Mathematisches Institut Prof. Dr. Christoph Thiele João Pedro Ramos Summer term 2019

UNIVERSITÄT BONN

Due on Thursday, 30-05-2019.

Problem 1 (Fourier transform). (a) Let $f \in L^1(\mathbb{R})$ be such that \widehat{f} is an odd function. Prove that

$$\left| \int_{1}^{a} \frac{\widehat{f}(x)}{x} \, \mathrm{d}x \right| \le C,$$

for some C > 0, independently of a > 1.

(b) Find an odd $g \in C_0(\mathbb{R})$ such that

$$\left| \int_{1}^{a} \frac{g(x)}{x} \, \mathrm{d}x \right|$$

is unbounded as $a \to \infty$.

(c) Conclude that $\mathcal{F}(L^1) \subsetneq C_0(\mathbb{R})$.

Problem 2 (Hilbert transform). It has been sketched in the lecture that

$$\int_{-\infty}^{+\infty} (f + iHf)^k = 0$$

for all smooth compactly supported real-valued functions f and integers $k \ge 2$, where H denotes the Hilbert transform (in particular Hf is also real-valued).

- (a) Let $k \ge 2$ be an even integer. Show that $||Hf||_{L^k} \le C_k ||f||_{L^k}$ for some C_k that does not depend on f. Hint: expand the real part of the above identity and use Hölder's inequality to separate L^k norms of f and Hf.
- (b) Conclude that $||Hf||_{L^p} \leq C_p ||f||_{L^p}$, whenever $2 \leq p < \infty$.
- (c) Let $\tilde{f}(x) = f(-x)$. Show that for all smooth compactly supported functions $f, g \in C_0^{\infty}(\mathbb{R})$ we have $\int (Hf)g = \int (H\tilde{g})\tilde{f}$. Use duality between L^p and $L^{p'}$, 1/p + 1/p' + 1, to show that $||Hf||_{L^p} \leq C_p ||f||_{L^p}$, 1 .