′). The cubic terms in the Taylor expansion of F is good, so let us
focus on the quadratic terms. For simplicity, we assume that F (u′) = fαβ0 uαuβ. For each partial
derivative ∂α, we can decompose it as the sum of a normal derivative (with respect to the light cone
|x| − t = C) and a tangential derivative. By easy computations, the normal derivative is equal to
1
2qα(∂t − ∂r) where q = |x| − t. We can check that q2t = |∇xq|2. Thus, if we expand the quadratic
form F (u′) by using the decomposition above, we get

F (u′) =
1

4
fαβ0 qαqβ(ut − ur)

2 + ∂u · /∂u = ∂u · /∂u

where /∂u denotes one of the tangential derivatives ∂i + ωi∂t. By (5.5), we expect tangential
derivatives to have better decays, so that is good. Similarly, we can make a similar discussion for
gαβλ0 ∂λu∂α∂βu.

We now make the discussions above rigorous. Since ∂t − ∂r = 2∂t + tangential derivatives, it
would not affect our proof if we replace ∂t − ∂r with ∂t in our decomposition above. This would
make our computations a little simpler.

Lemma 7.3. Suppose that g∗∗∗0 and f∗∗0 satisfy the null condition (7.2). Then,

|gαβλ0 ∂λu∂α∂βv|+ |gαβλ0 ∂αu∂β∂λv|+ |gαβλ0 ∂βu∂α∂λv| ≲ |Tu||∂2v|+ |∂u||T∂v|,

|gαβλ0 ∂αu∂βv∂λw| ≲ |Tu||∂v||∂w|+ |∂u||Tv||∂w|+ |∂u||∂v||Tw|,

|fαβ0 ∂αu∂βv| ≲ |∂u||Tv|+ |Tu||∂v|.

Here |Tu| :=
∑3

i=1 |ui + ωiut|. We can then apply (5.5) in Lemma 5.2 to control the right hand
sides of these two inequalities.

Proof. Set q = |x| − t and Tα = ∂α + qα∂t. We now have ∂α = Tα − qα∂t and thus

gαβλ0 ∂λu∂α∂βv = −gαβλ0 qλut∂α∂βv + Tλu · ∂2v

= gαβλ0 qαqλut∂t∂βv + Tu · ∂2v + ∂u · T∂v

= −gαβλ0 qαqβqλut · ∂2t v + Tu · ∂2v + ∂u · T∂v + ∂u · T∂v
= Tu · ∂2v + ∂u · T∂v.
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Here Tu · ∂2v is a linear combination of Tλu · ∂α∂βv with O(1) coefficients. Similarly for other
terms. Also note that the last identity follows from the null condition. The same proof applies to
other terms on the left hand side of the first inequality. The second and third inequality can be
proved in a similar way.

Remark 7.3.1. If there is no null condition, then the best result we have is

|gαβλ0 ∂λu∂α∂βv| ≲ |∂u||∂2v|, |fαβ0 ∂αu∂βv| ≲ |∂u||∂v|.

By Lemma 5.2, we expect |∂u| ≲ 〈r − t〉−1|Zu| and |Tu| ≲ 〈r + t〉−1|Zu|. The second estimate is
better than the first one. That explains why the null condition improves the almost global existence
result in Theorem 6.1.

We now state another useful property for the null condition. For simplicity, we call fαβ0 ∂αu∂βv

or gαβλ0 ∂λu∂α∂βv a null form (for (u, v)) if g∗∗∗0 , f∗∗0 satisfy the null condition (7.2). We will see in
the next lemma that if we apply ZI to a null form, then we will get a sum of several null forms
(not necessarily for (u, v)).

Lemma 7.4. Suppose that g∗∗∗0 and f∗∗0 satisfy the null condition (7.2). For each multiindex I,

ZI(gαβλ0 ∂λu∂α∂βv) =
∑

|J1|+|J2|≤|I|

g̃αβλJ1,J2
∂λZ

J1u∂α∂βZ
J2v,

ZI(fαβ0 ∂αu∂βv) =
∑

|J1|+|J2|≤|I|

f̃αβJ1,J2
∂αZ

J1u∂βZ
J2v.

Here for each pair of multiindices (J1, J2) with |J1|+ |J2| ≤ |I|, the coefficients g̃∗∗∗J1,J2
and f̃∗∗J1 are

constants satisfying the null condition (7.2).
Moreover, we have g̃αβλ0,I = gαβλ0 and g̃αβλJ1,J2

= 0 if |J2| = |I|, |J1| = 0 but J2 6= I.

Proof. By induction, we only need to compute Z(fαβ0 ∂αu∂βv) and Z(gαβλ0 ∂λu∂α∂βv) for an arbi-
trary commuting vector field Z. By the product rule, we have

Z(fαβ0 ∂αu∂βv) = fαβ0 Z∂αu∂βv + fαβ0 ∂αuZ∂βv

= fαβ0 ∂αZu∂βv + fαβ0 ∂αu∂βZv︸ ︷︷ ︸
null form

+fαβ0 [Z, ∂α]u∂βv + fαβ0 ∂αu[Z, ∂β ]v,

Z(gαβλ0 ∂λu∂α∂βv) = gαβλ0 Z∂λu∂α∂βv + gαβλ0 ∂λuZ∂α∂βv

= gαβλ0 ∂λZu∂α∂βv + gαβλ0 ∂λu∂α∂βZv︸ ︷︷ ︸
null form

+ gαβλ0 [Z, ∂λ]u∂α∂βv + gαβλ0 ∂λu[Z, ∂α]∂βv + gαβλ0 ∂λu∂α[Z, ∂β ]v.

Moreover, for each vector field Z = zα(t, x)∂α, we have [Z, ∂β ] = −(∂βz
α)∂α. As a result,

fαβ0 [Z, ∂α]u∂βv + fαβ0 ∂αu[Z, ∂β ]v = −fαβ0 (∂αz
σ)∂σu∂βv − fαβ0 ∂αu(∂βz

σ)∂σv,
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gαβλ0 [Z, ∂λ]u∂α∂βv + gαβλ0 ∂λu[Z, ∂α]∂βv + gαβλ0 ∂λu∂α[Z, ∂β ]v

= −gαβλ0 (∂λz
σ)∂σu∂α∂βv − gαβλ0 ∂λu(∂αz

σ)∂σ∂βv − gαβλ0 ∂λu(∂βz
σ)∂α∂σv.

In order to check the null condition, we need to check that

fαβ0 (∂αz
σ)ξσξβ + fαβ0 ξα(∂βz

σ)ξσ = 0,

gαβλ0 (∂λz
σ)ξσξαξβ + gαβλ0 ξλ(∂αz

σ)ξσξβ + gαβλ0 ξλ(∂βz
σ)ξαξσ = 0,

whenever ξ ∈ R1+3 with |ξ0|2 =
∑

j=1,2,3 |ξj |2. If Z = ∂, then ∂z = 0 so these two identities hold
trivially. If Z = S, then ∂αz

σξσ = ξα, so we reduce these two identities to (7.2). If Z = Ωij , then
∂αz

σξσ = δαiξj − δαjξi, so the left hand sides of these two identities reduce to

f iβ0 ξjξβ − f jβ0 ξiξβ + fαi0 ξαξj − fαj0 ξαξi = (ξj∂ξi − ξi∂ξj )(f
αβ
0 ξαξβ),

gαβi0 ξjξαξβ − gαβj0 ξiξαξβ + giβλ0 ξλξjξβ − gjβλ0 ξλξiξβ + gαiλ0 ξλξjξα − gαjλ0 ξλξiξα = (ξj∂ξi − ξi∂ξj )(g
αβλ
0 ξαξβξλ).

Since ξj∂ξi − ξi∂ξj is tangent to the cone |ξ0|2 =
∑

j=1,2,3 |ξj |2, and since gαβλ0 ξαξβξλ = fαβ0 ξαξβ = 0
on this cone, we conclude these two identities. Finally, if Z = Ω0i, then ∂αz

σξσ = δαiξ0 + δα0ξi, so
the left hand sides of these two identities reduce to

f iβ0 ξ0ξβ + f0β0 ξiξβ + fαi0 ξαξ0 + fα00 ξαξi = (ξi∂ξ0 + ξ0∂ξi)(f
αβ
0 ξαξβ),

gαβi0 ξ0ξαξβ + gαβ00 ξiξαξβ + giβλ0 ξλξ0ξβ + g0βλ0 ξλξiξβ + gαiλ0 ξλξ0ξα + gα0λ0 ξλξiξα = (ξi∂ξ0 + ξ0∂ξi)(g
αβλ
0 ξαξβξλ).

Since ξi∂ξ0 +ξ0∂ξi is tangent to the cone |ξ0|2 =
∑

j=1,2,3 |ξj |2, and since gαβλ0 ξαξβξλ = fαβ0 ξαξβ = 0
on this cone, we conclude these two identities.

7.2 Preliminary estimates
In this subsection, we seek to prove the following estimate.

Lemma 7.5. Fix an integer N ≥ 2. Suppose that u is a solution to (6.1) which satisfies the null
condition. Also assume that

|(u′)≤N/2+1| ≤ 1, where |v≤M | :=
∑

|J |≤M

|ZJv|. (7.3)

Then, we have∑
|I|≤N

|gαβ(u′)∂α∂βZIu| ≲ |T (u≤N )||(u′)≤N/2+1|+ |(u′)≤N ||T (u≤N/2+1)|+ |(u′)≤N/2+1|2|(u′)≤N |.

(7.4)
Here we set |T (v≤M )| :=

∑
|J |≤M |TZJv| with T = (Tα) = (∂α + ∂α(r − t)∂t).
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Recall from the previous section that for each multiindex I, we have

gαβ(u′)∂α∂βZ
Iu = [□, ZI ]u+ [(gαβ(u′)−mαβ), ZI ]∂α∂βu+ (gαβ(u′)−mαβ)[∂α∂β , Z

I ]u+ ZI(F (u′))

=: RI
1 +RI

2 +RI
3 +RI

4.
(7.5)

We start with RI
4. Note that F (u′) = fαβ0 uαuβ + Fc(u

′) where Fc(u
′) vanishes of third order at

0 (i.e. dkFc(0) = 0, k = 0, 1, 2). By the chain rule and Leibniz’s rule, and because of (7.3), we have∑
|I|≤N

|ZI(Fc(u
′))| ≲ |(u′)≤N/2|2|(u′)≤N |.

The proof of this estimate is left as an exercise. Moreover, by Lemma 7.3 and 7.4, we have∑
|I|≤N

|ZI(fαβ0 uαuβ)| ≲
∑

|J1|+|J2|≤N

(|TZJ1u||∂ZJ2u|) ≲ |T (u≤N )||(u′)≤N/2|+ |(u′)≤N ||T (u≤N/2)|.

In summary,∑
|I|≤N

|RI
4| ≲ |T (u≤N )||(u′)≤N/2|+ |(u′)≤N ||T (u≤N/2)|+ |(u′)≤N/2|2|(u′)≤N |. (7.6)

Next we consider RI
2 +RI

3. Write

gαβ(u′)−mαβ = gαβλ0 uλ + gαβc (u′)

where gαβc (u′) vanishes of second order at 0. We can prove that (exercise)∑
|J |≤N

|ZJ(gαβc (u′))| ≲ |(u′)≤N/2||(u′)≤N |.

Now,

RI
2 = [gαβλ0 uλ, Z

I ]∂α∂βu+ [gαβc , ZI ]∂α∂βu

= gαβλ0 ∂λuZ
I∂α∂βu− ZI(gαβλ∂λu∂α∂βu) + [gαβc (u′), ZI ]∂α∂βu,

RI
3 = gαβλ0 ∂λu[∂α∂β , Z

I ]u+ gαβc (u′)[∂α∂β , Z
I ]u.

As a result,

RI
2 +RI

3 = gαβλ0 ∂λu∂α∂βZ
Iu− ZI(gαβλ∂λu∂α∂βu)− ZI(gαβc (u′)∂α∂βu) + gαβc (u′)∂α∂βZ

Iu.

By Lemma 7.4, we can write gαβλ0 ∂λu∂α∂βZ
Iu− ZI(gαβλ∂λu∂α∂βu) as a sum of null forms

g̃αβλJ1,J2
∂λZ

J1u · ∂α∂βZJ2u, |J1|+ |J2| ≤ |I|, |J2| < |I|.

In particular, we emphasize |J2| < |I| because of the second half of Lemma 7.4. It follows from
Lemma 7.3 and from [∂, Z] = C · ∂ that

|gαβλ0 ∂λu∂α∂βZ
Iu− ZI(gαβλ∂λu∂α∂βu)|

≲
∑

|J1|+|J2|≤N
|J2|<N

(|TZJ1u||∂2ZJ2u|+ |∂ZJ1u||T∂ZJ2u|)

≲ |T (u≤N )||(u′)≤N/2+1|+ |T (u≤N/2)||(u′)≤N |+ |(u′)≤N ||T (u≤N/2+1)|+ |(u′)≤N/2||T (u≤N )|
≲ |T (u≤N )||(u′)≤N/2+1|+ |(u′)≤N ||T (u≤N/2+1)|.
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Similarly, we can write −ZI(gαβc (u′)∂α∂βu) + gαβc (u′)∂α∂βZ
Iu as a linear combination of

ZJ1(gαβc (u′))ZJ2∂α∂βu, |J1|+ |J2| ≤ |I|, |J2| < |I|.

It follows that

| − ZI(gαβc (u′)∂α∂βu) + gαβc (u′)∂α∂βZ
Iu|

≲
∑

|J1|+|J2|≤N
|J2|<N

|(u′)≤|J1|/2||(u
′)≤|J1|||(u

′)≤|J2|+1|

≲ |(u′)≤N/2||(u′)≤N ||(u′)≤N/2+1|+ |(u′)≤N/2|2|(u′)≤N | ≲ |(u′)≤N/2+1|2|(u′)≤N |.

In summary, we have

|RI
2 +RI

3| ≲ |T (u≤N )||(u′)≤N/2+1|+ |(u′)≤N ||T (u≤N/2+1)|+ |(u′)≤N/2+1|2|(u′)≤N |. (7.7)

Finally we estimate RI
1. It is clear that RI

1 = 0 if |I| = 0. Since [□, Z] = C□, we can write RI
1

as a linear combination of terms of the form □ZJu with |J | < |I|. Meanwhile, we have

□ZJu = gαβ(u′)∂α∂βZ
Ju− (gαβ(u′)−mαβ)∂α∂βZ

Ju

=

4∑
j=1

RJ
j − gαβλ0 ∂λu∂α∂βZ

Ju− gαβc (u′)∂α∂βZ
Ju

=
4∑

j=1

RJ
j +O(|Tu||∂2ZJu|+ |∂u||T∂ZJu|+ |u′|2|∂2ZJu|) (by Lemma 7.3).

We can estimate RJ
2 +RJ

3 +RJ
4 using (7.6) and (7.7). And since |J | < N , we conclude that

|RI
1| ≲

∑
|J |<|I|

|RJ
1 |+ |T (u≤N )||(u′)≤N/2+1|+ |(u′)≤N ||T (u≤N/2+1)|+ |(u′)≤N/2+1|2|(u′)≤N |.

By induction, we conclude that

|RI
1| ≲ |T (u≤N )||(u′)≤N/2+1|+ |(u′)≤N ||T (u≤N/2+1)|+ |(u′)≤N/2+1|2|(u′)≤N |. (7.8)

This finishes the proof of the lemma.

Remark 7.5.1. Since |Tϕ| ≲ |ϕ′|, it follows from (7.4) that∑
|I|≤N

|gαβ(u′)∂α∂βZIu| ≲ |(u′)≤N ||(u′)≤N/2+1|+ |(u′)≤N/2+1|2|(u′)≤N |. (7.9)

This is in fact the estimate we shall get without assuming the null condition.
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7.3 The energy estimate
I would like to start this subsection with an explanation on why the usual energy estimate is not
enough in the proof of Theorem 7.1. In the proof, we need to estimate E(t) = ‖(u′)≤N‖L2 . So,
what is the upper bound for E(t) in our continuity argument here? If E(t) ≤ Cε, then by the
Klainerman-Sobolev inequality, we shall obtain

E(t) ≲ E(0) +

∫ t

0
ετ−1E(τ) dτ.

By Gronwall’s inequality we have E(t) ≲ εtCε which does not end the continuity argument. How
about E(t) ≤ CεtCε in the continuity argument? It is even worse because we shall get

E(t) ≲ E(0) +

∫ t

0
ετ−1+CεE(τ) dτ.

By Gronwall’s inequality we have E(t) ≲ εtCtCε . Even worse! This is why we need to introduce
some new energy estimates here.

We need an energy estimate from [Ali10].

Proposition 7.6. Let u ∈ C2([0, T ]× R3) vanish for large |x| and satisfy

Pu := gαβ(w′)∂α∂βu = F, ∀(t, x) ∈ [0, T )× Rd. (7.10)

Suppose that gαβ = gβα, that w vanishes for all |x| ≥ t+ C, that

gαβ(w′) = mαβ + gαβγ0 ∂γw +O(|w′|2) (7.11)

where the coefficients g∗∗∗0 are constants satisfying the null condition (7.2), and that∑
|J |≤3

∥∥∂ZJw
∥∥
L2(Rd)

≤ C0ε, 0 < ε� 1. (7.12)

Then, for each small η ∈ (0, 1), we have

∥∥u′(t)∥∥
L2(R3)

+

(∫ t

0

∫
R3

〈|x| − t〉−1−η|Tu(τ)|2 dxdτ
)1/2

≲η e
CC0ε(

∥∥u′(0)∥∥
L2(R3)

+

∫ t

0
‖F (τ)‖L2(R3) dτ).

(7.13)

Here recall that |Tu|2 =
∑3

j=1 |uj + ωjut|2.

In the proof, we make use of the method of ghost weight which was introduced by Alinhac. Let
a ∈ C1(R) be a function to be chosen later. Now we shall compute ea(|x|−t)utPu. Let gαβγ = ∂wγgαβ

be the derivative of gαβ with respect to the γ-th component. Now,

eautg
αβ(w′)∂α∂βu = ∂α(e

autg
αβ(w′)uβ)− ∂α(e

autg
αβ(w′))uβ

= ∂α(e
autg

αβ(w′)uβ)− eaa′qαutg
αβ(w′)uβ

− ea(∂α∂tu)g
αβ(w′)uβ − eautg

αβ
γ (w′) · (∂α∂γw)uβ .
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Here recall that q = r − t. Next,

−ea(∂α∂tu)gαβ(w′)uβ = −∂t(eagαβ(w′)uαuβ) + ∂t(e
agαβ(w′)uβ)uα

= −∂t(eagαβ(w′)uαuβ)− eaa′gαβ(w′)uβuα

+ eagαβγ (w′) · (∂t∂γw)uβuα + eagαβ(w′)(∂t∂βu)uα︸ ︷︷ ︸
=−LHS

.

Thus,

−ea(∂α∂tu)gαβ(w′)uβ = −1

2
∂t(e

agαβ(w′)uαuβ)−
1

2
eaa′gαβ(w′)uβuα +

1

2
eagαβγ (w′) · (∂t∂γw)uβuα.

In summary,

eautPu = ∂α(e
autg

αβ(w′)uβ)− eaa′qαutg
αβ(w′)uβ − eautg

αβ
γ (w′) · (∂α∂γw)uβ

− 1

2
∂t(e

agαβ(w′)uαuβ)−
1

2
eaa′gαβ(w′)uβuα +

1

2
eagαβγ (w′) · (∂t∂γw)uβuα.

Thus we can write −eautPu =
∑3

β=0 ∂βeβ + eaR1 + eaa′R2 where

e0 = −eautg0β(w′)uβ +
1

2
eagαβ(w′)uαuβ ,

R1 = gαβγ (w′) · (∂α∂γw)utuβ − 1

2
gαβγ (w′) · (∂t∂γw)uβuα,

R2 = qαg
αβ(w′)utuβ +

1

2
gαβ(w′)uαuβ .

We first estimate e0. By (7.11), (7.12) and the Klainerman-Sobolev inequality, we have |gαβ(w′)−
mαβ | ≲ C0ε. It follows that

e0 = ea(
1

2
|u′|2 +O(C0ε|u′|2)), (7.14)

and therefore

(
1

2
− CC0ε)e

a|u′|2 ≤ e0 ≤ (
1

2
+ CC0ε)e

a|u′|2.

Next let us estimate R1. By (7.11), we have

gαβγ (w′) = gαβγ0 +O(|w′|)

and therefore

R1 = gαβγ0 (utuβ∂α∂γw − 1

2
uαuβ∂t∂γw) +O(|u′|2|w′||w′′|)

= O(|u′||Tu||w′′|+ |u′|2|T∂w|+ |u′|2|w′||w′′|) by Lemma 7.3.

By (7.12), the Klainerman-Sobolev inequality and Lemma 5.2, we have∑
|J |≤1

|∂ZJw| ≲ C0ε〈t+ |x|〉−1〈|x| − t〉−1/2, |w′′| ≲ C0ε〈t+ |x|〉−1〈|x| − t〉−3/2, |T∂w| ≲ C0ε〈t+ |x|〉−2.
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In summary,

|R1| ≲ C0ε〈t+ |x|〉−1〈|x| − t〉−1/2|u′||Tu|+ C0ε〈|x|+ t〉−2|u′|2.

Finally we estimate R2. Since

gαβ(w′) = mαβ + gαβλ0 ∂λw +O(|w′|2),

we have

R2 = qαm
αβutuβ +

1

2
mαβuαuβ + qαg

αβλ
0 wλutuβ +

1

2
gαβλ0 wλuαuβ +O(|w′|2|u′|2)

= utur +
1

2
|u′|2 + qαg

αβλ
0 (Tλw − qλwt)ut(Tβu− qβut) +O(|u′|2|Tw|+ |u′||Tu||w′|+ |w′|2|u′|2)

= utur +
1

2
|u′|2 +O(|u′|2|Tw|+ |u′||Tu||w′|+ |w′|2|u′|2).

Note that utur + 1
2 |u

′|2 = 1
2

∑3
j=1 |Tju|2 and that

|Tw| ≲ 〈|x|+ t〉−1
∑
|J |=1

|ZJw| ≲ 〈|x|+ t〉−1(

∫
[|x|,t+C]

∑
|J |=1

|∂ρZJw(t, ρx/|x|)| dρ) w vanishes for |x| − t ≥ C

≲ 〈|x|+ t〉−1(

∫
[|x|,t+C]

C0ε〈ρ+ t〉−1〈ρ− t〉−1/2 dρ) ≲ C0ε〈|x|+ t〉−2〈|x| − t〉1/2.

Thus, we have

R2 ≥
1

2
|Tu|2 − CC0ε〈|x|+ t〉−2〈|x| − t〉1/2|u′|2 − CC0ε〈|x|+ t〉−1〈|x| − t〉−1/2|u′||Tu|

≥ 1

4
|Tu|2 − CC0ε〈|x|+ t〉−2〈|x| − t〉1/2|u′|2.

We now choose a so that lims→∞ a(s) = 0 and that a′(s) = 8〈s〉−1−η. Note that η > 0 implies
that |a| ≲ 1 and thus ea ∼ 1 everywhere. Now,

a′R2 +R1 ≥ 2〈|x| − t〉−1−η|Tu|2 − CC0ε〈|x|+ t〉−2|u′|2 − CC0ε〈t+ |x|〉−1〈|x| − t〉−3/2|u′||Tu|
≥ 〈|x| − t〉−1−η|Tu|2 − CC0ε〈|x|+ t〉−2|u′|2.

We now integrate −eautPu =
∑3

β=0 ∂βeβ + eaR1 + eaa′R2. By setting E(t) =
∫
e0(t, x) dx, we

have

E′(t) =

∫
−eautPu− ea(R1 + a′R2) dx

≤
∫
ea|u′||F | − ea〈|x| − t〉−1−η|Tu|2 + CC0ε〈|x|+ t〉−2ea|u′|2 dx

≤ CE(t)1/2 ‖F (t)‖L2 −
∥∥∥〈| · | − t〉−(1+η)/2|Tu|

∥∥∥2
L2

+ CC0ε〈t〉−2E(t).

If we set

H(t) = E(t) +

∫ t

0

∥∥∥〈| · | − τ〉−(1+η)/2|Tu|
∥∥∥2
L2

dτ,
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then

H ′(t) ≲ H(t)1/2 ‖F (t)‖L2 + CC0ε〈t〉−2H(t).

We finish the proof by dividing both sides by H(t)1/2, applying Gronwall’s inequality and noticing
ea ∼ 1.

Remark 7.6.1. From this proof, we can see why ea is called a ghost weight. Since ea ∼ 1, the
energy defined with this weight is equivalent to that defined without this weight. This is very
different from the energy used in [H9̈7]. It thus seems useless to introduce this weight. However,
using this weight would introduce an extra term in the energy estimate. This extra term will be
necessary in the proof of global existence.

7.4 Continuity argument
We can now set up the continuity argument used for the proof. For each T ∈ [0,∞), our hypothesis
is that there exists a C∞ solution u for all t ∈ [0, T ], such that

A(t) :=
∑
|I|≤N

∥∥ZIu′(t)
∥∥
L2(R3)

≤ A1ε, t ∈ [0, T ]. (7.15)

Here N ≥ 8 and A1 > 1 are large constants, and 0 < ε < 1 is a sufficiently small constant depending
on N and A1. All these constants are to be chosen later later. We would like to prove (7.15) with
A1 replaced by A1/2. For simplicity, we would only check the assertion (a) in Proposition 6.2. The
proofs of other assertions are the same as those in Section 6.2.

By the Klainerman-Sobolev inequality, we first notice that whenever 0 ≤ t ≤ T ,∑
|I|≤N−2

|∂ZIu(t, x)| ∼ |(u′)≤N−2| =
∑

|I|≤N−2

|ZIu′(t, x)| ≤ CA1ε〈|x|+ t〉−1〈|x| − t〉−1/2. (7.16)

By the finite speed of propagation, we have ZIu = 0 whenever |x|− t ≥ R for some constant R > 0
depending on the initial data. Thus,

|u≤N−2| ≲
∫
[|x|,t+R]

|(u′)≤N−2(t, ρx/|x|)| dρ ≲
∫
[|x|,t+R]

A1ε〈ρ+ t〉−1〈ρ− t〉−1/2 dρ ≲ A1ε〈|x|+ t〉−1〈|x| − t〉1/2.

(7.17)
By choosing ε�A1 1 and noticing that N/2+2 ≤ N−2 whenever N ≥ 8, we have |(u′)≤N/2+1| ≤ 1.
Thus, by Lemma 7.5, we have∑
|I|≤N

|gαβ(u′)∂α∂βZIu|

≲ |T (u≤N )||(u′)≤N/2+1|+ |(u′)≤N ||T (u≤N/2+1)|+ |(u′)≤N/2+1|2|(u′)≤N |

≲ A1ε〈|x|+ t〉−1〈|x| − t〉−1/2|T (u≤N )|+A1ε〈|x|+ t〉−2〈|x| − t〉1/2|(u′)≤N |+A2
1ε

2〈|x|+ t〉−2|(u′)≤N |
≲ A1ε〈|x|+ t〉−1〈|x| − t〉−1/2|T (u≤N )|+A1ε〈t〉−3/2|(u′)≤N |.
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In the last estimate, we notice that 〈|x| − t〉 ≤ 〈|x| + t〉 and that A1ε ≤ 1 if we choose ε �A1 1.
Now we can apply Proposition 7.6 (with (w, u) replaced by (u, ZIu)) to obtain

A(t) +

(∫ t

0

∫
R3

〈|x| − t〉−1−η|T (u≤N )(τ, x)|2 dxdτ
)1/2

≲η A(0) +

∫ t

0
A1ε

∥∥∥〈| · |+ τ〉−1〈| · | − τ〉−1/2|T (u≤N )(τ)|
∥∥∥
L2

+A1ε〈τ〉−3/2A(τ) dτ.

(7.18)

By choosing ε�A1 1, we can make eCA1ε ≤ 2, so we do not have eCA1ε here. To continue, we note
that ∫ t

0
A1ε

∥∥∥〈| · |+ τ〉−1〈| · | − τ〉−1/2|T (u≤N )(τ)|
∥∥∥
L2

dτ

≲
∫ t

0
A1ε〈τ〉η/2−1

∥∥∥〈| · | − τ〉−1/2−η/2|T (u≤N )(τ)|
∥∥∥
L2

dτ

≲ A1ε

(∫ t

0
〈τ〉η−2 dτ

)1/2(∫ t

0

∥∥∥〈| · | − τ〉−1/2−η/2|T (u≤N )(τ)|
∥∥∥2
L2

dτ

)1/2

≲η A1ε

(∫ t

0

∥∥∥〈| · | − τ〉−1/2−η/2|T (u≤N )(τ)|
∥∥∥2
L2

dτ

)1/2

.

To get the last estimate, we need to choose 0 < η < 1. It is not hard to see that by choosing
ε �A1 1, we can use the second term on the left hand side of (7.18) to absorb this integral. In
summary, we have

A(t) ≲ A(0) +

∫ t

0
A1ε〈τ〉−3/2A(τ) dτ.

It then follows from Gronwall’s inequality and ε �A1 1 that A(t) ≤ CA(0) ≤ Cε where C is
independent of A1 and ε. By choosing A1 � 1, we have A(t) ≤ A1ε/2 for all t ∈ [0, T ]. This
finishes the proof of the continuity argument.

7.5 Alternative proof: I
Let me now present two different proofs. The first one is from [H9̈7]. There Hörmander made use
of the following energy estimate.

Proposition 7.7. Fix d ≥ 2. Let u ∈ C2([0, T ]× Rd) vanish for large |x| and satisfy

gαβ(w′)∂α∂βu(t, x) = F (t, x), ∀(t, x) ∈ [0, T )× Rd. (7.19)

Suppose that gαβ = gβα, that
gαβ(w′) = gαβγ0 ∂γw + gαβc (w′) (7.20)

where the coefficients g∗∗∗0 are constants satisfying the null condition (7.2), and that for each
sufficiently small constant 0 < δ � 1 we have∑

|J |≤2

|ZJw| ≤ δ(1 + t+ |x|)−1,
∑
|J |≤1

|ZJ(gαβc (w′))| ≤ δ(1 + t+ |x|)−2. (7.21)
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Then, by setting

E0(t) :=

∫
Rd

∑
|J |=1

|ZJu(t, x)|2 + (d− 1)|u(t, x)|2 dx,

we have

E0(t)
1/2 ≲ (1 + t)Cδ(E0(0)

1/2 +

∫ t

0
(1 + τ)−Cδ ‖〈t+ | · |〉F (τ, ·)‖L2(Rd) dτ). (7.22)

In the continuity argument, Hörmander considered the L2 norm of not only (u′)≤N but also
u≤N . This is why we cannot use the usual energy estimate (3.3) here.

Please read Proposition 6.6.6 and Lemma 6.6.7 in [H9̈7] (note that gαβ(u′) = −mαβ + gαβγ0 uγ +
O(|u′|2) in [H9̈7]). The basic idea of proof is as follows. We apply the multiplier method to Ku·□gu
where

Ku := (1 + t2 + |x|2)ut + 2tx · ∇xu+ (d− 1)tu.

By tedious computations, we can again write

−Ku□gu =

d∑
β=0

∂βeβ +R

where 0 ≤ e0 ∼
∑

|J |=1 |ZJu|2 + (d − 1)u2 (need δ � 1 to get this estimate) and |R| ≲ δ(1 + t +

|x|)−1e0. By setting E(t) :=
∫
e0(t, x) dx and noticing that |Ku| ≲ e0, we have

E′(t) ≲ δ(1 + t)−1E(t) + ‖〈t+ | · |〉F (t)‖L2(Rd)E(t)1/2

and thus
d

dt
((1 + t)−CδE(t)1/2) ≲ (1 + t)−Cδ ‖〈t+ | · |〉F (t)‖L2(Rd) .

We now integrate this inequality.
To finish the proof from [H9̈7], we also need the following L∞ estimate.

Lemma 7.8. Let F ∈ C2(R1+3
+ ) and suppose that w = w(t, x) solves □w = F with (w,wt)|t=0 = 0.

Then,

(1 + t+ |x|)|w(t, x)| ≲
∫ t

0

∫
R3

∑
|I|≤2 |ZIF (s, y)|
1 + s+ |y|

dyds. (7.23)

Proof. Let us first prove a homogeneous version of (7.23): we have

(t+ |x|)|w(t, x)| ≲
∫ t

0

∫
R3

∑
|I|≤2 |Z̃IF (s, y)|

s+ |y|
dyds. (7.24)

Here Z̃ is one of following commuting vector fields: scaling S, rotations Ωij and Lorentz boosts
Ω0i. Note that the coefficients of Z̃ are homogeneous polynomials of (t, x) of degree 1, so we have
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(Z̃Iwλ)(t, x) = (Z̃Iw)(λt, λx) where wλ := w(λt, λx). If we have proved (7.24) for w, then by
replacing w with wλ, we have □wλ = λ2Fλ and thus

(t+ |x|)|w(λt, λx)| = (t+ |x|)|wλ(t, x)| ≲
∫ t

0

∫
R3

∑
|I|≤2(Z̃

I(λ2Fλ))(s, y)

s+ |y|
dyds

= λ2
∫ t

0

∫
R3

∑
|I|≤2 |(Z̃IF )(λs, λy)|

s+ |y|
dyds = λ−1

∫ λt

0

∫
R3

∑
|I|≤2 |(Z̃IF )(s, y)|

s+ |y|
dyds.

It thus suffices to prove (7.24) with t = 1.
The solution to −□w = F with zero data can be written explicitly:

w(t, x) =
1

4π

∫
|y|<t

F (t− |y|, x− y)

|y|
dy. (7.25)

This follows from Duhamel’s principle: if v(t, x; s) solves the linear wave equation with data
(v, vt)|t=0 = (0, F (s, ·)), then w =

∫ t
0 v(t − s, x; s) ds solves □w = F with zero data. You can

also find this formula in I.1, [Sog08].
i) Let us first suppose that suppF ⊂ {|y| < s/2}. If we go back to the proof of Lemma 5.2, we

recall that

|ϕt|+ |ϕr| ≲ ||x| − t|−1(|Sϕ|+
3∑

i=1

|Ω0iϕ|), |ϕj | ≲ |t+ |x||−1(

3∑
i=1

|Ωijϕ|+ |Ω0jϕ|+ |x||ϕt − ϕr|).

In summary, we have

|∂ϕ| ≲ ||x| − t|−1
∑
|I|=1

|Z̃Iϕ|.

And since [Z̃, Z̃ ′] = C · Z̃, we have

|∂kϕ| ≲ ||x| − t|−k
∑
|I|≤k

|Z̃Iϕ|, k ≥ 1.

In the support of F , we have ||y| − s| ∼ s, so∫ 1

0

∫
R3

∑
k≤2

sk|∂kF (s, y)|
s

dyds ≲
∫ 1

0

∫
R3

∑
|I|≤2

|Z̃IF (s, y)|
s+ |y|

dyds.

Since □w = 0 in {|y| > s/2} and since (w,wt)|t=0 = 0, we have w(1, x) = 0 whenever |x| > 1 by
the finite speed of propagation. So to end the proof, we assume |x| ≤ 1.

Now, by the fundamental theorem of calculus, we have

|F (1− |y|, x− y)| =
∫ 1

0
|F (s, x− y) +

∫ 1−|y|

s
F ′
τ (τ, x− y) dτ | ds ≲

∫ 1

0
|F (s, x− y)|+ |F ′

s(s, x− y)| ds.

If |y| ≤ 1/2, then similarly we have

|F (1− |y|, x− y)| =
∫ 1

1/2
|F (s, x− y) +

∫ 1−|y|

s
F ′
τ (τ, x− y) dτ | ds ≲

∫ 1

1/2
|F (s, x− y)|+ |F ′

s(s, x− y)| ds.
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It follows from (7.25) that

(1 + |x|)|w(1, x)| ≲ |w(1, x)| ≲
∫
|y|≤1/2

|F (1− |y|, x− y)|
|y|

dy +

∫
1/2≤|y|<1

|F (1− |y|, x− y)|
|y|

dy

≲
∫
|y|≤1/2

∫ 1

1/2
(|F (s, x− y)|+ |F ′

s(s, x− y)|)dsdy
|y|

+

∫
1/2<|y|≤1

∫ 1

0
(|F (s, x− y)|+ |F ′

s(s, x− y)|) dsdy.

Note that in the second integral we have 1/|y| ≤ 2. To end the proof, we notice that∫
R3

|g(y)|dy
|y|

≲
∫
R3

|g′(y)| dy, ∀g ∈ C1
c (R3).

We introduce polar coordinates and use integration by parts to prove this estimate.
ii) Next we suppose suppF ⊂ {|y| > s/3}. Set G(t, r) := sup|y|=r |F (t, y)|. By the Sobolev

inequality on the sphere, we have

|G(t, r)| ≲
∫
S2

∑
|I|≤2

|(ΩIF )(t, rω)| dSω

where ΩI denotes a product of rotations Ωij , i, j > 0. Now we let U be the solution to −□U =
G(t, |x|) with zero data (G(t, 0) = 0 because of the support of F , no singularity). By (7.25), it
follows that

|w(t, x)| ≤ U(t, x) =
1

4π

∫
|y|<t

G(t− |y|, |x− y|)
|y|

dy

which is rotationally symmetric in x (take substitution z = Ly where L is a rotation). Writing □
in polar coordinates, we have

−□U = Utt − Urr − r−1Ur = G =⇒ (rU)tt − (rU)rr = rG.

Using Duhamel’s principle, we have

|x||w(1, x)| ≤ rU =
1

2

∫ 1

0

∫ r+1−s

r−1+s
ρG(s, ρ) dρds ≲

∫ 1

0

∫ ∞

0
ρG(s, ρ) dρds

≲
∑
|I|≤2

∫ 1

0

∫ ∞

0

∫
S2
ρ|(ΩIF )(s, ρω)| dSωdρds ≲

∑
|I|≤2

∫ 1

0

∫
R3

|(ΩIF )(s, y)||y|−1 dyds.

Note that |y|−1 in the last estimate can be replaced by (s+ |y|)−1 because F ≡ 0 in |y| < s/3 and
because |y|+ s ∼ |y| whenever |y| ≥ s/3. This finishes the proof when |x| ≥ 1/4. When |x| < 1/4,
if (1−|y|, x−y) ∈ suppF , we have |x−y| ≥ (1−|y|)/3 and thus |y| ≥ |x−y|−|x| ≥ (1−|y|/3)−|x|
=⇒ 4|y| ≥ 3(1− |x|) > 1/4. It follows from (7.25) that

|w(1, x)| ≲
∫
|y|<1

|F (1− |y|, x− y)| dy.
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By viewing F (1 − |y|, x − y) as the value of h(τ) = F (τ(1 − |y|), τ(x− y)) at τ = 1, we apply the
fundamental theorem of calculus to obtain

|F (1− |y|, x− y)| ≲
∫ 16/15

1
|h(τ)|+ |h′(τ)| dτ

≲
∫ 16/15

1
|F (τ(1− |y|), τ(x− y))|+ |(τ−1SF )(τ(1− |y|), τ(x− y))| dτ.

The Jacobian of the the map (τ, y) 7→ (τ(1 − |y|), τ(x − y)) is τ3(1 − (x · y)/|y|) ≥ 3/4 whenever
τ ∈ [1, 16/15] and |y| ≥ 1/16. It follows that

|w(1, x)| ≲
∫
|y|<1

∫ 16/15

1
|F (τ(1− |y|), τ(x− y))|+ |(SF )(τ(1− |y|), τ(x− y))| dτdy

≲
∫ 1

0

∫
|z|<2

|F (s, z)|+ |(SF )(s, z)| dsdz.

This finishes the proof of (7.24) in the case suppF ⊂ {|y| > s/3}.
To end the proof of (7.24), we choose ψ ∈ C∞

c (R3) such that ψ|B(0,1/3) = 1 and ψ|R3\B(0,1/2) = 0.
Then, ψ(y/s)F satisfies i) and (1 − ψ(y/s))F satisfies ii). To end the proof, we also note that
ZI(ψ(y/s)) = O(1).

Finally, we return to (7.23). If suppF ⊂ {s + |y| ≥ 1}, then we have suppw ⊂ {s + |y| ≥ 1}
by the finite speed of propagation. In this case (7.23) follows from (7.24). Moreover, if suppF ⊂
{s+|y| < 2}, then we make a translation (s, y) 7→ (s, y+(3, 0, 0)) and apply the case already proved.
The translations introduce constant vector fields. Combining these two cases by a partition of unity
yields (7.23) in full generality.

Remark 7.8.1. This lemma and its proof are from Lemma 6.6.8, [H9̈7]. There is another version
of (7.23) proved in [Sog08] (Theorem II.1.5) where the author avoids using Lorentz boosts.

7.6 Alternative proof: II
Now let us discuss the proof in [Sog08]. In addition to the usual energy estimate, the author proved
the following sharp weighted energy estimate.

Proposition 7.9. Suppose v solves □v = G in R1+3
+ . Then there is a uniform constant B such

that

(ln(2 + t))−1/2
∥∥∥〈r〉−1/2v′

∥∥∥
L2([0,t]×R3)

≤ B

(∥∥v′(0)∥∥
L2 +

∫ t

0
‖G(τ)‖L2 dτ

)
.

We remark that this estimate is related to local energy estimates for wave equations.
Using this energy estimate and the estimate (7.23), we are able to finish the proof. You can

check Section II.3 and II.5 in [Sog08] for more details.
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8 Hörmander’s asymptotic equations
In this section, we only consider three space dimensions (R1+3). For equations like □u = u2t and
□u = ututt, we know that any nontrivial global solutions with C∞

c data must blow up in finite time.
For equations like (6.1) satisfying the null condition, we know that there exists a global solution as
long as the initial data belong to C∞

c and are sufficiently small. The following question then arises
naturally.

Question. Given an arbitrary quasilinear wave equation or an arbitrary system of quasilinear
wave equations, how can we predict whether it has small data global existence or not?

To answer this question, we will introduce a type of asymptotic equations for quasilinear wave
equations. This type of asymptotic equations was first introduced by Hörmander [H9̈7,H8̈7,H9̈1],
so I will also call it Hörmander’s asymptotic equations.

8.1 Motivation
Let us consider the linear wave equation □u = 0 in R1+3 with C∞

c data (u0, u1) at time 0. For
simplicity, we assume that u0 ≡ 0 for all x ∈ R3 and u1 ≡ 0 for all |x| ≥ 1. Using the results in
Section 2, we know that there exists a global C∞ solution u. Now, can we say anything about the
asymptotic behavior of u as t→ ∞?

Theorem 8.1. There exists a smooth function F = F (q, ω) : R× S2 → R, such that F0(q, ω) = 0
whenever |q| ≥ 1, and

|u(t, x)− r−1F0(r − t, ω)| ≲ r−2, ∀t, r ≳ 1. (8.1)

Proof. By the finite speed of propagation, there is nothing to prove when |r − t| ≥ 1. From now
on we shall assume |r − t| < 2 and r, t ≳ 1. Moreover, because of the rotation symmetry, we only
need to prove (8.1) at x = (r, 0, 0) where r ≥ 0.

Now, by Kirchoff’s formula (2.2), we have

u(t, x) =
t

4π

∫
S2
u1(x+ tω) dSω =

1

4πt

∫
∂B(x,t)

u1(y) dSy.

We can replace ∂B(x, t) here with ∂B(x, t)∩B(0, 1) since u1 ≡ 0 for all |y| ≥ 1. In ∂B(x, t)∩B(0, 1),
if r, t ≳ 1 we must have y1 < x1 = r. This is because y ∈ ∂B(x, t) ∩ B(0, 1) implies that
r = |x| ≥ |x − y| − |y| ≥ t − 1 ≥ 1 ≥ |y1|. So we only need to take the integral on the lower
semisphere. This gives us

u(t, x) =
1

4π

∫
y′∈R2, |y′|<t

u1(r −
√
t2 − |y′|2, y′)√

t2 − |y′|2
dy′ =

1

4π

∫
y′∈R2, |y′|<1

u1(r −
√
t2 − |y′|2, y′)√

t2 − |y′|2
dy′.

Here we use u1 ≡ 0 whenever |y| ≥ 1. Note that by setting q = r − t ∈ [−1, 1], we have

√
t2 − |y′|2 = r

√
(1− q/r)2 − |y′|2/r2, r −

√
t2 − |y′|2 = 2q + (|y′|2 − q2)/r

1 +
√
(1− q/r)2 − |y′|2/r2

.

They are both smooth functions of (q, 1/r, y′) (it is easy to check that (1−q/r)2−|y′|2/r2 ≥ C−1 > 0
for some constant C > 1). In summary, we conclude that u(t, x) = r−1F (q, 1/r) where F is a smooth
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function. For other x ∈ R3, we can also show that u(t, x) = r−1F (q, ω, 1/r) for a certain smooth
function F .

Finally, from our derivation, we notice that F (q, ω, 0) is well-defined and that (q, ω, z) 7→
F (q, ω, z) is smooth in R × S2 × [0, C−1]. By setting F0(q, ω) = F (q, ω, 0), we conclude (8.1)
from Taylor’s theorem.

Remark 8.1.1. We have a few remarks about this theorem.

• Such a smooth function F0 exists for any initial data (u0, u1) ∈ C∞
c . It is called the Friedlander

radiation field.

• In fact we can show

|ZI(u(t, x)− r−1F0(r − t, ω))| ≲I r
−2, ∀t, r ≳ 1, ∀I. (8.2)

Here ZI is a product of commuting vector fields.

• One way to compute Friedlander radiation fields is to use the Radon transform. We refer to,
for example, [Eva10].

Nonrigorously speaking, from Theorem 8.1 we have

u(t, x) ≈ r−1F0(r − t, ω), t→ ∞.

This motivates us to use the following ansatz for a general quasilinear wave equation:

u(t, x) ≈ εr−1U(s, q, ω). (8.3)

Here U is a function of (s, q, ω) = (ε ln t, r − t, ω). We use the factor ε � 1 because only small
solutions are considered. Later we will derive asymptotic equations for U in the coordinate set
(s, q, ω). Note that s ≤ c is equivalent to t ≤ ec/ε, so we relate the local existence of U with the
almost global existence of u together.

8.2 Derivation
Let us now derive Hörmander’s asymptotic equations. For simplicity, we only do the derivation for
(6.1)

gαβ(u′)∂α∂βu = F (u′).

Moreover, we make the following assumptions.

• t = r → ∞.

• ZIu = O(εt−1), ∀I.

• (∂s, ∂q, ∂ω)
kU = O(1), ∀k ≥ 0.

• gαβ(u′) = mαβ + gαβλ0 uλ +O(|u′|2).
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• F (u′) = fαβ0 uαuβ +O(|u′|3).

In fact, an exact solution u to (6.1) might not satisfy these assumptions. For example, sometimes
we might expect ZIu = O(εt−1+Cε). This, however, does not matter, because those differences are
usually negligible. I should also emphasize that the derivations below would not be rigorous.

Now we plug u = εr−1U into the (6.1). We have

gαβ(u′)∂α∂βu = □u+ gαβλ0 uλuαβ +O(ε2t−3).

Here

□u = −εr−1(∂t + ∂r)(∂t − ∂r)U + r−2∆ωu

where ∆ωu =
∑

i<j Ω
2
iju = O(εt−1). Thus,

□u = −εr−1(∂t + ∂r)(∂t − ∂r)U +O(εt−3)

= −εr−1(∂t + ∂r)(εt
−1Us − 2Uq) +O(εt−3)

= −εr−1(−εt−2Us + ε2t−2Uss − 2εt−1Usq) +O(εt−3)

= 2ε2(rt)−1Usq +O(εt−3).

Besides, we have

ut = ε2(tr)−1Us − εr−1Uq = −εr−1Uq +O(ε2t−2),

uj = −εr−2ωjU + εr−1(Uqωj + Uω · ∂ω) = εr−1ωjUq +O(εt−2),

utt = −εr−1(εt−1Usq − Uqq) +O(ε2t−2) = εr−1Uqq +O(ε2t−2),

utj = εr−1ωj(εt
−1Usq − Uqq) +O(εt−2) = −εr−1ωjUqq +O(εt−2),

ujk = ∂k(εr
−1ωj)Uq + εr−1ωj(Uqqωk + Uqω · ∂ω) +O(εt−2)

= εr−1ωjωkUqq +O(εt−2).

In summary, by writing ω̂0 = −1 and ω̂j = ωj , j = 1, 2, 3, we have

uα = εr−1ω̂αUq +O(εt−2), uαβ = εr−1ω̂αω̂βUq +O(εt−2).

It follows that

gαβλ0 uλuαβ = G(ω)ε2r−2UqUqq +O(ε2t−3),

fαβ0 uαuβ = F (ω)ε2r−2U2
q +O(ε2t−3)

where F (ω) = fαβ0 ω̂αω̂β, G(ω) = gαβλ0 ω̂αω̂βω̂λ. In summary, for t = r → ∞, we have

ε2r−2(2Usq +G(ω)UqUqq − F (ω)U2
q ) = O(εt−3).

We thus obtain the asymptotic equation

2Usq +G(ω)UqUqq − F (ω)U2
q . (8.4)

Using the same derivation, we can derive Hörmander’s asymptotic equations for a general system
of quasilinear wave equations.
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Example 8.2. The asymptotic equation for □u = u2t is 2Usq = U2
q . Its solution is

1

Uq(s, q, ω)
=

1

Uq(0, q, ω)
− s

2
.

If Uq(0, q, ω) > 0, then there is a blowup at s = 2/Uq(0, q, ω). But if U |s=0 ∈ C∞
c is nonzero, then

we must have Uq|s=0 > 0 for some (q, ω). So the we get a finite-time blowup result for 2Usq = U2
q .

Example 8.3. The asymptotic equation for □u = ututt is 2Usq + UqUqq = 0. This is Burgers’
equation. Again, we have a finite-time blowup result for Burgers’ equation with nonzero C∞

c data.
See [H9̈7].

Example 8.4. If (6.1) satisfies the null condition, then the associated asymptotic equation is
Usq = 0. Of course, we can find a global solution to this asymptotic equation.

Based on these examples, we notice that there seems to be a connection between the long time
existence results for quasilinear wave equations and the long time existence results for the associated
Hörmander’s asymptotic equations. In fact, there is a conjecture about this connection.

Definition 8.5. Consider a general system of quasilinear wave equations. Suppose that for at
data at s = 0 decaying sufficiently fast in q, the corresponding system of Hörmander’s asymptotic
equations has a global solution U for all s ≥ 0. Also suppose that U and all its derivatives grow at
most exponentially (≲ eCs). Then we say the original system of quasilinear wave equations satisfies
the weak null condition.

There is a conjecture stating that the weak null condition is sufficient for small data global
existence. This conjecture is open up till today. But we have several examples supporting this
conjecture.
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