Mathematisches Institut

Prof. Dr. Werner Müller Dr. Clemens Kienzler Sommersemester 2015

Einführung in die Komplexe Analysis

Übungsblatt 9

Abgabe in der Vorlesung am 18. Juni 2015

Aufgabe 33 (3 + 3 + 4) Punkte)

Bestimmen Sie das Maximum von |f| auf $\overline{D}:=\{z\in\mathbb{C}\mid |z|\leq 1\}$ für die folgenden Funktionen $f:\overline{D}\longrightarrow\mathbb{C}.$

- a) $f(z) := \exp(z^2)$.
- b) $f(z) := z^2 + z 1$.
- c) $f(z) := \frac{z+3}{z-3}$.

Aufgabe 34 (10 Punkte)

Sei $f:\mathbb{C} \longrightarrow \mathbb{C}$ gegeben durch f(z):=3-|z|. Zeigen Sie, dass |f| auf $\{z\in\mathbb{C}\mid |z|\leq 1\}$ im inneren Punkt z=0 ein Maximum annimmt. Diskutieren Sie, ob das ein Widerspruch zum Maximumsprinzip ist.

Aufgabe 35 (10 Punkte)

Sei $G \subset \mathbb{C}$ ein beschränktes Gebiet und $f : \overline{G} \longrightarrow \mathbb{C}$ stetig, sowie holomorph auf G. Zeigen Sie: Wenn |f| auf ∂G konstant ist, dann ist f konstant auf \overline{G} oder hat eine Nullstelle in G.

Aufgabe 36 (5 + 5 Punkte)

Sei $D:=\{z\in\mathbb{C}\mid |z|<1\}$ und $f:D\longrightarrow D$ holomorph mit f(0)=0. Zeigen Sie:

- a) $|f(z)| \le |z|$ für alle $z \in D$.
- b) $|f'(0)| \le 1$.

Hinweis: Zeigen Sie, dass es eine holomorphe Funktion $f_1:D\longrightarrow\mathbb{C}$ gibt mit $f(z)=z\,f_1(z)$ für alle $z\in D$, für die für alle 0< r<1 gilt: $|f_1(z)|<\frac{1}{r}$ für alle $z\in\overline{D_r(0)}$.