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1 Introduction

Around 1900 (Rutherford model, Dynamiden model, Bohr model, Bohr-
Sommerfeld model): Positively charged small nucleus contains most of mass,
with negatively charged electrons around. There is evidence for a discrete set
of energy levels corresponding to sharp spectral lines (stars, heated metal).

Maxwell published around 1861 equations describing basically all electro-
magnetic effects known at that time:

∇ · E =
1

ε0
ρ

∇ ·B = 0

∇× E = −∂B
∂t

∇×B = µ0j + µ0ε0
∂E

∂t

where E is the electric field, B is the magnetic field, ρ is the charge density,
j is the electric current, µ0ε0 = 1

c2
with permeability µ0 and permittivity ε0.

Here c is the speed of light.
Theory of electromagnetic waves is a beautiful theory combining previ-

ous complicated special theories of magnetism, electromagnetic waves and
currents.

It immediately implies constant finite speed of light. This was a major
motivation for Einstein to develop special and general relativity. However, it
leads to a severe conflict with atom models: rotating electrons radiate energy
and hence loose energy fast!

Quantum mechanics provides an extremely good description of atoms and
molecules. It raises however questions:

1. How does quantum mechanics interact with light? This is answered in
quantum electrodynamics.

2. Why is the nucleus stable? Radioactive decay shows that the nucleus
consists of smaller parts, which carry a large positive charge on a small
area. How can it be stable, when equal charges repel with a force which
is the inverse square of the distance? This is answered by quantum
gauge theories.
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Beyond describing atoms and molecules well quantum mechanics provides
insights for the modifications needed for quantum field theories. It is remark-
able that a large part of quantum mechanics was developed within around 20
years, with the formulation of quantum mechanics completed around 1925,
and quantum theory of light until 1935, with important contributions by
Fermi, Heisenberg and Dirac.

1.1 The formalism of quantum mechanics

The formalism was developed by Schrödinger, Heisenberg, Born, Jordan, v.
Neumann, Weyl, Dirac: from around 1920 to 1930. Quantum mechanics
centers around the Schrödinger equation

i~∂tu+
~2

2m
∆u = V u on R× Rd

u(0, x) = u0(x) on Rd

where V : Rd → R is a potential like |x|−1. Here ~ is the reduced Planck’s
constant,

~ ∼ 1, 054571817× 10−34kg m2/s.

If V = 0 we obtain a solution in the same way as for the heat equation:

u(t, x) =
( m

2πi~t

) d
2

ˆ
Rd

e−
im|x−y|2

4~t u0(y)dy.

Keywords are Uncertainty relation, Wave mechanics, Schrödinger equa-
tion. A key step was the Copenhagen interpretation of the |u|2 as probability
distribution.

Later developments include

• Quantum electrodynamics QED with Dirac as a central figure. It is a
relativistic quantum theory.

• Quantum chromodynamics QCD (Gauge theory), quarks and gluons,
confinement (no free quark) and asymptotic freedom (Politzer, Wilczek,
Gross (Nobel prize 2004)), standard model

• So-called effective quantum field theories deduced from QCD allow to
analyse the atomic nucleus, hadrons, protons and neutrons.

Quantum physics leads to an amazing agreement between theory and
experiment. Quantum mechanics is a solid mathematical theory, in contrast
to quantum electrodynamics. In quantum electrodynamics there is a solid
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procedure for calculating important quantities. The status of quantum gauge
theories looks much less clear to me. It allows to obtain good effective field
theories.

However the nature of measurements remains unclear. A quantum theory
including gravity seems out of reach at this point. One may wonder whether
the situation is comparable to the end of the 19th century, when Maxwell’s
equations provided an amazing unification and consistent understanding, but
with striking puzzles.

1.2 The double slit experiment: Wave particle duality

At the end of the 19th century Planck described black-body radiation. Black
body radiation and the photoelectric effect remained mysterious when elec-
tromagnetic waves were considered as waves. The photoelectric effect led
Einstein to the hypothesis that light has a particle character in certain sit-
uations (Nobel Prize in 1921). The particles are called photons in 1926 by
Wolfers and Lewis. Compton performed experiments which showed that
photons scatter at electrons, leading to the Nobel prize in 1927. Currently
Meschede (Bonn) is working with quantum systems of around 100 photons
at temperatures 10−6 degree Kelvin.

On the other hand Louis de Broglie, Bohr and others realized that parti-
cles behave like waves. The most intriguing thought experiment is the double
slit experiment. If we fix the frequency (color) of the light, and reduce the
intensity, then a light source emits single photons.

Let us send the photons through a double slit. Waves sent through a slit
showed an intricate pattern on a screen. With a double slit there is some
interference from both slits.

It turns out that the interference pattern does not change even if we make
sure that the single photons hit the screen one by one. The pattern is not
the sum of two single slits! So mysteriously light behaves wavelike even if we
know that there is only one photon at a time!

This thought experiment has been realized with electrons by Thomson
and Davisson, Germer in 1927 (Nobel Prize for Davisson and Thomson in
1937). A spectacular point was Zeilinger et al (1999, Nature: Wave-particle
duality of C60(Fullerene)).

1.3 Outline

2. Selfadjoint operators
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3. Examples: Free particles, the harmonic oscillator and the hydrogen
atom.

4. Symmetry groups

5. Scattering

6. Multiparticle systems

2 Selfadjoint operators and unitary groups

The formulation of quantum mechanics uses unbounded selfadjoint operators
on a Hilbert space H. We want to describe systems with a number of symme-
tries: Translation symmetry and rotation symmetry for free particles, inner
symmetries for example between proton and neutron for the strong force,
or spin, the symmetry between identical particles. It is a basic principle of
quantum mechanics that symmetries act by unitary operators on the Hilbert
space.

The simplest example is the translation group

h→ U(h) where h ∈ Rd, U(h) : H 7→ H,

with the properties
U(h1 + h2) = U(h1)U(h2)

U(0) = 1H

(U(h))∗ = U(−h).

For every φ ∈ H the map
h→ U(h)φ

is continuous. Suppose that d = 1 and h ∈ R. Stone’s theorem gives a one to
one correspondence between one parameter unitary groups and unbounded
self adjoint operators, which for matrices is given by

d

dt
U = −iAU

where A is selfadjoint operator. If we take the standard translation repre-
sentation

U(h)f = f(x− h)

then

i
d

dh
U(h)f = −i d

dx
U(h)f = (

1

i
∂x)U(h)f.
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After a Fourier transform 1
i
∂x becomes the multiplication by k. The spectral

theorem says that selfadjoint operators are unitarily equivalent to a multi-
plication operator in the same fashion as above.

It is a basic principle of quantum mechanics that ’observables’ are selfad-
joint operators which play a central role in the formalism and interpretation
of quantum mechanics. One of the most basic one is called ′x′. In a trans-
lation invariant set there is the group of translations U(h), with the obvious
action on x:

U(−h)xU(h) = x+ h1.

The Stone-von Neumann theorem classifies Hilbert spaces with such an ac-
tion.

A particular case is the time translation. Stone’s theorem relates it to a
selfadjoint operator, which is called Hamilton operator.

One of the corner stones of quantum mechanics is a recipe how to con-
struct Hamilton operators for the hull of atoms, and more complicated ob-
jects. On the side of mathematics this is the area of quantization, pseudod-
ifferential operators and semiclassical analysis.

We will be brief on this recipe, and postpone its discussion and the dis-
cussion of symmetry groups to later chapters. This section is devoted to
Stone’s theorem, the spectrum and diagonalization of selfadjoint operators
and unbounded operators. This will allow us to discuss the commutation
relation

[xj,−i∂xk
] = iδjk,

its relation to the Heisenberg group and Heisenberg’s uncertainty relation.
We will briefly touch upon the question of measurements and the interpre-
tation of quantum mechanics.

2.1 The spectrum of continuous operators

Let X, Y be complex Banach spaces and L(X, Y ) be the space of continuous
linear operators from X to Y with norm

‖T‖X→Y = sup
‖x‖X≤1

‖Tx‖Y .

Definition 2.1. Let T ∈ L(X,X). The resolvent set ρ(T ) consists of all
λ ∈ C for which T − λ1 is invertible. The complement is the spectrum σ(T ).

Lemma 2.2. Suppose that T ∈ L(X, Y ) is invertible, .i.e. it has a two
sided inverse. Then T − S is invertible if ‖S‖X→Y ‖T−1‖Y→X < 1. The map
T → T−1 is analytic in the sense that we can expand it locally into a power
series.
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Proof. We observe that, since ‖AB‖X→X ≤ ‖A‖X→X‖B‖X→Xwe have ‖Aj‖X→X ≤
‖A‖jX→X . Moreover

(T − S)T−1
∞∑
j=0

(ST−1)j = 1Y

and

T−1
∞∑
j=0

(ST−1)j(T − S) = 1X .

Convergence is immediate and hence

(T − S)−1 = T−1
∞∑
j=0

(ST−1)j

which is the desired power series.

The theorem of the inverse operator, a consequence of the open mapping
principle implies

Lemma 2.3. T ∈ L(X, Y ) is invertible if

1. The null space is trivial

2. The range is closed

3. The closure of the range is Y .

The dual operator T ′ : Y ∗ → X∗ is defined by

T ′y∗(x) = y∗(Tx).

It is invertible if and only if T is invertible.
24.04.2020

Lemma 2.4. The following statements are always true.

1. σ(T ) ⊂ BR(0) where R = ‖T‖X→X .

2. σ(T ) is compact and nonempty.

3. σ(T ) = σ(T ′).

4. Let p be a polynomial. Then

σ(p(T )) = p(σ(T )).
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5. σ(T ) ⊂ Br(0) where

r = lim inf
n→∞

‖T n‖1/nX→X .

σ(T ) is not contained in any smaller ball centers at 0.

Proof. Since

(T − z1)(
∞∑
j=0

(z − z0)j(T − z01)−j−1 = 1

if T − z01 is invertible and |z − z0| small we obtain

ρ(T ) 3 z → x∗(T − z1)−1x

is holomorphic for all x ∈ X and x∗ ∈ X∗. Let |λ| > R. Then

(T − λ)
∞∑
j=0

λ−j−1T j = −1X =
∞∑
j=0

λ−j−1T j(T − λ1).

The sum converges since |λ| > ‖T‖X→X by assumption.
The set ρ(T ) is open by Lemma 2.2, hence σ(T ) is closed and bounded

and hence compact. It is nonempty by the last part of the theorem.
We know from functional analysis that T is invertible if and only if T ′ is

invertible. This implies the third statement.
Suppose that λ /∈ p(σ(T )). By the fundamental theorem of algebra

p(z)− λ = c0
∏

(z − zj)

with zj ∈ ρ(T ). Thus T − zj1 is invertible, and hence λ ∈ ρ(p(T )). Now
assume that λ ∈ p(σ(T )). Then one of the zj is in σ(T ). We assume that it
is the first one. Either T − z1 has a nontrivial null space, and then p(T )− λ
has a nontrivial null space, or the range is not the full space, in which case
the range of p(T ) − λ is not the full space. Thus p(T ) − λ is not invertible
and λ ∈ σ(p(T )).

Since
(σ(T ))j = σ(T j) ⊂ B‖T j‖(0)

and by the first part for ε > 0 there exists n so that ‖T j‖ ≤ (r + ε)j for
j ≥ n, hence also

σ(T j) ⊂ B(r+ε)j(0)

for all ε > 0, and thus also for ε = 0, hence

σ(T ) ⊂ Br(0).
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Now suppose that
σ(T ) ⊂ Ba(0).

We will prove that then a ≥ r, or more precisely

lim sup
n→∞

‖T n‖1/n ≤ a. (2.1)

Let x∗ ∈ X∗ and x ∈ X. The function

z → x∗(1− zT )−1x ∈ C

is holomorphic in B1/a(0) and, if z is small, then

(1− zT )−1 =
∞∑
j=0

(zT )j

by Part 1. Thus, for every r′ < 1/a, by the residue theorem

x∗T jx =
1

2πi

ˆ
∂Br′ (0)

x∗z−j−1(1− zT )−1xdz.

This is bounded by cr′(r
′)−j−1‖x∗‖X∗‖x‖X and hence

‖T j‖X→X ≤ cr′(r
′)−j−1, ∀r′ < 1/a,

which implies (2.1).
Similarly we prove that σ(T ) is not empty. Suppose it is empty. Then,

by Lemma 2.2 as in part 1,

f(z) = x∗(T − z)−1x

is holomorphic in C. It is bounded and decays to zero as |z| → ∞ by the
proof of part 1. Hence

x∗(T − z)−1x = 0

for all x∗, x and z (this follows from the residue theorem by

2πif(z0) = lim
R→∞

ˆ
∂BR(z0)

f(z)

z − z0
dz = 0.)

Thus (T − z)−1 = 0 which is absurd and a contradiction.
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2.2 The spectrum of normal operators 1

In this section we only consider Hilbert spaces H with an inner product 〈., .〉,
which we assume to be complex linear in the first variable. The norm is given
by ‖x‖2H = 〈x, x〉.

Definition 2.5. Let T ∈ L(H1, H2). Its adjoint is defined by

〈Tx, y〉H2 = 〈x, T ∗y〉H1

We say that T ∈ L(H) is normal if

T ∗T = TT ∗,

selfadjoint if T = T ∗, positive semidefinite if in addition

〈Tx, x〉 ≥ 0

and positive definite if there exists δ > 0 so that in addition

〈Tx, x〉 ≥ δ‖x‖2H .

Examples for normal operators are unitary operators since for U unitary

U∗U = 1 = UU∗

and multiplication operators: Let X be set and µ a measure on X, f ∈
L∞(µ),

H := L2(µ) 3 g → Tg := fg ∈ L2(µ)

Then
T ∗g = f̄ g

and
T ∗Tg = |f |2g = TT ∗g.

Lemma 2.6. Suppose that T is normal. Then

‖T k‖H→H = ‖T‖kH→H .

As a consequence
sup{|λ| : λ ∈ σ(T )} = ‖T‖H→H .
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Proof. Let T be normal. then

‖Tf‖2H = 〈Tf, Tf〉
= 〈f, T ∗Tf〉
≤ ‖T ∗T‖H→H‖f‖2L2

and hence
‖T‖2H→H ≤ ‖T ∗T‖H→H ≤ ‖T‖2H→H

thus
‖T ∗T‖H→H = ‖T‖2H→H .

Next

‖T 2f‖2H = 〈T 2f, T 2f〉
= 〈Tf, T ∗T 2f〉
= 〈Tf, TT ∗Tf〉
= 〈T ∗Tf, T ∗Tf〉
= ‖T ∗T‖2H→H‖f‖2H

and hence
‖T 2‖ = ‖T ∗T‖H→H = ‖T‖2H→H .

Similarly ‖T 2j‖ = ‖T j‖2, hence

‖T 2n‖T→T = ‖T‖2nH→H

and with j + k = 2n

‖T‖2n = ‖T 2n‖ ≤ ‖T j‖‖T k‖ ≤ ‖T‖2n

hence all inequalities have to be equalities and

‖T j‖H→H = ‖H‖jH→H

for j ∈ N. The last statement follows now from Lemma 2.4.
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