Mathematisches Institut Prof. Dr. Christoph Thiele João Pedro Ramos Summer term 2019

Extra problem set.

WARNING: This problem set is intended as practice for the exam. It should not be handed in unless in need of extra points for the exam admission.

Problem 1 (Dini criterion for pointwise convergence of Fourier series). Let $f : [0,1] \to \mathbb{C}$ be a function such that the function $g(x) := (f(x) + f(1-x))/(1 - e^{2\pi i x})$ is integrable on [0,1]. Show that

$$\sum_{n=-N}^{N} \hat{f}(n) \to 0 \text{ as } N \to \infty.$$

Problem 2 (An oscillatory Carleson theorem). Let $f \in C_c^{\infty}(\mathbb{R})$ and define the maximally modulated oscillatory singular integral

$$C_3 f(x) := \sup_{N \in \mathbb{R}} \left| \text{p.v.} \int_{\mathbb{R}} f(x-t) e^{iNt} e^{it^3} \frac{\mathrm{d}t}{t} \right|.$$

Prove that $C_3: L^p(\mathbb{R}) \to L^p(\mathbb{R}), 1 . (Hint: Mimic the strategy of proof of Problem 2 in Problem Set 11. You will need to use bounds on a truncated Carleson's operator as a black box. Grafakos's book is a good reference for that).$

Definition. The *BMO (for "bounded mean oscillation") norm* of a (measurable) function $f : \mathbb{R} \to \mathbb{R}$ is defined by

$$||f||_{BMO} := \sup_{I} \inf_{c \in \mathbb{R}} |I|^{-1} \int_{I} |f - c|,$$

where the supremum is taken over all subintervals of \mathbb{R} . The *dyadic BMO norm* is defined similarly with a supremum over dyadic intervals I.

The space of functions with finite BMO (resp. dyadic BMO) norm is denoted by BMO (resp. BMO_d)

Problem 3. (a) Show that $||f||_{BMO} \le ||f||_{\infty}$

- (b) Show that the function $\log |x|$ is in BMO.
- (c) Show that the function $1_{x>0} \log |x|$ is in BMO_d, but not in BMO.
- (d) Show that

$$||f||_{BMO} \le \sup_{I} |I|^{-1} \int_{I} |f - f_{I}| \le 2||f||_{BMO}, \quad f_{I} = |I|^{-1} \int_{I} f.$$

(e) Prove the (dyadic) John–Nirenberg inequality: there exist constants C, c > 0 such that for every dyadic interval I

$$|I \cap \{f - f_I > \lambda\}| \le C \exp(-c\lambda/||f||_{BMO_d})|I|, \quad 0 \le \lambda < \infty$$

(Hint: one can assume $||f||_{BMO_d} = 1$ and $f_I = 0$, and it suffices to consider $\lambda = 10N, N \in \mathbb{N}$. Construct inductively a sequence of subsets $I_N \subset I$ starting with $I_0 = I$ as follows: each $I_N = \bigcup_i I_{N,i}$ will be a disjoint union of dyadic intervals. Given I_N define

$$I_{N+1} := \bigcup_i (I_{N,i} \cap \{M_d(f - f_{I_{N,i}}) > 5\}),$$

where M_d is the dyadic Hardy–Littlewood maximal function. By induction on N show:

- (e.1) $f \leq 10N$ on $I \setminus I_N$,
- (e.2) $|I_N| \leq \exp(-cN)|I|,$
- (e.3) $|f_{I_{N,i}}| \le 10N$

Problem 4. Recall that the *Fejér kernel* is given by

$$F_t(x) = \int_{-t}^t (1 - |\xi|/t) e^{2\pi i x \xi} \, \mathrm{d}\xi = \frac{\sin(\pi t x)^2}{\pi^2 t x^2}, \quad t > 0.$$

Show that for $f \in L^p(\mathbb{R})$, $1 , we have <math>F_t * f \to f$ as $t \to \infty$ pointwise almost everywhere. (Hint: consider first Schwartz functions f and use the Hardy–Littlewood maximal inequality.)

Problem 5 (Maximal functions and counterexamples). Let $f \in L^1_{loc}(\mathbb{R}^n)$ be a locally integrable function. Let Mf denote its Hardy–Littlewood maximal function given by

$$Mf(x) := \sup_{r>0} \frac{1}{m(B_r)} \int_{B(x,r)} |f(y)| \, \mathrm{d}y.$$

- (a) Show that for all $f \in L^1(\mathbb{R}^n)$, it holds that $Mf \notin L^1(\mathbb{R}^n)$.
- (b) Show that there is $f \in L^1(\mathbb{R}^n)$ such that $Mf \notin L^1_{loc}(\mathbb{R}^n)$.
- (c) Show that, if $|f| \cdot \log(e + |f|) \in L^1$, then it holds that $Mf \in L^1_{loc}(\mathbb{R}^n)$ with

$$\int_{B} Mf(y) \, \mathrm{d}y \le 2m(B) + C \cdot \int_{\mathbb{R}^n} |f(y)| \log(e + |f(y)|) \, \mathrm{d}y,$$

where $B \subset \mathbb{R}^n$ is a ball and C > 0 a constant independent of f. (Hint: prove first that $m(\{x \in B : Mf(x) > \lambda\}) \leq \frac{C}{\lambda} \int_{\{x \in B : |f(x)| > \lambda\}} |f(x)| dx$ and use the layer cake representation.)

Problem 6 (Products and Paraproducts). The purpose of this exercise is to establish a connection between products, paraproducts, Fourier analysis and outter measure theory. Let, for $f, g \in \mathcal{S}(\mathbb{R})$, the paraproduct $\mathcal{P}(f,g)$ be defined by

$$\mathcal{P}(f,g)(x) = \int_0^\infty f * \varphi_t(x)g * \psi_t(x)\frac{\mathrm{d}t}{t},$$

where $\varphi, \psi \in \mathcal{S}(\mathbb{R})$ such that $\widehat{\psi}(0) = 0$ and $t^{-1}\varphi(x/t) = \varphi_t(x)$.

(a) Given $f, g \in \mathcal{S}(\mathbb{R})$ and $\varphi \in \mathcal{S}(\mathbb{R})$ such that $\int \varphi = 1$, prove that

$$f(x)g(x) = \int_0^\infty f * \psi_t(x)g * \varphi_t(x) \frac{\mathrm{d}t}{t} + \int_0^\infty f * \varphi_t(x)g * \psi_t(x) \frac{\mathrm{d}t}{t},$$

where $\psi(x) = -\partial_x(x\varphi(x))$ and thus $\widehat{\psi}(0) = 0$. (Hint: use the fact that $f(x)g(x) = \lim_{t\to 0} f * \varphi_t(x)g * \varphi_t(x)$ and the fundamental theorem of calculus in the last expression.)

(b) Let $h \in \mathcal{S}(\mathbb{R})$. Prove that

$$\langle \mathcal{P}(f,g),h\rangle = \int_0^{+\infty} \int_{\mathbb{R}^2} \widehat{f}(\xi)\widehat{g}(\eta)\widehat{h}(-\xi-\eta)\widehat{\varphi}(t\xi)\widehat{\psi}(t\eta)\,\mathrm{d}\xi\mathrm{d}\eta\,\frac{\mathrm{d}t}{t},$$

where $\hat{}$ denotes the one-dimensional Fourier transform. (Hint: use Fourier inversion in f, g and Plancherel).

(c) Split $\varphi = \varphi_1 + \varphi_2$ a sum of Schwartz functions, where the support of φ_1 is contained in the unit interval and that of φ_2 in the annulus $\{y: 1/4 < |y| < 2\}$. Define Φ, Ψ to be two Schwartz functions on \mathbb{R} such that $\widehat{\Psi}(0) = 0$ and $\widehat{\Psi} \equiv 1$ on $\{y: 1/2 < |y| < 4\}$, and $\widehat{\Phi} \equiv 1$ on [-4, 4]. Prove that the expression from item (b) above equals

$$\int_0^{+\infty} \int_{\mathbb{R}} f * (\varphi_1)_t(x)g * \psi_t(x)h * \Psi_t(x) \,\mathrm{d}x \,\frac{\mathrm{d}t}{t} + \int_0^{+\infty} \int_{\mathbb{R}} f * (\varphi_2)_t(x)g * \psi_t(x)g * \Phi_t(x) \,\mathrm{d}x \frac{\mathrm{d}t}{t}.$$

(d) Prove that each of the terms in (c) is bounded by $\leq ||f||_{p_1} ||g||_{p_2} ||h||_{p_3}$, where $p_i \in (1, +\infty)$ and $1 = \frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3}$. (Hint: Use atomicity, outer-Hölder and the embeddings from the lecture).

Problem 7 (Oscillatory integrals and the Spherical measure). Let σ_{n-1} denote the (n-1)-dimensional spherical measure throughout this exercise.

- (a) Prove that its Fourier transform $\widehat{\sigma_{n-1}}(\xi) = \int_{\mathbb{R}^n} e^{-2\pi i \xi x} d\sigma_{n-1}(x)$ is a well-defined bounded function.
- (b) Prove the explicit formula

$$\widehat{\sigma_{n-1}}(\xi) = 2\pi \frac{J_{\frac{n}{2}-1}(2\pi|\xi|)}{|\xi|^{\frac{n}{2}-1}}$$

where we define the Bessel function of order ν to be $J_{\nu}(t) = \frac{(s/2)^{\nu}}{\Gamma(\nu+\frac{1}{2})} \int_{-1}^{1} e^{ist} (1-s^2)^{\nu-\frac{1}{2}} ds$. (Hint: use spherical coordinates).

- (c) Prove that $J_{\nu}(t) = C_{\nu} \cdot s^{\nu} \int_{0}^{\pi} e^{is\cos\theta} (\sin\theta)^{2\nu} d\theta$.
- (d) Prove that $|J_{\nu}(t)| = O(t^{-1/2})$ for $t \to +\infty$. (Hint: split smoothly the interval $[-\pi, \pi]$ depending on where $(\cos \theta)' = -\sin \theta = 0$ and use the van der Corput Lemma in each of them)
- (e) Conclude that $|\widehat{\sigma_{n-1}}(\xi)| = O((1+|\xi|)^{-\frac{n}{2}+\frac{1}{2}})$