Submit the solutions in groups of two at the lecture on Tuesday, 2018-06-12

Definition. The *BMO (for "bounded mean oscillation") norm* of a (measurable) function $f : \mathbb{R} \to \mathbb{R}$ is defined by

$$||f||_{BMO} := \sup_{I} \inf_{c \in \mathbb{R}} |I|^{-1} \int_{I} |f - c|$$

where the supremum is taken over all subintervals of \mathbb{R} . The *dyadic BMO norm* is defined similarly with a supremum over dyadic intervals I (intervals of the form $2^{j}((0,1]+k)$ for $j,k \in \mathbb{Z}$).

The space of functions with finite BMO (resp. dyadic BMO) norm is denoted by BMO (resp. BMO_d)

Exercise 1. (a) Show that $||f||_{BMO} \le ||f||_{\infty}$

- (b) Show that the function $\log |x|$ is in BMO.
- (c) Show that the function $1_{x>0} \log |x|$ is in BMO_d, but not in BMO.
- (d) Show that

$$||f||_{BMO} \le \sup_{I} |I|^{-1} \int_{I} |f - f_{I}| \le 2||f||_{BMO}, \quad f_{I} = |I|^{-1} \int_{I} f.$$

Exercise 2. Let $K_j(x) = x_j |x|^{-d-1}$ be the *j*-th *Riesz kernel* on \mathbb{R}^d , where $j \in \{1, \ldots, d\}$. Define the corresponding principal value tempered distribution by

p.v.
$$K_j f := \lim_{\epsilon \to 0} \int_{\mathbb{R}^d \setminus B(x,\epsilon)} f(y) K_j(y) dy.$$

We define the *j*th Riesz transform as the convolution

$$R_j f(x) = \text{p.v.} K_j * f.$$

- (a) Verify that $p.v.K_j$ indeed defines a tempered distribution.
- (b) Verify that K_j is a Calderón-Zygmund kernel (satisfies size and regularity conditions).
- (c) Show that there is a constant such that $\widehat{\text{p.v.}K_j}(\xi) = C\xi_j/|\xi|$. Conclude that R_j extends to a bounded operator on L^2 .
- (d) Let $u, f : \mathbb{R}^d \to \mathbb{C}$ be Schwartz functions and suppose that $\Delta u = f$. Show that $\|\partial_j \partial_l u\|_p \lesssim_p \|f\|_p$ for all $1 and <math>1 \le j, l \le d$.

This was one of the original motivations for the theory of singular integrals.