Mathematisches Institut Prof. Dr. Christoph Thiele João Pedro Ramos Summer term 2019

Due on Thursday, 16-05-2019

The first problem establishes equivalence between classical and outer L^p spaces. In particular, this shows that the Marcinkiewicz interpolation theorem can be used with any combinations of outer and classical L^p spaces. We denote

$$\mu\{f > \lambda\} = \mu(\{x : f(x) > \lambda\}), \quad \mu(Sf > \lambda) = \inf_{\mathbf{E} \subset \mathcal{E}: \sup_{E' \in \mathcal{E}} S(f1_{(\cup \mathbf{E})^c})(E') \le \lambda} \sum_{E \in \mathbf{E}} \sigma(E)$$

(in the lecture notes the latter quantity is sometimes denoted by $\mu(\{Sf > \lambda\})$, but this is not intended and will hopefully be corrected soon).

Problem 1. Let (X, \mathcal{E}, σ) be an outer measure space. It is known that the class \mathcal{X} of Carathéodory measurable sets is a σ -algebra and the outer measure μ is σ -additive on \mathcal{X} . Assume that μ is also σ -finite (so that Fubini's theorem applies) and that $\mathcal{E} \subset \mathcal{X}$. Let \mathcal{B} denote the set of \mathcal{X} -measurable functions from X to \mathbb{R}_+ .

(a) For $f \in \mathcal{B}$ show that

$$\int_X f(x)^p \mathrm{d}\mu(x) = p \int_0^\infty \lambda^{p-1} \mu\{f > \lambda\} \mathrm{d}\lambda.$$

Hint: write $f(x)^p = \int_0^{f(x)} p \lambda^{p-1} d\lambda$.

(b) Consider the size

$$S_{\infty}f(E) := \inf_{A:\mu(A)=0} \sup_{E \setminus A} f.$$

Show that $\mu\{f > \lambda\} = \mu(S_{\infty}f > \lambda)$ for all $f \in \mathcal{B}$ and $0 < \lambda < \infty$.

(c) Suppose additionally that $\sigma(E) < \infty$ for all $E \in \mathcal{E}$ and consider the size

$$S_1 f(E) := \sigma(E)^{-1} \int_E f \mathrm{d}\mu.$$

Show that $\mu\{f > \lambda\} = \mu(S_1 f > \lambda)$ for all $f \in \mathcal{B}$ and $0 < \lambda < \infty$.

Problem 2 (Hardy–Littlewood maximal inequality). For this problem, let $Mf(x) := \sup_{I \ni x} \frac{1}{|I|} \int_{I} |f(t)| dt$ denote the one-dimensional Hardy–Littlewood maximal function, and $M_r f(x) := \sup_{h>0} \frac{1}{h} \int_{x}^{x+h} |f(t)| dt$ its (right) one-sided version.

- (a) (Rising sun Lemma) Let [a, b] be a compact interval on the real line, and $F : [a, b] \to \mathbb{R}$ a continuous function. Then there is a countable family of disjoint, non-empty intervals $I_k = (a_k, b_k)$ contained in [a, b] so that (i) For each k, either $F(a_k) = F(b_k)$ or $a_k = a$ and $F(b_k) \ge F(a_k)$; (ii) If $x \in (a, b]$ does not lie in any of the I_k , then $F(y) \le F(x)$ for all $x \le y \le b$.
- (b) (One-sided maximal inequality) Let m^* denote the Lebesgue outer measure on the real line and $f \in L^1(\mathbb{R})$. Prove that

$$m^*\left(\{x \in \mathbb{R} \colon M_r f(x) > \lambda\}\right) \le \frac{1}{\lambda} \int_{\mathbb{R}} |f(t)| \, \mathrm{d}t.$$

(Hint: use the rising sun Lemma for $F_a(x) := \int_{[a,x]} |f(t)| dt - (x-a)\lambda$.)

(c) Conclude that

$$m^* \left(\{ x \in \mathbb{R} \colon Mf(x) > \lambda \} \right) \le \frac{2}{\lambda} \int_{\mathbb{R}} |f(t)| \, \mathrm{d}t$$

Show that 2 cannot be replaced by any smaller constant above by exhibiting $f \in L^1(\mathbb{R})$ so that

$$\sup_{\lambda>0} \lambda m^*(\{Mf > \lambda\}) = 2 \int_{\mathbb{R}} |f|.$$

