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Extra problem set.

WARNING: This problem set is intended as practice for the exam. It should not be handed in
unless in need of extra points for the exam admission.

Problem 1 (Dini criterion for pointwise convergence of Fourier series). Let f : [0, 1] → C be a function such
that the function g(x) := (f(x) + f(1− x))/(1− e2πix) is integrable on [0, 1]. Show that

N∑
n=−N

f̂(n)→ 0 as N →∞.

Problem 2 (An oscillatory Carleson theorem). Let f ∈ C∞c (R) and define the maximally modulated oscillatory
singular integral

C3f(x) := sup
N∈R

∣∣∣∣p.v.

∫
R
f(x− t)eiNteit

3 dt

t

∣∣∣∣ .
Prove that C3 : Lp(R)→ Lp(R), 1 < p < +∞. (Hint: Mimic the strategy of proof of Problem 2 in Problem Set
11. You will need to use bounds on a truncated Carleson’s operator as a black box. Grafakos’s book is a good
reference for that).

Definition. The BMO (for “bounded mean oscillation”) norm of a (measurable) function f : R→ R is defined
by

‖f‖BMO := sup
I

inf
c∈R
|I|−1

∫
I

|f − c|,

where the supremum is taken over all subintervals of R. The dyadic BMO norm is defined similarly with a
supremum over dyadic intervals I.
The space of functions with finite BMO (resp. dyadic BMO) norm is denoted by BMO (resp. BMOd)

Problem 3. (a) Show that ‖f‖BMO ≤ ‖f‖∞
(b) Show that the function log |x| is in BMO.

(c) Show that the function 1x>0 log |x| is in BMOd, but not in BMO.

(d) Show that

‖f‖BMO ≤ sup
I
|I|−1

∫
I

|f − fI | ≤ 2‖f‖BMO, fI = |I|−1

∫
I

f.

(e) Prove the (dyadic) John–Nirenberg inequality : there exist constants C, c > 0 such that for every dyadic
interval I

|I ∩ {f − fI > λ}| ≤ C exp(−cλ/‖f‖BMOd
)|I|, 0 ≤ λ <∞

(Hint: one can assume ‖f‖BMOd
= 1 and fI = 0, and it suffices to consider λ = 10N , N ∈ N. Construct

inductively a sequence of subsets IN ⊂ I starting with I0 = I as follows: each IN = ∪iIN,i will be a
disjoint union of dyadic intervals. Given IN define

IN+1 := ∪i(IN,i ∩ {Md(f − fIN,i) > 5}),

where Md is the dyadic Hardy–Littlewood maximal function. By induction on N show:

(e.1) f ≤ 10N on I \ IN ,

(e.2) |IN | ≤ exp(−cN)|I|,
(e.3) |fIN,i | ≤ 10N)

Problem 4. Recall that the Fejér kernel is given by

Ft(x) =

∫ t

−t
(1− |ξ|/t)e2πixξ dξ =

sin(πtx)2

π2tx2
, t > 0.

Show that for f ∈ Lp(R), 1 < p < ∞, we have Ft ∗ f → f as t → ∞ pointwise almost everywhere. (Hint:
consider first Schwartz functions f and use the Hardy–Littlewood maximal inequality.)



Problem 5 (Maximal functions and counterexamples). Let f ∈ L1
loc(Rn) be a locally integrable function. Let

Mf denote its Hardy–Littlewood maximal function given by

Mf(x) := sup
r>0

1

m(Br)

∫
B(x,r)

|f(y)|dy.

(a) Show that for all f ∈ L1(Rn), it holds that Mf 6∈ L1(Rn).

(b) Show that there is f ∈ L1(Rn) such that Mf 6∈ L1
loc(Rn).

(c) Show that, if |f | · log(e+ |f |) ∈ L1, then it holds that Mf ∈ L1
loc(Rn) with∫

B

Mf(y) dy ≤ 2m(B) + C ·
∫
Rn
|f(y)| log(e+ |f(y)|) dy,

where B ⊂ Rn is a ball and C > 0 a constant independent of f. (Hint: prove first that m({x ∈ B : Mf(x) >
λ}) ≤ C

λ

∫
{x∈B : |f(x)|>λ} |f(x)|dx and use the layer cake representation.)

Problem 6 (Products and Paraproducts). The purpose of this exercise is to establish a connection between
products, paraproducts, Fourier analysis and outter measure theory. Let, for f, g ∈ S(R), the paraproduct
P(f, g) be defined by

P(f, g)(x) =

∫ ∞
0

f ∗ ϕt(x)g ∗ ψt(x)
dt

t
,

where ϕ,ψ ∈ S(R) such that ψ̂(0) = 0 and t−1ϕ(x/t) = ϕt(x).

(a) Given f, g ∈ S(R) and ϕ ∈ S(R) such that
∫
ϕ = 1, prove that

f(x)g(x) =

∫ ∞
0

f ∗ ψt(x)g ∗ ϕt(x)
dt

t
+

∫ ∞
0

f ∗ ϕt(x) g ∗ ψt(x)
dt

t
,

where ψ(x) = −∂x(xϕ(x)) and thus ψ̂(0) = 0. (Hint: use the fact that f(x)g(x) = limt→0 f ∗ϕt(x)g∗ϕt(x)
and the fundamental theorem of calculus in the last expression.)

(b) Let h ∈ S(R). Prove that

〈P(f, g), h〉 =

∫ +∞

0

∫
R2

f̂(ξ)ĝ(η)ĥ(−ξ − η)ϕ̂(tξ)ψ̂(tη) dξdη
dt

t
,

where ̂ denotes the one-dimensional Fourier transform. (Hint: use Fourier inversion in f, g and
Plancherel).

(c) Split ϕ = ϕ1 + ϕ2 a sum of Schwartz functions, where the support of ϕ1 is contained in the unit interval
and that of ϕ2 in the annulus {y : 1/4 < |y| < 2}. Define Φ,Ψ to be two Schwartz functions on R such

that Ψ̂(0) = 0 and Ψ̂ ≡ 1 on {y : 1/2 < |y| < 4}, and Φ̂ ≡ 1 on [−4, 4]. Prove that the expression from
item (b) above equals∫ +∞

0

∫
R
f ∗ (ϕ1)t(x)g ∗ ψt(x)h ∗Ψt(x) dx

dt

t
+

∫ +∞

0

∫
R
f ∗ (ϕ2)t(x)g ∗ ψt(x)g ∗ Φt(x) dx

dt

t
.

(d) Prove that each of the terms in (c) is bounded by . ‖f‖p1‖g‖p2‖h‖p3 , where pi ∈ (1,+∞) and 1 =
1
p1

+ 1
p2

+ 1
p3
. (Hint: Use atomicity, outer-Hölder and the embeddings from the lecture).

Problem 7 (Oscillatory integrals and the Spherical measure). Let σn−1 denote the (n − 1)−dimensional
spherical measure throughout this exercise.

(a) Prove that its Fourier transform σ̂n−1(ξ) =
∫
Rn e

−2πiξx dσn−1(x) is a well-defined bounded function.

(b) Prove the explicit formula

σ̂n−1(ξ) = 2π
Jn

2−1(2π|ξ|)
|ξ|n2−1

,

where we define the Bessel function of order ν to be Jν(t) = (s/2)ν

Γ(ν+ 1
2 )

∫ 1

−1
eist(1 − s2)ν−

1
2 ds. (Hint: use

spherical coordinates).

(c) Prove that Jν(t) = Cν · sν
∫ π

0
eis cos θ(sin θ)2ν dθ.

(d) Prove that |Jν(t)| = O(t−1/2) for t→ +∞. (Hint: split smoothly the interval [−π, π] depending on where
(cos θ)′ = − sin θ = 0 and use the van der Corput Lemma in each of them)

(e) Conclude that |σ̂n−1(ξ)| = O((1 + |ξ|)−n2 + 1
2 )


