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Extra problem set.

WARNING: This problem set is intended as practice for the exam. It should not be handed in
unless in need of extra points for the exam admission.

Problem 1 (Dini criterion for pointwise convergence of Fourier series). Let f : [0,1] — C be a function such
that the function g(z) := (f(x) + f(1 — x))/(1 — €*™%®) is integrable on [0, 1]. Show that

N
Z f(n) = 0as N — cc.
n=—N

Problem 2 (An oscillatory Carleson theorem). Let f € C°(R) and define the mazimally modulated oscillatory
singular integral
Nt s dt
Csf(x) := sup p.v./ flz— t)e’Nte”3 ‘ .
NeR R t

Prove that C5 : LP(R) — LP(R), 1 < p < 4o0. (Hint: Mimic the strategy of proof of Problem 2 in Problem Set
11. You will need to use bounds on a truncated Carleson’s operator as a black box. Grafakos’s book is a good
reference for that).

Definition. The BMO (for “bounded mean oscillation”) norm of a (measurable) function f: R — R is defined
by

= inf [7]7* —
llonio +=sup int 1117 [ 1=l

where the supremum is taken over all subintervals of R. The dyadic BMO norm is defined similarly with a

supremum over dyadic intervals I.
The space of functions with finite BMO (resp. dyadic BMO) norm is denoted by BMO (resp. BMO,)

Problem 3. (a) Show that ||f|gyo < Ifllo
(b) Show that the function log |x| is in BMO.
(¢) Show that the function 1,50 log|z| is in BMOyg, but not in BMO.
(d) Show that
llowo < suplti [ 1f = 1il 20 f oo o= 11177 | £

(e) Prove the (dyadic) John—Nirenberg inequality: there exist constants C,c¢ > 0 such that for every dyadic

interval [
[IN0{f = fr > AH < Cexp(—cA/||fllgpmo ], 0 <A <o

(Hint: one can assume |[|f|gyo, =1 and f; = 0, and it suffices to consider A = 10N, N € N. Construct
inductively a sequence of subsets Iy C I starting with Iy = I as follows: each Iy = U;Iy; will be a
disjoint union of dyadic intervals. Given Iy define

Iny1:=Ui(Ini NV {Ma(f — f1y.) > 5}),
where My is the dyadic Hardy—Littlewood maximal function. By induction on N show:

(e.1) f <10N on I\ Iy,
(e:2) |In| < exp(—cN)|I],
(6'3) |fIN,i‘ < 1ON)

Problem 4. Recall that the Fejér kernel is given by

t

Fy(z) = / (1 [€]/6)em € ag =

—t 7T2t$2 ’

sin(7txz)? £ 0

Show that for f € LP(R), 1 < p < oo, we have F; x f — f as t — oo pointwise almost everywhere. (Hint:
consider first Schwartz functions f and use the Hardy-Littlewood maximal inequality.)



Problem 5 (Maximal functions and counterexamples). Let f € L], (R™) be a locally integrable function. Let
M f denote its Hardy-Littlewood maximal function given by

M(z) := sup ﬁ /B Wl

r>0 M
(a) Show that for all f € L'(R™), it holds that M f ¢ L'(R").

(b) Show that there is f € L*(R™) such that M f ¢ L} (R").

loc

(c) Show that, if |f| -log(e + |f]) € L', then it holds that M f € L}, (R™) with

/Mf )dy < 2m(B) + C - / y)|log(e + |f(y)|) dy,
where B C R™isaball and C' > 0 a constant independent of f. (Hint: prove first that m({x € B: M f(z) >

AP <K f{IEB (@) [>2) |f(x)|dz and use the layer cake representation.)

Problem 6 (Products and Paraproducts). The purpose of this exercise is to establish a connection between
products, paraproducts, Fourier analysis and outter measure theory. Let, for f,g € S(R), the paraproduct

P(f,g) be defined by
dt

PR = [ TregrnoF,

where ¢, 1) € S(R) such that $(0) = 0 and t Lo (2/t) = ¢y ().
(a) Given f,g € S(R) and ¢ € S(R) such that [ ¢ =1, prove that
o dt o dt
flz)g(x) = f*¢t($)9*80t(37)7+ f*sot(x)g*wt(w)?
0 0
where ¢(x) = —0, (z¢(x)) and thus 7;(0) = 0. (Hint: use the fact that f(z)g(z) = lims—o f*pi(x)g*pe(x)
and the fundamental theorem of calculus in the last expression.)
(b) Let h € S(R). Prove that

+o00 L ~ R dt
= /0 - FOFmA(=€ = m)(t€)¢(tn) dédn —

where ~  denotes the one-dimensional Fourier transform. (Hint: use Fourier inversion in f,g and
Plancherel).

(¢) Split ¢ = ¢1 + 2 a sum of Schwartz functions, where the support of ¢1 is contained in the unit interval
and that of @5 in the annulus {y: 1/4 < |y| < 2}. Define @, ¥ to be two Schwartz functions on R such
that U(0) = 0 and ¥ =1 on {y: 1/2 < |y| < 4}, and ® = 1 on [—4,4]. Prove that the expression from
item (b) above equals

/O+°°/Rf*(901)t(:c)g*¢t(at)h*\11t dx+/+°"/f (p2)¢(2)g * Uy (2)g * Dy (x )dxﬁ

(d) Prove that each of the terms in (c¢) is bounded by < ||fllp, lgllps|I2]lps, Where p; € (1,400) and 1 =
p% + p% + p%. (Hint: Use atomicity, outer-Holder and the embeddings from the lecture).

Problem 7 (Oscillatory integrals and the Spherical measure). Let o,_1 denote the (n — 1)—dimensional
spherical measure throughout this exercise.

(a) Prove that its Fourier transform &, 1 (¢) = fRn e~ dg,, 4 (7) is a well-defined bounded function.

(b) Prove the explicit formula

_ Ja1(27[¢])
O'nfl(E) =2m—2———,
gzt
where we define the Bessel function of order v to be J,(t) = F((Slﬁ) 5 f et (1 —s 2)v=3 ds. (Hint: use

spherical coordinates).
(c) Prove that J,(t) = C, - s” [ €°%(sin§)? df.

(d) Prove that |.J,(t)] = O(t~'/2) for t — +oo. (Hint: split smoothly the interval [~m, 7] depending on where
(cosf) = —sinf = 0 and use the van der Corput Lemma in each of them)

(¢) Conclude that |7, 1(£)] = O((1 + |¢))~5+2)



