Mathematisches Institut Prof. Dr. Christoph Thiele Dr. Diogo Oliveira e Silva Sommersemester 2015

Abgabe in der Vorlesung am 18.05.2015.

Pro Aufgabe sind 10 Punkte erreichbar.

Aufgabe 1 (Projektionssatz). Sei K eine abgeschlossene konvexe Teilmenge eines komplexen Hilbert-Raums H, und sei $x_0 \in H$. Zeigen Sie, dass für $x \in K$ die folgenden Bedingungen äquivalent sind:

- (a) $||x_0 x|| = \inf_{y \in K} ||x_0 y||$
- (ii) $\Re\langle x_0 x, y x \rangle \le 0, \forall y \in K$.

Aufgabe 2 (Konvergenz von Fourierreihen). Sei $f: \mathbb{R} \to \mathbb{R}$ die 2π -periodische Funktion definiert durch f(0) = 0 und

$$f(x) = \begin{cases} -\frac{\pi}{2} - \frac{x}{2} & \text{für } -\pi \le x < 0, \\ \frac{\pi}{2} - \frac{x}{2} & \text{für } 0 < x < \pi. \end{cases}$$

- (a) Bestimmen Sie die Fourierreihe von f.
- (b) Seien $\{a_n\}_{n=1}^N$ und $\{b_n\}_{n=1}^N$ zwei endliche Folgen komplexer Zahlen. Seien $B_k = \sum_{n=1}^k b_n$ die partiellen Summen der Reihe $\sum b_n$. Zeigen Sie die abelsche partielle Summation Formel:

$$\sum_{n=M}^{N} a_n b_n = a_N B_N - a_M B_{M-1} - \sum_{n=M}^{N-1} (a_{n+1} - a_n) B_n.$$

- (c) Beweisen Sie den folgenden Konvergenztest: Sei $\{a_n\}$ eine Folge positiver reellen Zahlen die monoton gegen 0 fällt. Sei $\sum b_n$ eine Reihe mit beschränkten Partialsummen. Dann konvergiert die Reihe $\sum a_n b_n$.
- (d) Beachten Sie, dass die Funktion f aus Aufgabenteil (a) nicht stetig ist. Zeigen Sie trotzdem, dass die Fourierreihe von f für alle x konvergiert. Insbesondere ist der Wert der Reihe an der Stelle 0 gleich dem Durchschnitt der rechtsseitigen und linksseitigen Grenzwerten der Funktion an der Stelle 0.

Aufgabe 3 (Kugelkoordinaten). Berechnen Sie die totale Ableitung der Abbildung $f: \mathbb{R}^3 \to \mathbb{R}^3$,

$$f(r, \theta, \phi) = (r \sin \theta \cos \phi, r \sin \theta \sin \phi, r \cos \theta).$$

Aufgabe 4 (Beispiel zu Schwarz). Sei $f: \mathbb{R}^2 \to \mathbb{R}$ die Funktion definiert durch f(0,0) = 0 und

$$f(x,y) = xy \frac{x^2 - y^2}{x^2 + y^2}$$
 für $(x,y) \neq (0,0)$.

(a) Berechnen Sie für $(x, y) \neq (0, 0)$

$$D_1 f(x,y), D_2 f(x,y), D_1 D_2 f(x,y)$$
 und $D_2 D_1 f(x,y),$

und verifizieren Sie insbesondere die Aussage des Satzes von Schwarz für $(x,y) \neq (0,0)$.

- (b) Zeigen Sie, dass die Funktion f überall zweimal partiell differenzierbar ist.
- (c) Zeigen Sie: $D_1D_2f(0,0) \neq D_2D_1f(0,0)$.