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1 Fundamentals

A complex number is a pair (x, y) of real numbers. The space C = R2 of
complex numbers is a two-dimensional R-vector space. It is also a normed
space with the norm defined as

|(x, y)| =
√
x2 + y2.

An additional feature that makes C very special is that it also has a product
structure defined as follows.

Definition 1.1 (Product of complex numbers). For two complex numbers
(x1, y1), (x2, y2) ∈ C, their product is defined by

(x1, y1)(x2, y2) = (x1x2 − y1y2, x1y2 + y1x2).

This defines a map C × C → C. It can be rewritten in terms of another
product, the matrix product:

(x1, y1)(x2, y2) = (x1, y1)

(
x2 y2

−y2 x2

)
.

∗Notes by Joris Roos and Gennady Uraltsev.
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In fact, we can embed the complex numbers into the space of real 2 × 2
matrices via the linear map

C −→ R2×2

(x, y) 7−→
(

x y
−y x

)
.

The map translates the product of complex numbers into the matrix product.
This is very helpful to verify that the product of complex numbers is

1. commutative,

2. associative,

3. distributive, and

4. has a unit element:

(x1, y1) = (1, 0)(x1, y1), and

5. has inverses: if (x, y) 6= 0, then

(x, y)

(
x

x2 + y2
,
−y

x2 + y2

)
=

(
x2 + y2

x2 + y2
,
xy − yx
x2 + y2

)
= (1, 0).

In terms of the matrix representation this property is just a restatement
of the fact that

det

(
x y
−y x

)
= x2 + y2 6= 0 (1.1)

for (x, y) 6= 0.

Summarizing, the product of complex numbers gives C the structure of a
field. The existence of such a product structure makes R2 unique among
the higher dimensional Euclidean spaces Rd, d ≥ 2. Roughly speaking, the
reason for this phenomenon is the very special structure of the above 2 × 2
matrices. In higher dimensions it becomes increasingly difficult to find a
matrix representation such that Property 5 is satisfied. The only cases in
which it is possible at all give rise to the quaternion (d = 4) and octonion
(d = 8) product, neither of which is commutative (and the latter is not even
associative).
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Another important property is that we have compatability of the product
with the norm:

|(x1, y1)(x2, y2)| = |(x1, y1)| · |(x2, y2)|.

This is a consequence of the determinant product theorem and the identity

|(x, y)| =

√
det

(
x y
−y x

)
.

One consequence of this is that for fixed (x1, y1), the map (x1, y1) 7→ (x1, y1)(x2, y2)
is continuous (but of course this can also be derived differently).
We now proceed to introduce the conventional notation for complex numbers.

Definition 1.2. We write 1 = (1, 0) to denote the multiplicative unit.
i = (0, 1) is called the imaginary unit. A complex number (x, y) is written
as

z = x+ iy.

x =: Re (z) is called the real part and y =: Im (z) the imaginary part. The
complex conjugate of z = x+ iy is given by

z = x− iy

We have the following identities:

i2 = (0, 1)(0, 1) = (−1, 0) = −1,

|z|2 = zz = (x+ iy)(x− iy) = x2 + y2,

1

z
=

z

|z|2
.

The product of complex numbers has a geometric meaning. Observe that
the unit circle in the plane consists of those complex numbers z with |z| = 1.
Say that z1, z2 lie on the unit circle. That is, |z1| = 1, |z2| = 1. Then also
|z1z2| = |z1| · |z2| = 1, so also z1z2 is on the unit circle. So the linear map
C→ C, z1 7→ z1z2 maps the unit circle to itself. Recall that there are not too
many linear maps with this property: only rotations and reflections. Since
the determinant is positive by (1.1) it must be a rotation.
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z1

z2

z1z2

Every non-zero complex number can be written as the product of one on the
circle and a real number:

z =
z

|z|
|z|

Multiplication with a real number corresponds to stretching, so we conclude
from the above that multiplication with a complex number corresponds to a
rotation and stretching of the plane.

Example 1.3. We use our recently gained geometric intuition to derive a cu-
rious formula for the square root of a complex number. Look at the following
picture.

z 1 + z

1

z̃
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We have given some z with |z| = 1 and would like to find z̃ with z̃2 = z. The
picture suggests to pick

z̃ =
1 + z

|1 + z|
.

Indeed we have

z̃2 =
(1 + z)2

(1 + z)(1 + z)
=

1 + z

1 + z
=
zz + z

1 + z
= z

1 + z

1 + z
= z.

Now let z 6= 0 be a general complex number and apply the above to z
|z| . Then

the square roots of z are given by

√
z = ±

1 + z
|z|∣∣∣1 + z
|z|

∣∣∣
√
|z|.

We now turn our attention to functions of a complex variable f : C→ C. A
prime example is given by complex power series:

∞∑
n=0

anz
n = lim

N→∞

N∑
n=0

anz
n.

To find out when this limit exists we check when the sequence of partial sums
is Cauchy. Take M < N and compute:∣∣∣∣∣

N∑
n=0

anz
n −

M∑
n=0

anz
n

∣∣∣∣∣ =

∣∣∣∣∣
N∑

n=M+1

anz
n

∣∣∣∣∣ ≤
N∑

n=M+1

|anzn| =
N∑

n=M+1

|an| rn,

where r = |z|. This implies that if
∑∞

n=0 |an|rn converges in R, then
∑∞

n=0 anz
n

converges in C. Next,
∑∞

n=0 |an|rn < ∞ holds if there exists r̃ > r with
supn |an|r̃n <∞ because

∞∑
n=0

|an|rn =
∞∑
n=0

anr̃
n
(r
r̃

)n
≤
(

sup
n
|an|r̃n

) ∞∑
n=0

(r
r̃

)n
<∞.

Definition 1.4. The convergence radius of a power series
∑∞

n=0 anz
n is de-

fined as
R := sup{r̃ : sup

n
|an|r̃n <∞}.

• For z ∈ DR(0) = {z : |z| < R}, the sum
∑∞

n=0 anz
n converges.

• For |z| > R, the sum
∑∞

n=0 anz
n diverges.
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• For |z| = R both convergence and divergence are possible.

Examples 1.5. The exponential series

ez =
∞∑
n=0

1

n!
zn.

has convergence radius R =∞. The same holds for

cos(z) =
∞∑
n=0

(−1)n

(2n)!
z2n,

sin(z) =
∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1.

These combine to give the Euler formula,

eiz = cos(z) + i sin(z).

For ϕ real, eiϕ lies on the unit circle. Let us see how to derive this from the
definition. For n large we have

eiϕ =
(
ei

ϕ
n

)n
∼
(

1 + i
ϕ

n

)n
,∣∣∣1 + i

ϕ

n

∣∣∣ ≤ 1 +
(ϕ
n

)2

.

Notice that (
1 +

ϕ2

n2

)n2

n→∞−→ eϕ
2

,

so
|eiϕ| ∼

∣∣∣1 + i
ϕ

n

∣∣∣n ∼ n
√
eϕ2 → 1.

Remark 1.6. General polynomials in x, y on R2 are of the form

N∑
n,m=0

an,mx
nym =

N∑
n,m=0

an,m

(
z + z

2

)n(
z − z

2i

)m
=

N∑
n,m=0

bn,mz
nzm.

In complex analysis we only consider the case bn,m = 0 for m 6= 0.

Definition 1.7. A function f : C → C is called complex differentiable at
z ∈ Cif for h ∈ C with |h| small enough we have

f(z + h) = f(z) + hg(z) + o(h) (1.2)

such that for all ε > 0 there exists δ > 0 with |o(h)| < ε|h| for all |h| < δ.
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Theorem 1.8. If f(z) =
∑∞

n=0 anz
n has convergence radius R, then

g(z) =
∞∑
n=1

nanz
n−1 =

∞∑
n=0

(n+ 1)an+1z
n

also has convergence radius R and for |z| < R, f is complex differentiable at
z.

Proof. We already know how to differentiate power series from real analysis.
The proof of this theorem works exactly the same way as in the real case:

f(z + h) =
∞∑
n=0

an(z + h)n =
∞∑
n=0

(
anz

n + nhzn−1 +
n∑
k=2

an

(
n

k

)
hkzn−k

)
= f(z) + hg(z) + o(h)

and∣∣∣o(h)

h

∣∣∣ ≤ |h| ∞∑
n=0

|an|n2

n−2∑
k=0

(
n+ 2

k

)
|h|k|z|n+2−k ≤ |h|

∞∑
n=0

|an|n2(|z|+ |h|)n+2.

Compare this to the real Taylor series in R2: let f : R2 → R2 be totally
differentiable in z, then there exists a matrix A with

f(z + h) = f(z) + Ah+ o(h) (1.3)

and for all ε > 0 there exists δ > 0 such that |o(h)| ≤ ε|h| for |h| < δ. Note
that the product in (1.3) is the matrix product and the product in (1.2) is
the product of complex numbers. They coincide if and only if

A =

(
a b
−b a

)
.

Thus we find that a function f(z) = (u(x, y), v(x, y)) that is (real) totally
differentiable at z is complex differentiable at z if and only if

∂u

∂x
(z) =

∂v

∂y
(z) and

∂u

∂y
(z) = −∂v

∂x
(z). (1.4)

These are called the Cauchy-Riemann differential equations.

End of lecture 1. April 11, 2016
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We will now study some properties of functions on a complex disk. In par-
ticular we will concentrate on the question of regularity and differentiability.
In the previous lecture we have mentioned that power series are complex dif-
ferentiable inside the disk of the radius of convergence. To establish notation
let us introduce the following sets.
A We denote by A the set of all power series

A :=

{
∞∑
n=0

anz
n : an ∈ C, z ∈ DR(0)

}

with radius of convergence at least R > 0 so that for all z in the do-
main DR(0) = {z : |z − 0| < R} the series converges absolutely (equivalently
supn|an|τn <∞ for any 0 ≤ τ < R).
As noted previously, A is a subset of the set of all formal power series onDR ⊂
C given by

∑∞
m,n=0 bn,mx

nym with x = Re (z), y = Im (z). Equivalently
these formal series can be expressed as

∑∞
n,m=0 an,mz

nz̄m and A puts both
a restriction of the growth of the coefficients an,m given by the condition of
being convergent on DR(0) and the additional constraint that an,m = 0 unless
m = 0.
B We denote by B the set of functions that are complex differentiable in
every point of the open disk DR(0). In particular, as per condition (1.2), B
consists of those functions f : DR(0) 7→ C such that for any point z ∈ DR(0)
and for any increment h : |z| + |h| < R there exists the complex derivative
g(z) ∈ C i.e. a complex coefficient such that

f(z + h) = f(z) + hg(z) + o(h)

where o(h) is some function (depending on z) for which for any ε > 0 there
exists a ∃δ > 0 such that for any |h| < δ, |z| + |h| < R we have that
o|h| ≤ ε|h|. Recall that this is related to total differentiability on C ≡ R2.
As a matter one can write the following for a totally differentiable function
on C:

f(z + h) = f(z) + A(z)h+ o(h) A(z) =

(
a(z) b(z)
c(z) d(z)

)
.

Complex differentiability is equivalent to asking the differential as a linear
map A : R2 7→ R2 can be represented by complex multiplication: A(z)h =
g(z)h for some g(z) ∈ C. This holds if and only if a(z) = d(z) and b(z) =
−c(z).
Let us recall the Cauchy-Riemann equations (1.4) and elaborate how they
are related to complex differentiability. Setting f(z) = (u(x, y), v(x, y)), the
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equations are given by

∂u(x, y)

∂x
=
∂v(x, y)

∂y

∂u(x, y)

∂y
= −∂v(x, y)

∂x
.

We can rewrite this equation by defining the following two crucial differential
operators ∂

∂z
and ∂

∂z̄
by setting

∂

∂z
=

1

2

(
∂

∂x
+

1

i

∂

∂y

)
∂

∂z̄
=

1

2

(
∂

∂x
− 1

i

∂

∂y

)
.

Once again setting f(x, y) = u(x, y) + iv(x, y) we can compute

∂f

∂z̄
=

1

2

(
∂u

∂x
− ∂v

∂y
+ i

(
∂v

∂x
+
∂u

∂y

))
= 0

It is apparent that the two Cauchy-Riemann equations are just the real and
imaginary part of ∂f

∂z̄
. Since we have already mentioned that complex dif-

ferentiability is equivalent to a condition on the differential matrix A that
corresponds to the Cauchy-Riemann equations in terms of partial derivatives,
it follows that a function is complex differentiable if and only if it is totally
differentiable and has ∂f

∂z̄
= 0. Furthermore, if f is complex differentiable

then we write

f ′(z) :=
∂

∂z
f(z).

Finally, in terms of the the real and imaginary part separately we have

∂

∂z
f(z) =

1

2

(
∂u

∂x
+
∂v

∂y
+ i

(
∂v

∂x
− ∂u

∂y

))
.

C We denote by C the subset of continuous functions f : DR(0) 7→ C such
that the following integral condition holds∫

(a,b,c)

f(z)dz = 0 ∀a, b, c ∈ DR(0).

Here (a, b, c) is the (oriented) boundary of the (oriented) triangle, also re-
ferred to as a simplex, formed by the points a, b, and c. We will identify
(a, b, c) by the closed path composed of the three segments a→ b→ c→ a.
We recall the definition of the integral along a path of a complex function.
For now we restrict ourselves to the case were the support of the path is a
complex segment.
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Definition 1.9 (Integral of a complex function along a segment). Consider
the segment (a, b) with a, b ∈ C and a complex-valued continuous function
f : Ω ⊂ C 7→ C defined on an open neighborhood of (a, b). We set the
integral of the function f along (a, b) to be∫

(a,b)

f(z)dz :=

∫ 1

0

f (bt+ a(1− t)) (b− a)dt.

Here the integrand on the right hand side is a function [0, 1] 7→ C ≡ R2

and the integral is simply calculated coordinate-wise. Notice however that
the integrand itself f (bt+ a(1− t)) ·(b − a) is expressed itself as a complex
product.

a

b

Figure 1: A segment defining a path from a to b.

This definition of the integral over a segment corresponds to the well known
concept of a path integral, and extends it to complex functions:

∫
(a,b)

f(z)dz =

∫ 1

0

f (bt+ a(1− t)) (b−a)dt =

∫
γ

fdγ =

∫ 1

0

f(γ(t))γ′(t)dt

with γ(t) = bt+a(1−t) as the path that parameterizes the segment. We nat-
urally extend this definition to the three oriented segments of the boundary
of a triangle by setting∫

(a,b,c)

f(z)dz :=

∫
(a,b)

f(z)dz +

∫
(b,c)

f(z)dz +

∫
(c,a)

f(z)dz.

Finally notice that the definition of integrating along a path is oriented and
as such we have ∫

(a,b)

f(z)dz = −
∫

(b,a)

f(z)dz.

This can be easily verified by a change of variables.
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a

b

c

Figure 2: A triangle and its oriented boundary.

The characterization of the set C in terms of path integrals is geometric
and does not rely on the smoothness of f . As a matter of fact we require f
merely to be continuous. However we will now see that integral over triangles
condition over all possible triangles implies stronger structure results and in
particular that f is actually smooth and complex differentiable.

Theorem 1.10. The classes of functions we introduced coincide i.e. A =
B = C.

A ⊂ B The rules of differentiation of power series imply immediately the
inclusion A ⊂ B.
A ⊂ C We will now show directly that the path integral of a power series
along a closed path, and specifically (a, b, c) is zero. In previous courses of
analysis we have seen a similar statement for gradient fields and the proof
followed from the existence of a primitive. We can, however, deduce the
existance of a primitive of a power series formally and this will provide us
with the needed elements to adapt a similar approach.
Recall the definition of the set A: f ∈ A is of the form f(z) =

∑∞
n=0 anz

n.
Let us define its primitive via

F (z) :=
∞∑
n=0

1

n+ 1
anz

n+1.

Clearly F ∈ A since it is a power series and its radius of convergence is
not smaller than that of f . This follows simply from the bound on the nth

coefficient of F by that of f :

1

n+ 1
|an| ≤ |an|.

We claim that F is effectively a primitive of f and in particular∫
(a,b)

f(z)dz =

∫ 1

0

f (a(1− t) + bt) (b− a)dt = F (b)− F (a).
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The first equality is just the definition of a complex path integral. To show
the second equality let us define g(y) = F (γ(t)) with γ(t) = a(1− t) + bt and
let us show that

g′(t) = f (a(1− t) + bt) (b− a).

This is essentially the chain rule for complex-valued complex differentiable
functions. We write

g(t+ h) = F (γ(t+ h)) = F (γ(t) + (b− a)h)

= F (γ(t)) + (b− a)hf (γ(t)) + o ((b− a)h)

= g(t) + (b− a)hf (γ(t)) + o ((b− a)h)

Here we used that the complex differential of F in γ(t) is given by f (γ(t))
and that (b− a)h is a small complex increment. Notice also that h is a real
increment. We have thus that∫ 1

0

f (a(1− t) + bt) (b− a)dt = F (b)− F (a)

and ∫
(a,b,c)

f(z)dz =

∫
(a,b)

f(z)dz +

∫
(b,c)

f(z)dz +

∫
(c,a)

f(z)dz

=F (b)− F (a) + F (c)− F (b) + F (a)− F (c) = 0

B ⊂ C This statement is known as “Theorem from Goursat”. Let f ∈ B
be complex differentiable in DR(0). We must show that for any r̃ < R and
∀a, b, c ∈ Dr̃(0) one has

∫
(a,b,c)

f(z)dz = 0. It is sufficient to show that for

any ε > 0 and ∀a, b, c ∈ Dr̃(0) we have that∣∣∣∣∫
(a,b,c)

f(z)dz

∣∣∣∣ ≤ εmax (|b− a|, |c− b|, |a− c|)2 .

The argument we present relies on an induction on scales. The term

max (|b− a|, |c− b|, |a− c|)2

on the right hand side of the above entry is a measure of the scale of “how
large” or the scale of the triangle. We will show that the statement holds for
triangles that have sufficiently small scale and then to an induction argument
that will show that is the statement holds for a certain scale it also holds for
triangle up to twice as large. This would allow us to conclude the statement
for all triangles.
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Part 1: We start by showing that the above bound holds for all points
a, b, c ∈ Dr̃(0) with max (|b− a|, |c− b|, |a− c|) < δmin for some δmin > 0.
For any z ∈ Dr̃(0) there exists δ such that ∀|h| < δ we have

f(z + h) = f(z) + hf ′(z) + o(h) with |o(h)| < ε

8
|h|.

Reasoning by compactness we can find a finite set z1, . . . , zN such that
Dr̃(0) ⊂

⋃N
j−1Dδ(zi)/3(zi) where δ(zi) is the radius for which the above bound

holds. Setting δmin := mini δ(zi)
3

one has that ∀z ∈ Dr̃(0) ∀|h| < δmin we have
via the triangle inequality

f(z + h) = f(z) + hf ′(z) + o(h) with |o(h)| < ε

4
|h|.

z0

δ(z0)
3

a

b

c

Figure 3: A triangle in a small circle

Now consider two point a, b with |b− a| < δmin. We can evaluate the contri-
bution of the three terms of the expansion of f to the line integral.∫

(a,b)

f(z)dz =

∫
(a,b)

f(z0) + (z − z0)f ′(z0) + o(z − z0)dz

The first term gives ∫ 1

0

f(z0)(b− a)dt = f(z0)(b− a).
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The second term gives∫ 1

0

f ′(z0) (bt− a(1− t)− z0) (b− a)dt

=f ′(z0)

(
1

2
(b+ a)(b− a)− a(b− a)− z0(b− a)

)
=f ′(z0)

(
1

2
(b2 − a2) + z0(b− a)

)
We have crucially used complex differentiability of f here. As a matter
of fact the algebraic manipulation relied on the commutativity of complex
multiplication. If f were just any totally differentiable function then f ′(z0)
would be substituted by some arbitrary 2× 2 matrix and the above identity
would not hold.
Summing up the contributions of the three terms we obtain∫

(a,b,c)

f(z)dz =

∫
(a,b)

f(z)dz +

∫
(b,c)

f(z)dz +

∫
(c,a)

f(z)dz =

= f(z0)(b− a+ c− b+ a− c)

+ f ′(z0)

(
1

2
(b2 − a2 + c2 − b2 + a2 − c2) + z0(b− a+ c− b+ a− c)

)
+

∫
(a,b,c)

o(z − z0)dz

All terms except the last are null while for the last we have the bound∣∣∣∣∫
(a,b,c)

f(z)dz

∣∣∣∣ =

∣∣∣∣∫
(a,b,c)

o(z − z0)dz

∣∣∣∣
<
ε

4
(|b− a|+ |c− b|+ |a− c|) max

z∈(a,b,c)
|z − z0|

<
3ε

4
max (|b− a|, |c− b|, |a− c|)2

as required.
Part 2: We have now proved that the bound we seek holds for triangles
that are small enough. In particular we require that max(|b− a|, |c− b|, |a−
c|) < δmin. We will now show an inductive procedure that shows that if the
statement holds for when max(|b − a|, |c − b|, |a − c|) < δ then the same is
true if max(|b− a|, |c− b|, |a− c|) < 2δ.
The main idea is given by decomposing a triangle into smaller triangles in a
uniform way.
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a

b

c

a′

b′

c′

Figure 4: Decomposing triangles into smaller ones

To do so we use the median points as shown in figure 4. Let a′, b′, c′ be the
median points of the sides of (a, b, c) opposite of the respective vertices. We
have∫

(a,b,c)

f(z)dz =

∫
(a,c′,b′)

f(z)dz +

∫
(b,a′,c′)

f(z)dz +

∫
(c,b′,a′)

f(z)dz

+

∫
(a′,b′,c′)

f(z)dz∣∣∣∣∫
(a,b,c)

f(z)dz

∣∣∣∣ < ε
(

max (|c′ − a|, |b′ − c′|, |a− b′|)2
+ max (...)2 + max (...)2

+ max (|b′ − a′|, |c′ − b′|, |a′ − c′|)2
)

< 4ε
max (|b− a|, |c− b|, |a− c|)2

4

as required. The crucial observation is that once we divide by the medians
we obtain four triangles for which the largest of side lengths is bounded by
a small (1/2) factor of the lengths of the original triangle. This implies that
first of all we may apply the assumptions at previous scale and that we obtain
a bound with the same constant.

End of lecture 2. April 14, 2016

We will prove the following stronger version of Goursat’s theorem.

Theorem 1.11. Let z0 ∈ DR(0), f : DR(0) → C continuous and complex
differentiable in all points of DR(0)\{z0}. Then f ∈ C.
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Proof. It suffices to show that for all r̃ < R, a, b, c ∈ Dr̃(0) we have∫
(a,b,c)

f(z)dz = 0.

Let 10δ = R− r̃. By the same argument as in the proof of Goursat’s theorem
it suffices to show this for small triangles: for all a, b, c ∈ Dr̃(0) with max(|a−
b|, |b− c|, |c− a|) ≤ δ/10.
Case 1. z0 6∈ Dδ/3(a). Then

∫
(a,b,c)

f(z)dz = 0 holds by Goursat’s theorem.

Case 2. z0 ∈ Dδ/3(a). It suffices to show
∫

(a,b,z0)
f(z)dz = 0 because∫

(a,b,c)

=

∫
(a,b,z0)

+

∫
(b,c,z0)

+

∫
(c,a,z0)

.

We can also assume that the angle at z0 is acute (if it is not acute, we bisect
the angle at z0 and consider the two resulting triangles). Next, construct a
circle through z0 that contains (a, b, z0). We can do this such that the radius
is at most δ.
Let ε > 0 be arbitrary. We will show∣∣∣∣∫

(a,b,z0)

f(z)dz

∣∣∣∣ ≤ ε.

By continuity of f at z0 we can choose points a′ on (a, z0) and b′ on (b, z0)
such that |f(z)− f(z0)| < ε/(3δ) for all z on the triangle (a′, b′, z0).

a b

z0

a′ b′

By Goursat’s theorem we have∫
(a,b,b′)

f(z)dz =

∫
(a′,a,b′)

f(z)dz = 0

16



so that ∫
(a,b,z0)

f(z)dz =

∫
(a′,b′,z0)

f(z)dz.

We estimate,∣∣∣∣∫
(a′,b′,z0)

f(z)dz

∣∣∣∣ =

∣∣∣∣∫
(a′,b′,z0)

f(z)− f(z0)dz

∣∣∣∣ ≤ ∫ 1

0

|f(b′t+ a′(1− t))− f(z0)||b′ − a′|dt+ · · ·︸ ︷︷ ︸
<ε

As a precursor to showing B ⊂ A we first prove the following.

Theorem 1.12 (Cauchy). Let f : DR(0) → C complex differentiable on
DR(0). Then for all z1 ∈ DR(0) there exists δ > 0 such that f can be
represented by a convergent power series on Dδ(z0) ⊂ DR(0).

Remark 1.13. In particular, this entails that functions which are complex
differentiable in a neighborhood are automatically infinitely often complex
differentiable.

Proof. For w ∈ DR(0) we consider the function

gw(z) =
f(z)− f(w)

z − w

with the understanding that gw(w) = f ′(w). This function is continuous on
DR(0) and complex differentiable on DR(0)\{w}. Continuity of gw in w is a
consequence of complex differentiability of f in w. Complex differentiability
of gw in DR(0)\{w} follows by the product rule since f(z) − f(w) and 1

z−w
are both complex differentiable. Let us show the complex differentiability of
1
z

on C\{0} directly from the definition:

1

z + h
−1

z
=
z − (z + h)

z(z + h)
=
−h
z2

+
h

z2
− h

z(z + h)
= − h

z2
+

h2

z2(z + h)
=
−h
z2

+o(h)

where o(h) = h2/(z2(z + h)) so that

|o(h)| ≤ |h2|
∣∣∣∣ 1

z2(z + h)

∣∣∣∣ ≤ |h|2 ∣∣∣∣ 2

z3

∣∣∣∣ .
provided that |h| < |z|

2
.

17



Choose a, b, c ∈ DR(0) such that z0 lies in the interior of the triangle (a, b, c).
Further, pick δ > 0 small enough so that the circle of radius 2δ around z0 is
contained in the interior of the triangle (a, b, c).
Theorem 1.11 yields ∫

(a,b,c)

gw(z)dz = 0

for all w ∈ Dδ(z0). That is,∫
(a,b,c)

f(z)

z − w
dz =

(∫
(a,b,c)

dz

z − w

)
f(w)

Our claim is that ∫
(a,b,c)

dz

z − w
= ±2πi, (1.5)

where the sign is according to whether the triangle (a, b, c) is oriented counter-
clockwise (+) or clockwise (−). For the remainder of this proof, let us assume
it is oriented counter-clockwise. We defer the proof of this claim to the end
and first show how to use the equality

f(w) =
1

2πi

∫
(a,b,c)

f(z)

z − w
dz

to develop f into a convergent power series. The crucial point here is that on
the right hand side, the free variable w no longer occurs inside the argument
of f . Therefore we just need to know how to develop w 7→ 1

z−w into a power
series around z0:

1

z − w
=

1

(z − z0)(w − z0)
=

1

z − z0

· 1

1− w−z0
z−z0

=
1

z − z0

∞∑
n=0

(
w − z0

z − z0

)n
.

As a consequence,∫
(a,b,c)

f(z)

z − w
dz =

∫
(a,b,c)

1

z − z0

f(z)
∞∑
n=0

(
w − z0

z − z0

)n
dz

=
∞∑
n=0

(∫
(a,b,c)

f(z)

(z − z0)n+1
dz

)
(w − z0)ndz,

where the interchange of integration and summation is justified by uniform
convergence of the power series since 2|w−z0| < 2δ < |z−z0| by construction.
It remains to prove (1.5). For starters we calculate∫

(a,b)

1

z − w
dz =

∫ 1

0

b− a
(b− a)t+ a− w

dt =

∫ 1

0

1

t+ a−w
b−a

dt.

18



Temporarily denote a−w
b−a = x + iy with x, y real numbers. Decompose the

integral into real and imaginary part:∫ 1

0

1

t+ x+ iy
dt =

∫ 1

0

(t+ x)− iy
(t+ x)2 + y2

dt =

∫ 1

0

t+ x

(t+ x)2 + y2
dt+i

∫ 1

0

−y
(t+ x)2 + y2

dt.

Now we are only dealing with two real integrals that we can evaluate. The
first equals

1

2

∫ x+1

x

2t

t2 + y2
dt =

1

2

(
log((x+ 1)2 + y2)− log(x2 + y2)

)
= log

√
(x+ 1)2 + y2√
x2 + y2

.

The second equals

−
∫ x+1

x

y

t2 + y2
dt = −

∫ (x+1)/y

x/y

1

s2 + 1
ds = − arctan

(
x+ 1

y

)
+arctan

(
x

y

)
.

(1.6)

(x, y) (x+ 1, y)

The angle at 0 in the triangle (0, x + iy, x + 1 + iy) equals ±(1.6). Since
addition and multiplication with complex numbers preserves angles, that
angle equals the angle at w in the triangle (w, a, b) (the two triangles are
similar).
For the same reason we have

log
|(x+ 1, y)|
|(x, y)|

= log
|b− w|
|a− w|

.

Applying the same reasoning to the other two segments (b, c), (c, a) we get

∫
(a,b,c)

1

z − w
dz =

=0︷ ︸︸ ︷
log

(
|b− w|
|a− w|

|c− w|
|b− w|

|a− w|
|c− w|

)
+i(ϕ1 + ϕ2 + ϕ3) = 2πi.
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The last equality is by inspection of the figure:

a

b

c

w

ϕ1ϕ2

ϕ3

End of lecture 3. April 18, 2016
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