GRADUATE SEMINAR: MODULAR FORMS AND GALOIS REPRESENTATIONS UNIVERSITY OF BONN, SOMMERSEMESTER 2017

Modular forms and Galois representations are fundamental objects in modern number theory. Apparently, they look quite different: Modular forms are certain holomorphic functions on the Poincaré upper half plan, while Galois representations are of arithmetic nature. However, Eichler-Shimura, Deligne, Deligne-Serre proved in 1960s-1970s, the following amazing theorem:

Let $N \geq 1$ be an integer, and $\Gamma_1(N)$ be the usual congruence subgroup of $\operatorname{SL}_2(\mathbb{Z})$ consisting of matrices congruent to $\begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}$ modulo N. Then, to each cuspidal eigenform f of level $\Gamma_1(N)$ and weight $k \geq 1$, one can attach a compatible system of ℓ -adic Galois representations $\rho_f : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to$ $\operatorname{GL}_2(\overline{\mathbb{Q}}_\ell)$ which are unramified at all primes not dividing $N\ell$. Here, ρ_f and f are related in the sense that, for any rational prime $p \nmid N\ell$, the trace of the image of Frobenius elements at p under ρ_f is equal to the p-th coefficient of the q-expansion of f.

This important and deep theorem was the starting point of many further developments of modern number theory, especially of the so-called Langlands program. The aim of this Seminar is to guide the students to understanding Deligne's construction of the Galois representation ρ_f when $k \geq 2$, and Deligne-Serre's proof when k = 1.

The preliminaries for the Seminar are the following

- Algebraic number theory, including ramification theory of extensions of number fields, structure of local Galois group, Chebotarev density theorem.
- Algebraic geometry: the language of schemes, sheaves, line bundles, algebraic correspondences, algebraic curves.
- Etale cohomology: basic definition of usual cohomology groups, cohomology with compact support, the proper base change theorem, the comparison of étale cohomology with usual singular cohomology of varieties over \mathbb{C} .

The contents of the talks are as follows:

Lecture 1: The complex theory of modular forms. (April 26th) Define modular forms and cusp forms of level $\Gamma_1(N)$ and weight $k \geq 1$. Introduce the complex modular curve $Y_1(N)_{\mathbb{C}} = \Gamma_1(N) \setminus \mathfrak{H}$, and its canonical compactification $X_1(N)_{\mathbb{C}}$. Introduce the modular line bundle ω on $X_1(N)_{\mathbb{C}}$, and explain the Kodaira-Spencer isomorphism $\omega^2 \cong \Omega^1_{X_1(N)_{\mathbb{C}}}(\log C)$, where $C = X_1(N)_{\mathbb{C}} - Y_1(N)_{\mathbb{C}}$. Explain that the space of modular forms of weight k and level $\Gamma_1(N)$ is isomorphic to $H^0(X_1(N)_{\mathbb{C}}, \omega^k)$ and the space of cusp forms is isomorphic to $H^0(X_1(N)_{\mathbb{C}}, \omega^k(-C))$. Use Riemann-Roch to show the dimension formula for modular and cusp forms. Reference is [DS05, Chap. 3].

Lecture 2: Hecke operators. (May 3rd) Define Hecke operators T_n on the space of modular forms for each $n \ge 1$. Show that Hecke operators T_n for (n, N) = 1 are self-adjoint for the Peterson inner product on cusp forms, and deduce that the Hecke algebra \mathbb{T} generated by the endomorphisms T_p with (p, N) = 1 on the space of cusp forms is semi-simple. Introduce old forms and new forms, and state the strong multiplicity one theorem for newforms. (Reference: [DS05, Chap. 5].) Lecture 3: Arithmetic theory of modular curves. (May 10th) Show that $Y_1(N)_{\mathbb{C}}$ is in bijection with elliptic curves over \mathbb{C} together with a point of order N. Define the moduli problem $\mathcal{M}_1(N)$ over $\mathbb{Z}[1/N]$ of elliptic curves together with a $\Gamma_1(N)$ -level structure, and prove that $\mathcal{M}_1(N)$ is representable by an affine smooth scheme $Y_1(N)$ over $\mathbb{Z}[1/N]$ for $N \ge 4$. Introduce the canonical compactification $X_1(N)$ as a proper smooth scheme over $\mathbb{Z}[1/N]$ by considering Tate curves. Reference is [KM85, Chap. 4] and [DR72, Chap. VII].

Lecture 4: Arithmetic theory of modular forms and Hecke operators (May 17th). Give the moduli interpretation of modular forms and cusp forms, and explain that the q-expansions of modular forms are equivalent to evaluating the modular form at Tate curves. Prove the qexpansion principle. (Reference: [Ka79, §1.6] and [DS74, Section 2].) Discuss some generalities on algebraic correspondences and induced morphisms on cohomology groups. Introduce the modular curve $X(\Gamma_1(N) \cap \Gamma_0(p))$. Prove that the Hecke operator T_p on modular forms of level $\Gamma_1(N)$ coincides with the action of the algebraic correspondence given by $X(\Gamma_1(N) \cap \Gamma_0(p))$. Prove that if $f = \sum_{n=1}^{\infty} a_n q^n$ is an eigenform for all Hecke operators, then $\mathbb{Q}(a_n : n \ge 1)$ is a number field. (Reference: [Ka79, §1.11])

* Lecture 5: Eichler-Shimura isomorphism. (May 24th) Let $a : \mathcal{E} \to Y_1(N)$ be the universal elliptic curve, and $\mathbb{L} = R^1 a_*(\mathbb{Z})$ viewed as a \mathbb{Z} -local system on $Y_1(N)_{\mathbb{C}}$. For any integer $k \geq 2$, put $\mathbb{L}_{k-2} := \text{Sym}^{k-2}(\mathbb{L})$. Prove that there exist Eichler-Shimura isomorphisms

$$\begin{aligned} H^{1}(Y_{1}(N)_{\mathbb{C}}, \mathbb{L}_{k-2}) \otimes_{\mathbb{Z}} \mathbb{C} &\cong M_{k}(\Gamma_{1}(N)) \oplus S_{k}(\Gamma_{1}(N)), \\ H^{1}_{c}(Y_{1}(N)_{\mathbb{C}}, \mathbb{L}_{k-2}) \otimes_{\mathbb{Z}} \mathbb{C} &\cong S_{k}(\Gamma_{1}(N)) \oplus \overline{M_{k}(\Gamma_{1}(N))} \\ \widetilde{H}^{1}(Y_{1}(N)_{\mathbb{C}}, \mathbb{L}_{k-2}) \otimes \mathbb{C} &\cong S_{k}(\Gamma_{1}(N)) \oplus \overline{S_{k}(\Gamma_{1}(N))} \end{aligned}$$

where $H^1(Y_1(N)_{\mathbb{C}}, \mathbb{L}_{k-2})$ (resp. $H^1_c(Y_1(N)_{\mathbb{C}}, \mathbb{L}_{k-2})$) denotes the singular cohomology (resp. the compact supported singular cohomology) of the complex manifold $Y_1(N)_{\mathbb{C}}$, and $\widetilde{H}^1(Y_1(N)_{\mathbb{C}}, \mathbb{L}_{k-2})$ denotes the image of $H^1_c(Y_1(N)_{\mathbb{C}}, \mathbb{L}_{k-2})$ in $H^1(Y_1(N)_{\mathbb{C}}, \mathbb{L}_{k-2})$. Reference: [Ve61] and [De69, 2.10]. (This is a slightly difficult lecture, since the language in [Ve61] seems a little old. The lecturer should translate it into modern cohomological language.)

Lecture 6: Étale cohomology. (May 31st) Fix a rational prime ℓ . Define similarly $\mathbb{L}_{\ell} := R^1 a_*(\mathbb{Z}_{\ell})$ and $\mathbb{L}_{k-2,\ell} = \operatorname{Sym}^{k-2}(\mathbb{L}_{\ell})$ viewed as \mathbb{Z}_{ℓ} -local system on $Y_1(N)$. Let $f : Y_1(N) \to \operatorname{Spec}(\mathbb{Z}[1/N])$ be the natural morphism. Prove that $R^1 f_*(\mathbb{L}_{k-2,\ell})$ is a \mathbb{Z}_{ℓ} -local system on $\operatorname{Spec}(\mathbb{Z}[1/N])$ commuting with all base change.

Put V_{ℓ} : = $R^1 f_*(\mathbb{L}_{k-2,\ell})_{\overline{\eta}} \otimes_{\mathbb{Z}_{\ell}} \overline{\mathbb{Q}}_{\ell}$, where $\overline{\eta}$ is the geometric point of Spec $(\mathbb{Z}[1/N])$ given by $\overline{\mathbb{Q}}$. Deduce that that V_{ℓ} is a $\overline{\mathbb{Q}}_{\ell}$ -vector space equipped with commuting actions by $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ and the Hecke algebra $\mathbb{T} = \overline{\mathbb{Q}}_{\ell}[T_n : n \geq 1]$; moreover, the action of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on V_{ℓ} is unramified outside $N\ell$. Reference: [De69, Section 3 and Corollary 4.2]

Lecture 7: Integral model of $X(\Gamma_1(N) \cap \Gamma_0(p))$. (June 14th) Let p be a prime coprime to N. Introduce the moduli problem that defines an integral model of $X(\Gamma_1(N) \cap \Gamma_0(p))$ over $\mathbb{Z}[1/N]$. Show that the fiber of $X(\Gamma_1(N) \cap \Gamma_0(p))$ over \mathbb{F}_p is isomorphic to two copies of $X_1(N)_{\mathbb{F}_p}$ cutting transversally at supersingular locus. Reference: [De69, Section 4], [DR72, Chap. VI, Section 6].

Lecture 8: Finish of the construction in weight $k \ge 2$. (June 21st) Let f be a newform of level $\Gamma_1(N)$ and weight $k \ge 2$. Let V_{ℓ} be the $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \times \mathbb{T}$ -module studied in Lecture 6. Denote by $V_{\ell,f}$ be the f-isotypical component of V_{ℓ} for the Hecke action. Deduce from the Eichler-Shimura isomorphism that $V_{\ell,f}$ has dimension 2 over $\overline{\mathbb{Q}}_{\ell}$. Deduce from Lecture 7 the Eichler-Shimura congruence relation, hence show that the *contragredient* of $V_{\ell,f}$ is the Galois representation attached to f. Follow Ribet's argument to show that $V_{\ell,f}$ is irreducible. Combine with Weil II to give the application to Ramanujan's conjecture for holomorphic cusp forms. Reference: [De69, Section 5]

Lecture 9: Results in weight one and applications (June 28th) State the results for weight one cusp forms. Give applications to the Fourier coefficients of weight one modular forms, [DS74, Section 9]. Discuss the general statement of Artin's holomorphy conjecture for complex representations of the absolute Galois group of a number field, and some general reductions. Prove the functional equation of L-functions of weight one modular forms, and deduce the applications to Artin conjecture for 2-dimensional representations coming from modular forms of weight one. Reference: [DS74, Section 4].

Lecture 10: Rankin-Selberg *L*-function and applications to weight one forms (July 5th) Introduce Rankin-Selberg *L*-function of two cusp forms, prove its analytic properties (Analytic continuation, functional equations, poles). Then explain the first estimation of the Fourier coefficients of weight one modular forms proved in [DS74, Section 5].

Lecture 11: Construction of Galois representations modulo ℓ . (July 19th) The aim of this lecture is to prove the following statement, which is the first step of Deligne-Serre's construction of Galois representation attached to a weight one modular form: Let f be a modular form of weight $k \geq 1$ level $\Gamma_1(N)$ and nebentypus ϵ with coefficients in a number field K. Let λ be a finite place of K, and k_{λ} be the residue field of characteristic ℓ . Assume that f is a eigenvector for all T_p modulo λ with $p \nmid N\ell$ of eigenvalue $a_p \in k_{\lambda}$. Let $k_f \subseteq k_{\lambda}$ be the subfield generated by a_p and $\epsilon(p)$. Then there exists a semi-simple Galois representation

$$\rho_{\lambda} \colon \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(k_{\lambda})$$

such that

and [Ri76].

$$\operatorname{Tr}(\rho(\operatorname{Frob}_p)) = a_p, \quad \det(\rho(\operatorname{Frob}_p)) = \epsilon(p)p^{\kappa-1}.$$

Reference: [DS74, Théorème 6.7].

* Lecture 12: End of the proof in weight one. (July 26th) Follow [DS74, Section 7, 8] to finish the proof of Deligne-Serre's construction of the Galois representation attached to a weight one eigenform f. By Lecture 11, for each rational prime ℓ that is completely split in the coefficient field K of f, one can attach to f a mod ℓ Galois representation $\rho_{\ell} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{F}_{\ell})$. The key point is to show that $\operatorname{Im}(\rho_{\ell})$ is bounded independent of ℓ .

References

- [DS05] F. Diamond, J. Shurman, A First Course in Modular Forms, G.T.M. 228, Springer-Verlag, 2005.
- [De69] P. Deligne, Formes modulaires et représentations l-adiques, Séminaire N. Bourbaki, 1968-1969, exp. 355, 139-172.
- [DR72] P. Deligne, M. Rapoport, Les Schémas des modules de courbes elliptiques, Modular functions in onevariable, Lect. Notes in Math. 249.
- [DS74] P. Deligne, J. P. Serre, Formes modulaires de poids 1, Annales Scientifiques de l'É.N.S. 4ème série, tome 7, no. 4, (1974), 507-530.
- [Ka79] N. Katz, p-adic properties of modular schemes and modular forms, in Modular functions in one-variable, Lect. Notes in Math. 350.
- [KM85] N. Katz, B. Mazur, Arithmetic moduli of elliptic curves, Annals Math. Studies 108, Princeton University Press, Princeton NJ, 1985.
- [Ri76] K. A. Ribet, Galois representations attached to eigenforms with nebentypus, in Modular functions of one variable V, Lect. Notes in Math. 601, Springer-Verlag, 1976.

MODULAR FORMS AND GALOIS REPRESENTATIONS

[Ve61] J. L. Verdier, Sur les intégrales attachées aux formes automorphes, *Séminaire N. Bourbaki*, 1960-1961, exp. 216, 149-175.